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Abstract

The present work is dedicated to searching parameters, alternative
to entropy, applicable for description of highly organized systems. The
general concept has been offered, in which the system complexity and
order are functions of the order establishment rules. The concept of
order poles has been introduced. The concept is being applied to def-
inition of the order parameter (OP) for non-random sequences with
equal number of zeros and ones. Properties of the OP are being stud-
ied. Definition of the OP is being compared to classical definition of
amount of information.

1 The complexity and order concept

The determined chain term means the readable object that gives the same
sequence of characters for any rereading. These chains are, for example, DNA,
RNA, proteins, any book on the shelf. The issue of how to determine degree
of order and amount of information in this system is under discussion since
publication of Shannon’s [1] works. The Shannon’s entropy is the param-
eter that describes uncertainty of the system. Information is regarded as
elimination of uncertainty and is calculated provided probabilities of occur-
rence of symbols from a given alphabet are defined [2]. Applying entropy
to determined sequences we simulate it by random sequence of characters.
In 1965, A.N. Kolmogorov [3] turned his attention to limitations of the
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probabilistic approach in determining the amount of information and offered
an algorithmic approach, known today as the Kolmogorov’s complexity. The
Kolmogorov’s complexity does not depend on any probabilistic assumptions,
but the sequence-generating algorithm.

The foregoing does not detract from the importance of the probabilis-
tic method, in particular, for statistical processing of experimental data in
molecular biology. In this way, in works [4, 5, 6] the Logo for certain DNA
sections is built based on the Shannon’s information.

However, it is very problematic to perceive information contained in bi-
ological systems as eliminated uncertainty. Describing the living matter as
a complex highly organized system, we nevertheless know [7] that entropy
of a piece of rock is not much higher than that of living creatures of the
same mass. In quest for other definitions of complexity and order, we offer
the following concept.

Consider a system described by a set of discrete parameters that deter-
mines its state. The system can be a real physical or abstract. Let us say the
system has a complexity if:

• The external system, which, affecting this system according to certain
rules or natural laws, transforms it from one state to another, can be
built (defined).

• A positive value T , which describes external influence, resulting in the
A → B transition, is defined. Let us regard minimum value of T as
complexity of the A → B transition. For example, complexity for the
physical systems can be minimal energy or time necessary for transition
from one state to another.

We shall establish that a system may be considered ordered provided it is
possible to define specific states, known as poles, defined by the following:

• There is a parameter describing the system, which reaches its extremes
at the poles.

• Complexity of transition between the poles is maximal.

In ordered systems, degree of the state order A can be described as a
function of transition complexities from state A to the order poles. In the
above concept, complexity of transitions and the system’s order states depend
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on ordering of the external influence. Such definition may seem very strange.
Let us recall, however, the assertion ”living comes from the living only” that
nobody has neither proven no refuted as yet. For our purposes, this statement
can be formalized as follows:

The system can be ordered only with another ordered system’s help.

Now one may easily agree that degree of the system’s order depends on
who performs the procedure and how.

The order poles can be seen in simple physical systems. Let there be
a mixture of solid and liquid phase at the phase transition temperature.
Parameters, describing the system, are masses of m1 and m2 phases, which
are, generally speaking, discrete. The system is closed - the M = m1 + m2

mass is constant. Let us build an external system - the calorimeter, allowing
for heat transfer. Energy, transferred to the system, changes bothm1 andm2,
and its absolute value may be considered the transition complexity. Maximum
complexity is achieved upon complete transition from one phase to another.
Thus, there are two state poles. Another physical example is an atom in
different energy states. The order poles in this case - the ground state and
the ion. In systems, described by multiple parameters, there can be a large
number of poles. The order poles concept may be of interest when studying
biological systems. A very general idea, described in the present study, is
realized to determine the order parameter for a finite sequence of symbols
with equal numbers of ones and zeros.

2 The minimum information poles

in the classical theory

Since the order poles concept is central to this paper, we consider it neces-
sary to present preliminary researches and show that within the framework
of classic information theory it is possible to define the poles as states of
perfect order with minimum information.

A remark from work [8] brings us to the idea of zero information de-
termination: ”DNA can not be periodic, just as any sequence of letters in
a meaningful textbook”. Intuitive assertion of minimum information for a
periodic chain can actually be obtained by strict formulation of the problem.

Let us examine long chains, composed of zeros and ones, assuming it is
possible to calculate probabilities of character appearance using a statisti-
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cal method. Based on these probabilities we can calculate the amount of
information that a chain of known length contains. We restrict ourselves to
Markov’s chains of the first order.

First, let us note that the ideal periodic sequence of symbols can be
simulated in the Shannon’s classic model. Of course, information in a periodic
chain of two characters with a known first character equals zero. However, it
is important to figure out behavior of the Shannon’s information in case of a
small deviation from the chain periodicity. Besides, for comparison with the
order parameter we shall need the maximum information condition for the
Markov’s chain.

Let us consider a sequence in which 0 and 1 occurs with equal probabil-
ities. Let us further suppose that in the 2n symbols long chain there are on
average k pairs of 00 sequences. (To calculate pairs without restricting gen-
erality, we can close the chain into the ring. If s ≥ 2 zeros follow in sequence,
we believe there are s − 1 pairs of 00. It is then easy to calculate [2] the
amount of information in such 2n symbol long chain:

H(k) = 1−
2n− 1

n
[k log2

k

n
+ (n− k) log2

n− k

n
] (1)

Analyzing function (1), let us write down the extreme values of H(k) at
n ≫ 1, as well as values in the field 0 ≤ k < n, immediately following the
minimum in the ascending order.

Hmax = H(n/2) = 2n bit (2)

Hmin = H(0) = 1 bit (3)

H1 = H(1) = 2 log2 n bit (4)

H2 = H(n− 1) = 2 log2 n bit (5)

We get the maximum amount of information when pairs of 00 and 11 ap-
pear with the same frequency as pairs of 01 or 10. This situation corresponds
to a chain without memory.

Let us consider the situation near information minimum. At k = 0, we
have a deterministic periodic chain (hereinafter S+) with period 01, starting
either from zero or one:

0101010101... (6)
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The amount of information in a periodic chain of 2n symbols equals the
one carried by the first symbol. If the first character is known, then, as we
have already noted, information equals zero.

At k = 1, the chain is little different from the previous one, namely, on
average for every 2n characters there is a 00 and a 11, for example:

010101011001010101010... (7)

At k = n− 1 we get a chain in which for 2n symbols there is on average
one pair 01 and one pair 10, the rest are 00 and 11. At n ≫ 1 such chain
approaches the deterministic chain in which n zeros is followed by n ones:

00000...011111...1 (8)

Let us denominate chain (8) as S− and call it the zeros and ones separation
chain. This pertains to both open and closed chains. In the latter case, it is
of no importance whether all zeros are located on the left or on the right.

Let us point out here, that a sequence like (8) can be obtained by means
of the Markov’s chain of order n. Examining the deterministic chain, we label
the transition probabilities with 0 or 1 values only. Such probabilities result in
generating of periodic sequences with different periods. The smallest period
contains one character, the largest - 2n symbols. It is therefore possible to
distribute the transition probabilities in such a way as to generate a strictly
periodic chain, in which n zeros should be followed by n ones. Generally
speaking, any of the periodic sequences may be regarded as an example
of ideal order. If we restrict ourselves to the Markov’s chain of the first
order and the case with a uniform distribution of zeros and ones, then let us
consider three almost ideal orders, corresponding to minimum information
and described by formulas (3) - (5).

Order (7) is only a minor violation of order (6). However, in transition
from k = 0 to k = 1, i.e. with minimum periodicity disruption, the quantity
of information leaps infinitively within n → ∞. From the information theory
viewpoint, this is not surprising - it is the same as the infinite information
of a black point on a white background. But when describing a real physical
object such result would appear unsatisfactory.

The sequences of ideal order (6) and (8), obtained within the framework
of the discussed problem, are examined below as order poles.
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3 Determination of order poles and parame-

ter based upon the connection function

Let us define the function of connection between two adjacent symbols
ui,i+1. Such function may have a real sense, for example, the binding energy
between pairs of complementary nucleotides in the DNA. Not so long ago,
these energies have been measured [9]. Let us build a sum, properties of
which relate to the idea of order poles and parameter.

F =
2n∑

i=1

ui,i+1, (9)

where in case of a closed circular chain we have u2n,2n+1 = u2n,1, whereas for
an open chain, adding up in (9) exists only until 2n− 1.

For a chain, consisting of zeros and ones, the connection function argu-
ment for its next-door neighbors are four possible sequences 11, 10 ,01, 00.
Accordingly, we’ll define 4 values for ui,i+1: ε11, ε10 ,ε01, ε00. For the sake of
symmetry let us put ε10 = ε01 . Let us break a chain into blocks. The block
here and below is a sequence of identical symbols, each of them surrounded
by another symbol from both sides. Let the number of blocks of one of the
symbols be equal to b. It is clear that the number of blocks of the second
character and the number of 01 or 10 pairs in the chain also equal b. Since
there is an equal number of zeros and ones in the chain, the number of 00
and 11 pairs in it equals k = n− b. Then, from (9) it should be:

F = n (ε11 + ε00) + b∆ǫ (10)

∆ǫ = 2ε10 − (ε11 + ε00) (11)

For the long chains, the entered total function of connections of the next-
door neighbors (9) by structure equals result (1), obtained based upon the
first-order Markov chain’s model. Conformity of formulas (10) and (1) is
reached assuming that

ε11 = ε00 = − log2
n− b

n
(12)

ε10 = − log2
b

n
(13)
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Assuming that the order formula, based on a probabilistic model, cor-
responds to the general structure (9), we can try to determine the order
parameter, based on the latter. Unlike probabilistic model, where ui,i+1 are
determined statistically and depend on the state of the entire chain, we as-
sume that parameters ε11, ε10 ,ε01 are constant, which is justified, because the
adjacent elements of the chain are ”unaware” of the chain’s general status.
First and foremost, let us find the extremums of function (9), being limited
to the closed chain. In two cases, when F (b) differs from the constant, we
have:

∆ǫ < 0 ⇒ Fmax = F (0), Fmin = F (n) (14)

∆ǫ > 0 ⇒ Fmax = F (n), Fmin = F (0) (15)

Thus, the state of ideal periodicity b = n and the state of complete
separation b = 0 (disintegration on two) appear to be very specific indeed -
in these states either minimum or maximum of function (9) is achieved.

Function (9) has an additivity property almost relative to the cross-linking
operation of two chains A and B (not necessarily with the equal number of
zeros and ones):

F (A B) = F (A) + F (B) + γ (16)

where A B denotes the chain cross-linked together, γ is a parameter that
depends on symbols in the cross-link point . If two chains with open ends
are cross-linked, then γ = ui,i+1 , where i, i + 1 are numbers of the cross-
linked elements in chain A B. It is also possible to cross-link chains, closed
in a ring. For this purpose let us cut each in some place and cross-link the
ends. If, when cross-linked, all four elements are identical, or if one of A
bonds with zero of B, and one of B bonds with zero of A, then γ = 0. If
two zeros of A bond with two ones of B, then γ = ∆ǫ . If zero of A bonds
with zero of B, and one of A bonds with one of B, then γ = −∆ǫ . In order
to introduce the order parameter, you must determine what properties it
should possess. We can act by analogy with the way in the classic theory
a formula for the Shannon’s information is being derived from the axioms.
May we remind that one of the axioms is the information additivity. The role
of similar axiom in our case will be played by the ”near-additivity” property
(16). A set of functions, defined on closed chains An with equal numbers of
zeros and ones and possessing property (16), can be represented as:
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f(An) = Cn+ b∆ǫ (17)

where C is an arbitrary constant. Let us define the order parameter K(b, n)
in the form of renormalized function (17):

K(b, n) = βf(An) (18)

We want the order parameter to possess certain symmetry at the poles.
Let us note that the symmetry requirement K(0, n) = K(n, n) is insoluble for
the C constant, it is therefore natural to demand the antisymmetry property
of on the poles:

K(0, n) = −K(n, n) (19)

Determining the C constant in accordance with (19) and choosing β for
considerations of convenient normalization, we obtain:

K(b, n) = 2b− n (20)

For an ideally periodic chain we get K = n, in case of separation of
zeros and ones K = 2 − n and at disintegration into two K = −n. As we
shall see below, result (20) is a particular case of another order parameter
determination.

4 Basic idea. Measure of order for a finite

sequence, containing equal number of zeros

and ones.

Classic definitions of information amount are based on a postulate: there
is a mechanism of symbol sequence generation. In the Shannon’s model there
must be an apparatus that generates characters with certain probabilities.
The Kolmogorov’s complexity [10] is determined by existence of the algo-
rithm, which can create a specified sequence, and the amount of information
depends on the algorithm proper. It is clear that if some sequence of symbols
is set, then without defining its generation mechanism or research by some
procedures it is impossible to define what we would like to call the amount
of information or degree of a symbol sequence order. We shall proceed from
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the idea whereby instead of a generating mechanism a transformation mech-
anism is being used, which does not change the chain composition. The idea
of comparing binary words by means of transformation is known from works
[11], [12]. Let us consider a set of sequences, in which there are n ones and
n zeros. All such sequences differ in the location of symbols, we may call
the Si state, where i is a state index. Under transformation we understand
transition of sequence from Si to Sj by means of transfer of one or several
adjacent symbols from one part of sequence to the other. Let us call each
such transition a step. We believe that transitions should be executed under
certain rules, which we hereinafter call the ordering method Ω. Let us define
following requirements to Ω:

• The ordering method must determine what kind of symbol transfers
are allowed.

• The ordering method must allow transition from any state Si to any
state Sj in a certain number of steps. The minimum number of steps
required for this transition, we hereby denote as T (Si, Sj,Ω) = tij . For
symmetry sake , we also require tij = tji .

The examined system assumes introduction of order poles S+ (6) and S−

(8) in accordance with the above concept. Indeed, S+ is maximum and S−

is minimum in terms of number of 01 and 10 pairs. Relative complexity of
the S+ and S− poles appears maximum for the Ω rules, considered below,
i.e. the minimum number of steps necessary for transition between poles, is
no less than minimum number of steps for transition between any other two
states.

t = T (S+, S−,Ω) ≥ T (Si, Sj,Ω) (21)

(in (21) Si or Sj not pole ).
Now we want to build a function, which will compare every state with a

number, the meaning of which is degree of the symbol chain ordering. Since
we have identified two states of the ideal order S+ and S− , an arbitrary
state of Si according to the general idea is characterized by two parameters,
determining the number of steps you need to reach the poles from the Si

state applying the Ω rules.

ti+ = T (Si, S+,Ω) ti− = T (Si, S−,Ω) (22)
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Let us look for the order parameter K(Si) as a function K(ti+, ti−) that
satisfies the next properties (for brevity sake, dependence on Ω in certain
places is being ignored):

• First, unlike properties of classic entropy, we would like small changes
in a sequence to always result in small changes of the order parameter.
We shall formulate a stricter requirement. Let one step to have been
accomplished according to the Ω rule and the sequence transferred from
state Si to Sj . In the new state we have an order parameter K(tj+, tj−).
If the sequence is long enough, then a one-step transition is local, i.e.
changing order in small part of the sequence only. It is therefore natural
to require that change in the order parameter under such transition
from any state would not depend on the arrangement of all sequence
in general, i.e. would not depend on t, ti+ and ti− , but exclusively on
∆t+ = tj+ − ti+ and ∆t− = tj− − ti−:

K(tj+, tj−)−K(ti+, ti−) = C(∆t+,∆t−) (23)

• The second requirement is the anti-symmetry of the poles’ values:

K(0, t) = −K(t, 0) (24)

(Should we require symmetry of the order parameter on the poles instead
of anti-symmetry (24), then from (23) we get K ≡ Const.)

Property (23) is the necessary and sufficient condition for linearity of func-
tion K(ti+, ti−), whereas consideration of (24) allows us to build a formula
for the calculation of the order parameter.

Necessity. Suppose function K(ti+, ti−) is linear.

K(ti+, ti−) = αti+ + βti− + c, (25)

where values α, β, c - are constants. Then :

K(tj+, tj−)−K(ti+, ti−) = α∆t+ + β∆t−, (26)

at that, due to minimality of ti+, ti−, tj+, tj− , variables ∆t+,∆t− can only
have values of 0,1,-1.

Sufficiency. Suppose difference K(tj+, tj−)−K(ti+, ti−) is independent of
ti+, ti− for all i states. In particular, it should be true for all states the chain
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passes along its shortest way from S+ to S− . For every such transition we
have:

tj+ = ti+ + 1 tj− = ti− − 1 (27)

Then, during this transition

K(tj+, tj−)−K(ti+, ti−) = a, (28)

where a is constant. From (27) and (28) we get:

a =
1

t
(K(t, 0)−K(0, t)) (29)

K(ti+, ti−) =
1

t
(K(0, t)ti− +K(t, 0)ti+) (30)

From the locality requirement it follows that a in (29) does not depend
on t. Using the antisymmetry requirement for the poles’ order parameter and
choosing a suitable scale, we get a formula to calculate the order parameter:

K(ti+, ti−) = ti− − ti+ (31)

Now enter the relative order parameter of the S chain.

k(S,Ω) =
K(S,Ω)

t(Ω)
(32)

Then for any ordering method, we get:

k(S+,Ω) = 1, k(S−,Ω) = −1 (33)

Enter determination of chaos. We talk about the state of chaos, if:

k(S,Ω) = 0 (34)

or about the near-chaos state, if:

|k(S,Ω)| ≪ 1 (35)

Let us also define a value we call Ω-information in the S chain:

I = I(S,Ω) =

{

T (S, S+,Ω), K(S,Ω) ≥ 0
T (S, S−,Ω), K(S,Ω) < 0

(36)
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That is, the amount of Ω-information equals minimum number of transfers
for transition to the nearest pole at a given Ω. Note, that the absolute order
parameter and the Ω-information are not additive values in terms of bonding
operations:

K(A B,Ω) 6= K(A,Ω) +K(B,Ω) (37)

5 The order parameter for some methods of

transfer.

Considering the various ways of transfer further, we shall be interested
in finding such symbol location conditions that lead to the state of chaos.
Another issue is to find such Ω, for which condition of the order parameter’s
additivity is met with respect to chain bonding operations. It is also inter-
esting to see how the order parameter and the amount of Ω-information will
change with a small chain deviation from its ideal order.

5.1 Method of a single symbol arbitrary transfer.

Let us assume it is allowed to take any symbol and to transfer it by insert-
ing between any two symbols or to the end of the line. Let us denote such
sequencing method as Ω1. The number of transfers required for transition
between the poles (6), (8) by means of Ω1 is:

t(Ω1) = n− 1 (38)

It is easy to verify that (21) holds, and in the case of closed chains, it is
strict. For the poles (6), (8) we get:

K(S+) = n− 1, K(S−) = −n + 1 (39)

For brevity, in this section we present results for open chains only.

Small deviation from the ideal order. Let us consider chain S1 ,
near to periodic, similar to (7), in which there are 2n− 2 pairs of 01 or 10,
and once we have both 00 and 11. (Although we discuss an open chain, when
counting pairs it is more convenient to regard the chain as closed in the ring.)
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T (S1, S+) = 1 = I, T (S1, S−) = n− i, K(S1) = n− i− 1 (40)

In (40) i = 1, in case 00 and 11 are inside the chain and i = 2, if 00 or 11
are on its edge. The relative order parameter for the examined chain:

k(S1) = 1−
i

n− 1
(41)

Note also that

K(S+)−K(S1) = i, k(S+)− k(S1) =
i

n− 1
(42)

Thus, unlike the Shannon’s entropy, a small deviation of an arbitrarily
long chain from the perfectly periodic one causes a finite change of the order
parameter and the Ω-information amount, whereas difference in relative order
parameters tends to zero.

Let us consider a near-separation chain (8). We assume one of the ones
has been transferred and introduced between zeros. Let us denote such chain
as S2. Then:

K(S2) = 3− n, K(S−)−K(S2) = −2. (43)

In this case, for an arbitrarily long chain the change of the absolute order
parameter is finite as well, whereas the amount of Ω-information in such
chain is I(S2) = 1.

The order parameter calculation formula. Let us give an example
of calculation of the order parameter and the Ω-information amount for the
chain S in the figure below. Upper pointers show transfer to the state of
separation, lower ones - to the state of ideal periodicity.

T (S, S+) = 3 = I(S), T (S, S−) = 6, K(S) = 3, k(S) =
3

8

It is clear that T (S, S+) always equals the number of intervals between
consecutive ones or zeros (for exact calculation the chain should be closed
into a ring). Determination of T (S, S−) is not that obvious. Let us break up
the chain into blocks, number the blocks from left to right by means of the
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i index and denote the si number of symbols in a block as (si ≥ 1). Let us
count the number of zeros and ones to the block’s left. Let lsi be the number
of symbols to the block’s left (same as in the block proper), and l̄si - the
number of other symbols to the left. Then, to the block’s right there are
n − si − lsi symbols of the block and n − l̄si of other symbols. In order to
pass to the state of complete separation it is necessary to transfer symbols
of one kind (on the block’s left) to the right, and symbols of other kind (on
the block’s right) to the left. We get two possible numbers of transitions:

x1 = l̄si + n− si − lsi (44)

x2 = n+ lsi − l̄si (45)

Let us choose the smallest of the two variables x1, x2 by means of the func-
tion:

fi = min(x1, x2) =

{

n+ lsi − l̄si si ≤ 2(l̄si − lsi)
l̄si + n− si − lsi si > 2(l̄si − lsi)

Then:
T (S, S−) = min

i
(fi)

A few additional examples of calculation of the order parameter and Ω-
information.
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A : 011111010000010011

T (A,A−) = 5, T (A,A+) = 5, K(A) = 0, I(A) = 5,

B : 11101011100000

T (B,B−) = 2, T (B,B+) = 4, K(B) = −2, I(B) = 2.

The ”bonding” operation and discussion of additivity. Although
operation of cross-linking chains A and B is not additive, as we have noted
already (37), it is possible to discuss the near-additivity property.

K(A B) = K(A) +K(B) + s, (46)

where s is a small number compared with each of the chains’ length. Clearly,
for the near-periodicity chains (6), condition (46) holds. The additivity is
quintessentially violated for the near-separation chains. Let us consider bound-
ing of two type (8) chains. Let chains A and B have length of 2m and 2k
correspondingly and k ≥ m:

A : 111...11000...00
︸ ︷︷ ︸

2m

, T (A,A+) = m− 1, T (A,A−) = 0, K(A) = 1−m,

B : 111...11000...00
︸ ︷︷ ︸

2k

, T (B,B+) = k − 1, T (B,B−) = 0, K(B) = 1− k,

C = A B : 111...11000...00
︸ ︷︷ ︸

2m

111...11000...00
︸ ︷︷ ︸

2k

,

T (C,C+) = m+ k − 2, T (C,C−) = m, K(C) = −k + 2.

In the studied case:

K(A B) = K(A) +K(B) +m, (47)

The ”bonding” operation and struggle of orders. Let us consider
the bonding operation of n identical A chains, each in the state of complete
separation (s of ones followed by s of zeros (s > 1)):

A : 111...11000...00
︸ ︷︷ ︸

2s

, k(A) = −1.
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Let us call the resulting chain nA:

A A A... A
︸ ︷︷ ︸

n

= nA = 1...110...00
︸ ︷︷ ︸

2s

1...110...00
︸ ︷︷ ︸

2s

... 1...110...00
︸ ︷︷ ︸

2s
︸ ︷︷ ︸

n

(48)

It easily to calculate, that:

T (nA, (nA)+) = n(s− 1)

T (nA, (nA)−) = s(n− 1)

The absolute order parameter equals:

K(nA) = n− s, (49)

Ω-information:

I(nA) =

{

ns− n, n ≥ s
ns− s, n < s

(50)

The relative order parameter equals:

k(nA) =
n− s

ns− 1
, (51)

At that

lim
n→∞

k(nA) =
1

s
, (52)

Results (51) - (52) describe the struggle of orders. At n = 1, we have the
order of separation. With n increasing, the relative order parameter increases,
passes a near-chaos point, changes its sign when the chain periodicity begins
to dominate and in the extreme reaches a value, determined solely by the
period composition.

A more general result for the struggle of orders can be obtained if we
consider the bounding operation of n identical chains B, 2s long and with
equal number of zeros and ones, for each of which:

T (B,B+) = m ≤ s− 1 (53)

We obtain:
T (nB, (nB+)) = nm (54)

T (nB, (nB−)) = sn− l (55)
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(where l ≤ s).
K(nB) = n(s−m)− l (56)

lim
n→∞

k(nB) = 1−
m

s
(57)

5.2 Method of transfer by blocks.

Let us set the ordering rule Ω2 that allows transferring the entire block or
its part as a whole. It is easily understood that t(Ω2) = t(Ω1). The calculation
rule for T (S, S+) is the same, as in Ω1, however it is different for T (S, S−).
For an open chain when it begins and ends with the same symbol:

T (S, S−) = b, (58)

If the ends have different symbols:

T (S, S−) = b− 1. (59)

If the chain is closed, we have (59) and in all cases T (S, S+) = n− b. The
order parameter for the closed chain :

K(S) = 2b− n− 1. (60)

Up to an irrelevant unit, formula (60) corresponds to result (20), obtained
earlier in Section (3). Therefore, for Ω2 the order parameter has the property
of additivity almost under the bonding operation (46), where s ∈ {0,±1}.
Ω-information has this property only when K(A) and K(B) have the same
sign or equal zero.

K(A)K(B) ≥ 0 ⇒ I(A B) = I(A) + I(B) + s, s ∈ {0,±1} (61)

If K(A) and K(B) have different signs, the A B cross-link generates new
Ω-information. For example, if we take two chains of equal length 2n, one of
which is in the state of separation and the other one is perfectly periodic,
the Ω-information in each of them equals zero, but after bonding we obtain
I = n.

Both for the absolute order parameter and the amount of Ω-information,
the property of near-commutativity holds:

K(A B) = K(B A) + s (62)
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I(A B) = I(B A) + s (63)

where, as above, s ∈ {0,±1}.
Ordering with blocks has one more important property, which we formu-

late as the chaos theorem.

Theorem of Ω2 chaos. From (58)-(60) it follows that for the Ω2 rules
the state of chaos occurs when n = 2b or n = 2b− 1.

Hence, for the chain in question the state of chaos in relation to transfer

by blocks is achieved under the same conditions that exist when the Shannon’s

information maximum is reached for the first-order Markov’s chain, i.e. when

frequencies of 00 and 01 pairs’ occurrence are equal.

Struggle of orders. Let us calculate the Ω2 order parameter for chain
(48).

We calculate the order parameter Ω2 for the chain (48).

T (nA, (nA)+) = n(s− 1)

T (nA, (nA)−) = n− 1

K(nA) = 2n− 1− sn, (64)

k(s, n) = k(nA) =
2n− 1− sn

ns− 1
, (65)

lim
n→∞

k(nA) =
2

s
− 1, (66)

Similar to the case of a single symbol transfer, in the Ω2 model the struggle of
orders is also observed during cross-linking of identical sites with separation
(65)-(66). At s = 1, regardless of n, we obtain the ideal periodicity state, for
s → ∞ we obtain the state of separation. The near-chaos state is reached
already at s = 2. Difference from a single symbol transfer is clear - transfer
by blocks shortens the path to the state of complete separation.
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5.3 The adjacent elements’ permutation method for

the Ω3 ring chains.

We shall consider closed chains with the equal number of ones and zeros.
(We shall write these chains in a row and assume that the last element is
joined to the first). Note, that in this S− (8) is equivalent, for example, to
the chain like:

00...0
︸ ︷︷ ︸

r

11...1
︸ ︷︷ ︸

n

00...0
︸ ︷︷ ︸

n−r

We shall introduce the Ω3 ordering rule, which allows swapping two ad-
jacent characters. In this case, for the chains in question (n ≥ 2):

t(Ω3) = T (S+, S−) = T (S−, S+) =

{

0.25n2, n = 2k,
0.25(n2 − 1), n = 2k − 1,

(67)

where k is a natural number. (To get the minimum number of steps required
for transition from (6) to (8), zeros should be transferred simultaneously from
two opposite sides of the ones’ block).

First of all, let us investigate sequence (7) denoted below as G. To do
this we need an additional parameter l, denoting the minimal number of
characters in a circle between 00 and 11 pairs. It is obvious, that l is even,
at that l ≤ n− 2. The number of steps we require to return the sequence to
a perfectly periodic state is:

T (G,G+) = 0.5l + 1 (68)

The number of transfers for the transition to a complete separation state:

T (G,G−) = t(Ω3)− 0.5l − 1 (69)

From (68) -(69) and definition (31) we have:

K(G) = t(Ω3)− l − 2 (70)

k(G) = 1−
l + 2

t(Ω3)
(71)

K(G+)−K(G) = l + 2 (72)
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I(G, l) = 0.5l + 1 (73)

k(G+)− k(G) =
l + 2

t(Ω3)
(74)

Change of the relative order parameter, as before, tends to zero at n → ∞
and constant l. However, change of the absolute order parameter and the
amount of Ω-information increases linearly with increasing l. In particular,
if 00 and 11 divide the chain into two equal parts, then l = n− 2 and hence:

I(G, n− 2) = 0.5n (75)

Let us analyze the previously examined chain, obtained from the state of
separation through transfer of one of the ones in a zeros’ block.

E : 000010...0
︸ ︷︷ ︸

n+1

1111...1
︸ ︷︷ ︸

n−1

(76)

Suppose this one is located l zeros from the nearest interface of zeros and
ones. Then:

T (E,E−) = l, T (E,E+) = t(Ω3)− l (77)

K(E) = 2l − t(Ω3), k(E) =
2l

t(Ω3)
− 1 (78)

K(E)−K(E−) = 2l (79)

k(E) − k(E−) =
2l

t(Ω3)
(80)

I(E, l) = l (81)

General conclusions, made for chain G, are also true for E.
By specific examples one can easily verify that the near-additivity prop-

erty is not met in relation to Ω3 . To verify struggle of orders let us calculate
the order parameter for the chain (48) assuming it is ring-shaped. Below we
use the notion of t(Ω, j) - number of transitions from the ideal periodicity
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under the state of separation for a 2j-long chain. For the adjacent symbols’
permutation method we get:

k(nA) =
s2t(Ω3, n)− nt(Ω3, s)

t(Ω3, ns)
(82)

:

k(nA) =







1−
1

n
, s = 2i, n = 2m,

1−
s2 − 1

s2n
, s = 2i− 1, n = 2m,

1−
1

n
−

1

n2
, s = 2i, n = 2m− 1,

1 +
(1− s2)(1 + n)

s2n2 − 1
, s = 2i− 1, n = 2m− 1

(83)

Here, if s = 1, then n ≥ 2, for the rest of s we have n ≥ 1.
Result (83), generally speaking, is weakly dependent on s. In case

n = 1, s ≥ 2, we have the state of separation: k = −1. For n = 2 and any s,
we already have k > 0, i.e. we skip the state of chaos, and with increasing n
we have k → 1. Thus, for large n in terms of the order parameter the chain
behaves as an ideally periodic one (6).

6 Conclusion

Development of the suggested idea is subject to the following problems’
solving:

• Generalization of the order parameter determination in case of unequal
number of zeros and ones.

• Expansion of theory in case of any number of symbols in an alphabet.

• Establishing criteria for distinguishing one ordering method from an-
other and selection of optimal ordering method.
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