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EXTENSIONS OF TORIC VARIETIES

MESUT ŞAHİN

Abstract. In this paper, we introduce the notion of “extension” of a toric
variety and study its fundamental properties. This gives rise to infinitely
many toric varieties with a special property, such as being set theoretic com-
plete intersection or arithmetically Cohen-Macaulay (Gorenstein) and having a
Cohen-Macaulay tangent cone or a local ring with non-decreasing Hilbert func-
tion, from just one single example with the same property, verifying Rossi’s
conjecture for larger classes and extending some results appeared in literature.

1. Introduction

Toric varieties are rational algebraic varieties with special combinatorial struc-
tures making them objects on the crossroads of different areas such as algebraic
statistics, dynamical systems, hypergeometric differential equations, integer pro-
gramming, commutative algebra and algebraic geometry.

Affine extensions of a toric curve has been introduced for the first time by Arslan
and Mete [2] and used to study Rossi’s conjecture saying that Gorenstein local
rings has non-decreasing Hilbert functions. Later, we have studied set-theoretic
complete intersection problem for projective extensions motivated by the fact that
every projective toric curve is an extension of another lying in one less dimensional
projective space [14]. Our purpose here is to emphasize the nice behavior of toric
varieties (of any dimension this time) under the operation of extensions and we
hope that this approach will provide a rich source of classes for studying many
other conjectures and open problems.

In the first part of the present paper we introduce extensions of toric varieties
generalizing the definition given for monomial curves in [2, 14] and present results
in which a minimal generating set of a toric ideal extends to its extensions by a
binomial, see Propositions 2.4 and 2.12, which is not true in general by Example
2.11. In particular, if we start with a set theoretic complete intersection, arithmeti-
cally Cohen-Macaulay or Gorenstein toric variety, then we obtain infinitely many
toric varieties having the same property, generalizing [16].

We devote the second part for the local study of extensions of toric varieties.
Namely, if a toric variety has a Cohen-Macaulay tangent cone or at least its local
ring has a non-decreasing Hilbert function, then we prove that its nice extensions
share these properties supporting Rossi’s conjecture for higher dimensional Goren-
stein local rings and extending results appeared in [1, Proposition 4.1] and [2,
Theorem 3.6]. Similarly, we show that if its local ring is of homogeneous type, then
so are the local rings of its extensions. Local properties of toric varieties of higher
dimensions have not been studied extensively, although there is a vast literature
about toric curves, see [9, 12], [3, 15] and references therein. This paper might be
considered as a first modest step towards the higher dimensional case.

Date: September 3, 2010.
2000 Mathematics Subject Classification. Primary: 14M25; Secondary: 13D40,14M10,13D02.
Key words and phrases. toric variety, Hilbert function of a local ring, tangent cone, syzygy.

1

http://arxiv.org/abs/1009.0382v1


2 MESUT ŞAHİN

2. Extensions of Toric Varieties

Throughout the paper, K is an algebraically closed field of any characteristic.
Let S be a subsemigroup of Nd generated minimally by m1, . . . ,mn. If we set
degS(xi) = mi, then S−degree of a monomial is defined by

degS(x
b) = degS(x

b1
1 · · ·xbn

n ) = b1m1 + · · ·+ bnmn ∈ S.

The toric ideal of S, denoted IS , is the prime ideal in K[x1, . . . , xn] generated by
the binomials xa −xb with degS(x

a) = degS(x
b). The set of zeroes in An is called

the toric variety of S and is denoted by VS . The projective closure of a variety V
will be denoted by V as usual and we write S for the semigroup defining the toric
variety V S .

Denote by Sℓ,m the affine semigroup generated by ℓm1, . . . , ℓmn and m, where
ℓ is a positive integer. When m ∈ S, we define δ(m) to be the minimum of all
the sums s1 + · · · + sn where s1, . . . , sn are some non-negative integers such that
m = s1m1 + · · ·+ snmn.

Definition 2.1 (Extensions). With the preceding notation, we say that the affine
toric variety VSℓ,m

⊂ An+1 is an extension of VS ⊂ An, if m ∈ S, and ℓ is a positive

integer relatively prime to a component of m. A projective variety E ⊂ Pn+1 will
be called an extension of another one X ⊂ Pn if its affine part E is an extension of
the affine part X of X.

Remark 2.2. (1) Notice that VS = VS , IS ⊂ ISℓ,m
and IS ⊂ ISℓ,m

.

(2) The question of whether or not ISℓ,m
(resp. ISℓ,m

) has a minimal generating

set containing a minimal generating set of IS (resp. IS) is not trivial.
(3) This definition generalizes the one given for monomial curves in [2, 14].
(4) In [16], special extensions for which ℓ equals to a multiple of δ(m) has been

studied without referring to them as extensions.

Example 2.3. Let S = N{1, 4, 5} be the semigroup defining the affine monomial
(toric) curve VS = {(v, v4, v5) | v ∈ K}. If we take ℓ = 1 and m = 10 we have an
affine extension VS1,10

corresponding to the semigroup S1,10 = N{1, 4, 5, 10}. The

projective monomial curve VS in P3 is defined by S = N{(5, 0), (4, 1), (1, 4), (0, 5)}
and the corresponding projective extension is determined by the semigroup

S1,10 = N{(10, 0), (9, 1), (6, 4), (5, 5), (0, 10)}.

Although minimal generating set of IS extends to the toric ideal of S1,10, as we
will see below in Proposition 2.4, this is not possible for the ideal corresponding to
S1,10 as we will illustrate in Example 2.11.

2.1. Affine Extensions. In this section, we explore some algebro-geometric rela-
tions between a toric variety and its extensions. The results of this section generalize
the results of [16].

Proposition 2.4. If the toric variety VSℓ,m
⊂ An+1 is an extension of VS ⊂ An,

then ISℓ,m
= IS + 〈F 〉, where F = xℓ

n+1 − xs1
1 · · ·xsn

n . Moreover, if G is a reduced
Gröbner basis for IS with respect to a term order ≻, then G ∪ {F} is a reduced
Gröbner basis for ISℓ,m

with respect to a term order refining ≻ and making xn+1

the biggest variable.

Proof. First of all, S = N{m1, . . . ,mn}, Sℓ,m = NT , where the set T = T1 ⊔ T2,
T1 = {ℓm1, . . . , ℓmn} and T2 = {m}. We claim that Sℓ,m is the gluing of its
subsemigroups NT1 and NT2. To this end we show that ZT1 ∩ ZT2 = Zα, where
α = ℓm ∈ NT1 ∩ NT2, see [14, section 3] for a similar proof.
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Since ℓm = s1ℓm1 + · · ·+ snℓmn with non-negative integers si, we have clearly
ZT1 ∩ ZT2 ⊇ Zα. Take zm = z1ℓm1 + · · · + znℓmn ∈ ZT1 ∩ ZT2 and note that
zm = ℓ(z1m1 + · · · + znmn). Since ℓ is relatively prime to a component of m by
assumption, it follows that ℓ divides z and thus zm ∈ Zα yielding ZT1∩ZT2 ⊆ Zα.
By the relation between the corresponding ideals, we have ISℓ,m

= IS + 〈F 〉, since
IT1

= IS and IT2
= 0.

Let G = {F1, . . . , Fk}. Note first that F ∈ ISℓ,m
− IS and Fi are binomials of the

form Fi = LM(Fi)−NLM(Fi). Since LM(Fi) ∈ K[x1, . . . , xn] and LM(F ) = xℓ
n+1, it

follows that gcd(LM(Fi),LM(F )) = 1, for all i. This implies that the set G ∪ {F} is
a Gröbner basis for ISℓ,m

. Now, if LM(Fi) does not divide NLM(F ) = xs1
1 · · ·xsn

n , it
follows that G∪{F} is reduced as G is also. Otherwise, we can replace NLM(F ) by a
monomial with the same Sℓ,m-degree and obtain a new binomial F with the required
property. For if, NLM(F ) = LM(Fi)M , for some monomial M ∈ K[x1, . . . , xn], we
have

degSℓ,m
(NLM(F )) = ℓ.[degS(LM(Fi)) + degSℓ,m

(M)]

= ℓ.[degS(NLM(Fi)) + degSℓ,m
(M)] = degSℓ,m

(NLM(Fi)M),

which means that the new binomial F = xℓ
n+1 − NLM(Fi)M ∈ ISℓ,m

. Since G is
reduced and Fi are irreducible binomials, no LM(Fj) divides NLM(Fi)M and thus
we are done. �

Remark 2.5. Let G be a reduced Gröbner basis of I. Then, in general, the set
G ∪ {F} may not be a reduced Gröbner basis of I + 〈F 〉. This is the case, if
I = 〈wy − x2〉 and F = y2 − zx, as the reduced Gröbner basis of I + 〈F 〉 with
respect to the reverse lexicographic ordering with w > z > y > x is given by
{wy − x2, y2 − zx, wzx − yx2}. Therefore, it is an interesting occurrence when a
reduced Gröbner basis coincide with a minimal generating set.

Corollary 2.6. If VS ⊂ An is a set theoretic complete intersection, arithmetically
Cohen-Macaulay (Gorenstein), so are its extensions VSℓ,m

⊂ An+1.

Proof. The first claim follows from Proposition 2.4 and [17]. The second part follows
from Proposition 2.4 and Corollary 2.10 that will be proven below. �

2.1.1. Minimal Free Resolutions. Now, we present the mapping cone construction
and its direct consequences which will be used later. In particular, using this
construction we can determine explicit minimal free resolutions for all extensions
of toric varieties. The following can be proven easily via the mapping cone M(F )
of the map F : C(−f) → C defined by multiplication by F , see e.g. [13].

Theorem 2.7. Let I be a multigraded ideal in a polynomial ring R over a field K
and F ∈ R−I is a multigraded polynomial of multidegree f which is a nonzerodivisor
on R/I. Assume further that I has a minimal multigraded free resolution given by

C : 0 // Ud

Ad
// Ud−1

Ad−1
// . . . A2

// U1
A1

// R // R/I // 0 .

Then, C′ is a minimal multigraded free resolution of J := I + 〈F 〉 over R, where

C
′ : 0 // U ′

d+1

A′

d+1
// U ′

d

A′

d
// . . .

A′

2
// U ′

1

A′

1
// R // R/J // 0 ,

U ′
1 = U1 ⊕R(−f), U ′

i = Ui ⊕ Ui−1(−f) (2 ≤ i ≤ d), U ′
d+1 = Ud(−f)

and the matrices above are as follows

A′
1 =

[

A1 F
]

, A′
i =

[

Ai (−1)i−1F.I
0 Ai−1

]

(2 ≤ i ≤ d), A′
d+1 =

[

(−1)dF.I
Ad

]

.
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Remark 2.8. It is clear that if F1, . . . , Fk form an R/I-sequence, then Theorem 2.7
gives a minimal free resolution of I + 〈F1, . . . , Fk〉 using that of I.

Remark 2.9. Notice that when C is a minimal multigraded free resolution of a
multigraded ideal I in R = K[x1, . . . , xn], F = T1 − T2 is a binomial with xn+1

dividing T1, it follows that F is not in I and is a nonzerodivisor on R/I. Thus,
Theorem 2.7 applies to ideals I + 〈F 〉 in R[xn+1], whenever F is of this form. In
particular, it applies to extensions of toric varieties.

Next, we list some important consequences below:

Corollary 2.10. With J = I + 〈F 〉 and the hypothesis of Thereom 2.7, we have
the following:

(a) pd(R/J) = pd(R/I) + 1.
(b) R/J is Cohen-Macaulay if and only if R/I is Cohen-Macaulay. In this

situation, type(R/J) = type(R/I) and in particular R/J is Gorenstein if and only
if R/I is Gorenstein.

Proof. (a) Since the projective dimension is the length of the minimal free resolu-
tion, the assertion follows directly from Theorem 2.7.
(b) Since F /∈ I, we have codim(J) = codim(I)+1. Therefore pd(R/J) = codim(J)
if and only if pd(R/I) = codim(I) which means that R/J is Cohen-Macaulay if and
only if R/I is Cohen-Macaulay. Assume now that R/I is Cohen-Macaulay, then
type(R/I) = βd(R/I) = rank(Ud), where d = pd(R/I) = codim(I).

Since U ′
d+1 = Ud(−f) and codim(J) = codim(I)+1 it easily follows that we have

type(R/J) = βd+1(R/J) = rank(U ′
d+1) = type(R/I). Since a Gorenstein ring is a

Cohen-Macaulay ring of type 1, the last assertion follows. �

2.2. Projective Extensions.

Contrary to the case of affine extensions, it is not true in general that a minimal
generating set of a projective extension of VS contains a minimal generating set of
IS as illustrated by the following example.

Example 2.11. Recall from Example 2.3 that if S = N{1, 4, 5}, then the projective
monomial curve VS in P3 is defined by S = N{(5, 0), (4, 1), (1, 4), (0, 5)}. Consider
the projective extension VS1,10

defined by the semigroup

S1,10 = N{(10, 0), (9, 1), (6, 4), (5, 5), (0, 10)}.

It is easy to see (use e.g. Macaulay [4]) that the set {F1, F2, F3, F4, F5} constitutes a
reduced Gröbner basis (and a minimal generating set) for the ideal IS with respect
to the reverse lexicographic order with x1 > x2 > x3 > x0, where

F1 = x4
1 − x3

0x2

F2 = x4
2 − x1x

3
3

F3 = x2
1x

2
3 − x0x

3
2

F4 = x3
1x3 − x2

0x
2
2

F5 = x1x2 − x0x3.

A computation shows that the set {F1, F4, F5, F, F6, F7} is a reduced Gröbner
basis for IS1,10

with respect to the reverse lexicographic order with x1 > x2 > x3 >

x4 > x0, where
F = x2

3 − x0x4

F6 = x3
2 − x2

1x4

F7 = x3
1x4 − x0x

2
2x3.

We observe now that F7 = x2
2F5 − x1F6 and that the set {F1, F4, F5, F, F6} is

a minimal generating set of IS1,10
. The fact that no minimal generating set of
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IS extends to a minimal generating set of IS1,10
follows from the observation that

µ(IS) = µ(IS1,10
)(= 5), where µ(·) denotes the minimal number of generators.

Notice that the previous example reveals why minimal generating sets need not
extend when ℓ < δ(m). Next, we show that this can be avoided as long as ℓ ≥ δ(m).
Now, we compute Gröbner basis for ISℓ,m

using the Proposition 2.4 and the fact

that if G is a Gröbner basis for the ideal of an affine variety with respect to a term
order refining the order by degree, then the homogenization of G is a Gröbner basis
for the ideal of its projective closure.

Proposition 2.12. If G is a reduced Gröbner basis for IS with respect to a term
order ≻ making x0 the smallest variable and ℓ ≥ δ(m), then G ∪ {F} is a reduced
Gröbner basis for ISℓ,m

with respect to a term order refining ≻ and making xn+1 the

biggest variable and thus ISℓ,m
= IS + 〈F 〉, where F = xℓ

n+1 − x
ℓ−δ(m)
0 xs1

1 · · ·xsn
n .

Proof. Let G = {F1, . . . , Fk}. If we dehomogenize the polynomials in G by sub-
stituting x0 = 1, we get a reduced Gröbner basis {G1, . . . , Gk} for IS with re-
spect to ≻ which refines the order by degree. From Proposition 2.4, we know that
ISℓ,m

= IS + 〈G〉 = 〈G1, . . . , Gk, G〉, where G = F (1, x1, . . . , xn). Since LM(Gi) ∈

K[x1, . . . , xn] and LM(G) = xℓ
n+1, it follows that gcd(LM(Gi),LM(G)) = 1, for all i.

This implies that the set {G1, . . . , Gk, G} is a Gröbner basis for ISℓ,m
with respect

to a term order refining the order by degree and ≻. Hence, their homogenizations
constitute the required Gröbner basis for ISℓ,m

as claimed.

Now, if LM(Fi) does not divide NLM(F ) := x
ℓ−δ(m)
0 xs1

1 · · ·xsn
n , it follows that

G ∪ {F} is reduced as G is also. Otherwise, i.e., NLM(F ) = LM(Fi)x
ℓ−δ(m)
0 M , for

some monomial M in K[x1, . . . , xn], we replace NLM(F ) by Tix
ℓ−δ(m)
0 M , since

degS(LM(Fi)) = degS(Ti), which means that the new binomial F = xℓ
n+1 −

Tix
ℓ−δ(m)
0 M ∈ ISℓ,m

. Since G is reduced and Fi are irreducible binomials, no

LM(Fj) divides Tix
ℓ−δ(m)
0 M . Therefore, the set G ∪ {F} is reduced as desired.

Thus, we obtain ISℓ,m
= IS + 〈F 〉. �

Corollary 2.13. If VS ⊂ Pn is a set theoretic complete intersection, arithmetically
Cohen-Macaulay (Gorenstein), so are its extensions VSℓ,m

⊂ Pn+1 provided that

ℓ ≥ δ(m).

Proof. Since ISℓ,m
= IS + 〈F 〉 while ℓ ≥ δ(m), we have VSℓ,m

= Z(IS , F ). Since VS

is a set theoretic complete intersection, it follows that VS = Z(F1, . . . , Fc), where
c = codim(IS). Since codim(ISℓ,m

) = c+1 and VSℓ,m
= Z(F1, . . . , Fc, F ), it readily

follows that VSℓ,m
is a set theoretic complete intersection.

The second claim follows directly from Proposition 2.12 and Corollary 2.10. �

3. Local Properties of Extensions

In this section, we study Cohen-Macaulayness of tangent cones of extensions of a
toric variety having a Cohen-Macaulay tangent cone, see [1, 9, 12] for the literature
about Cohen-Macaulayness of tangent cones. We also show that if the local ring
of a toric variety is of homogeneous type or has a non-decreasing Hilbert function,
then its extensions share the same property. As a main result, we demonstrate
that in the framework of extensions it is very easy to create infinitely many new
families of arbitrary dimensional and embedding codimensional local rings having
non-decreasing Hilbert functions supporting Rossi’s conjecture. This is important,
as the conjecture is known only for local rings with small (co)dimension:

• Cohen-Macaulay rings of dimension 1 and embedding codimension 2, [6],
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• Some Gorenstein rings of dimension 1 and embedding codimension 3, [2],
• Complete intersection rings of embedding codimension 2, [10],
• Some local rings of dimension 1, [3, 15],

where embedding codimension of a local ring is defined to be the difference between
its embedding dimension and dimension. For instance, if An is the smallest affine
space containing VS , then embedding dimension of the local ring of VS is n. Its
dimension coincides with the dimension of VS and its embedding codimension is
nothing but the codimension of VS , i.e. n− dimVS .

Before going further, we need to recall some terminology and fundamental results
which will be used subsequently. If VS ⊂ An is a toric variety, its associated graded
ring is isomorphic to K[x1, . . . , xn]/IS

∗, where IS
∗ is the ideal of the tangent cone

of VS at the origin, that is the ideal generated by the polynomials f∗ with f ∈ IS
and f∗ being the homogeneous summand of f of the smallest degree. Thus, the
tangent cone is Cohen-Macaulay if this quotient ring is also. Similarly, we can study
the Hilbert function of the local ring associated to VS by means of this quotient
ring, since the Hilbert function of the local ring is by definition the Hilbert function
of the associated graded ring. Finally, we can find a minimal generating set for IS

∗

by computing a minimal standard basis of IS with respect to a local order. For
further inquiries and notations to be used, we refer to [7].

Assume now that VSℓ,m
⊂ An+1 is an extension of VS , for suitable ℓ andm. Then,

by Proposition 2.4, we know that ISℓ,m
= IS + 〈F 〉, where F = xℓ

n+1 − xs1
1 · · ·xsn

n .

Proposition 3.1. If G is a minimal standard basis of IS with respect to a negative
degree reverse lexicographic ordering ≻ and ℓ ≤ δ(m), then G ∪ {F} is a mini-
mal standard basis of ISℓ,m

with respect to a negative degree reverse lexicographic
ordering refining ≻ and making xn+1 the biggest variable.

Proof. Let G′ = G ∪ {F}. Since NF (spoly(f, g)|G) = 0, for all f, g ∈ G, we have
NF (spoly(f, g)|G′) = 0. Since LM(f) ∈ K[x1, . . . , xn] and LM(F ) = xℓ

n+1, it
follows at once that gcd(LM(f),LM(F )) = 1, for every f ∈ G. Therefore we get
NF (spoly(f, F )|G′) = 0, for any f ∈ G. This reveals that G′ is a standard basis
with respect to the afore mentioned local ordering and it is minimal because of the
minimality of G. �

Theorem 3.2. If VS ⊂ An has a Cohen-Macaulay tangent cone at 0, then so have
its extensions VSℓ,m

⊂ An+1, provided that ℓ ≤ δ(m).

Proof. An immediate consequence of the previous result is that ISℓ,m

∗ = IS
∗+〈F ∗〉,

where F ∗ is xℓ
n+1 whenever ℓ < δ(m) and is F if ℓ = δ(m). In any case F ∗ is a

nonzerodivisor on K[x1, . . . , xn+1]/IS
∗. Since the graded ring K[x1, . . . , xn]/IS

∗

is Cohen-Macaulay by the assumption, clearly K[x1, . . . , xn+1]/IS
∗ is also Cohen-

Macaulay and we can apply Corollary 2.10 to conclude that K[x1, . . . , xn+1]/ISℓ,m

∗

is Cohen-Macaulay as required. In particular, the tangent cone of a toric variety
and tangent cones of its extensions have the same Cohen-Macaulay type. �

Remark 3.3. Theorem 3.2 generalizes the results appeared in [1, Proposition 4.1]
and [2, Theorem 3.6] from toric curves to toric varieties of any dimension. Moreover,
Hilbert functions of the local rings of these extensions are nondecreasing in this case
supporting Rossi’s conjecture.

According to [8], a local ring is of homogeneous type if its Betti numbers coincide
with the Betti numbers of its associated graded ring, considered as a module over
itself. It is interesting to obtain local rings of homogeneous type, since in this case,
for example, the local ring and its associated ring will have the same depth and their
Cohen-Macaulayness will be equivalent since they always have the same dimension.
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It will also be easier to get information about the depth of the symmetric algebra
in this case, see [8, 11].

Proposition 3.4. If the local ring of VS ⊂ An is of homogeneous type, then its
extensions will also have local rings of homogeneous type if and only if ℓ ≤ δ(m).

Proof. Let K[[S]] denote the local ring of VS , i.e. the localization of the semigroup
ring K[S] = R/IS at the origin, where R = K[x1, . . . , xn]. The Betti numbers
of K[[S]] and K[S] is the same, since localization is flat. For the convenience of
notation let us use GR[S] for the associated graded ring corresponding to VS and
βi(GR[S]) for the Betti numbers of the minimal free resolution of GR[S] = R/IS

∗

over R.
Assume now that K[[S]] is of homogeneous type, i.e. βi(K[[S]]) = βi(GR[S]),

for all i. For any extension VSℓ,m
⊂ An+1 of VS , we have from Proposition 2.4 that

ISℓ,m
= IS + 〈F 〉, where F = xℓ

n+1 − xs1
1 · · ·xsn

n . Therefore, using Theorem 2.7, we
can compute the Betti numbers as follows

• β1(K[[Sℓ,m]]) = β1(K[[S]]) + 1
• βi(K[[Sℓ,m]]) = βi(K[[S]]) + βi−1(K[[S]]), 2 ≤ i ≤ d = pd(K[[S]])
• βd+1(K[[Sℓ,m]]) = βd(K[[S]]).

If furthermore ℓ ≤ δ(m), Proposition 3.1 yields ISℓ,m

∗ = IS
∗ + 〈F ∗〉. Hence, we

can use Theorem 2.7 again to compute Betti numbers of GR[Sℓ,m]:

• β1(GR[Sℓ,m]) = β1(GR[S]) + 1
• βi(GR[Sℓ,m]) = βi(GR[S]) + βi−1(GR[S]), 2 ≤ i ≤ d = pd(K[[S]])
• βd+1(GR[Sℓ,m]) = βd(GR[S]).

It is obvious now that βi(GR[Sℓ,m]) = βi(K[[Sℓ,m]]) for any i and that local rings
of extensions are of homogeneous type.

The converse is rather trivial, since homogeneity of local rings of extensions force
that β1(GR[Sℓ,m]) = β1(K[[Sℓ,m]]), i.e. ISℓ,m

∗ = IS
∗ + 〈F ∗〉 which is possible only

if ℓ ≤ δ(m). �

Finally, inspired by [3, Theorem 3.1], we consider extensions of a toric variety
whose local ring has a non-decreasing Hilbert function and whose tangent cone is
not necessarily Cohen-Macaulay.

Theorem 3.5. If VS ⊂ An has a local ring with non-decreasing Hilbert function,
then so have its extensions VSℓ,m

⊂ An+1, provided that ℓ ≤ δ(m).

Proof. Let R = K[x1, . . . , xn]. If I is a graded ideal of R, then it is a standard fact
that the Hilbert function of R/I is just the Hilbert function of R/LM(I), where
LM(I) is a monomial ideal consisting of the leading monomials of polynomials in I.
Now, Proposition 3.1 reveals that ISℓ,m

∗ = IS
∗+〈F ∗〉, where F = xℓ

n+1−xs1
1 · · ·xsn

n

and that LM(ISℓ,m

∗) = LM(IS
∗) + 〈LM(F ∗)〉. Since LM(IS

∗) ⊂ R and LM(F ∗) =

xℓ
n+1 with respect to the local order mentioned in Proposition 3.1, it follows from

the proof of [5, Proposition 2.4] that R′ = R1 ⊗K R2, where

R′ = R[xn+1]/LM(ISℓ,m

∗), R1 = R/LM(IS
∗) and R2 = K[xn+1]/〈x

ℓ
n+1〉.

Hilbert series of R1 can be given as
∑

k≥0 akt
k, where ak ≤ ak+1 for any k ≥ 0,

since from the assumption the local ring associated to VS has non-decreasing Hilbert
function. It is clear that the Hilbert series of R2 is h2(t) = 1+ t+ · · ·+ tℓ−1. Since
the Hilbert series of R′ is the product of those of R1 and R2, we observe that the
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Hilbert series of R′ is given by
∑

k≥0

bkt
k = (1 + t+ · · ·+ tℓ−1)

∑

k≥0

akt
k

=
∑

k≥0

akt
k +

∑

k≥0

akt
k+1 + · · ·+

∑

k≥0

akt
k+ℓ−1

=
∑

k≥0

akt
k +

∑

k≥1

ak−1t
k + · · ·+

∑

k≥ℓ−1

ak−ℓ+1t
k.

Therefore, the Hilbert series
∑

k≥0 bkt
k of R′ is given by

a0 + (a0 + a1)t+ · · ·+ (a0 + · · ·+ aℓ−2)t
ℓ−2 +

∑

k≥ℓ−1

(ak + ak−1 + · · ·+ ak−ℓ+1)t
k.

It is now clear that bk ≤ bk+1, for any 0 ≤ k ≤ ℓ− 2, from the first part of the last
equality above, since ak ≤ ak+1. For all the other values of k, i.e. k ≥ ℓ − 1, we
have bk − bk+1 = ak−ℓ+1 − ak+1 ≤ 0 which accomplishes the proof. �

Example 3.6. In the following, we will say that the extension is nice if ℓ ≤ δ(m).

(1) The local ring of the affine cone of a projective toric variety is always of
homogeneous type, for instance, S = {(3, 0), (2, 1), (1, 2), (0, 3)} defines a
projective toric curve in P3 and its affine cone is the toric surface VS ⊂ A4

with the homogeneous toric ideal IS = 〈x2
2 − x1x3, x

2
3 − x2x4, x2x3 − x1x4〉.

Thus by Proposition 3.4, its affine nice extensions will have homogeneous
type local rings which are not necessarily homogeneous. Take for example,
ℓ = 1 and m = (0, 3s) for any s > 1. Then, although ISℓ,m

= IS + 〈xs
4−x5〉

is not homogeneous, its local ring is of homogeneous type.
(2) Similarly, one can produce Cohen-Macaulay tangent cones using arithmeti-

cally Cohen-Macaulay projective toric varieties, since the toric ideal IS of
their affine cones are homogeneous and thus IS = IS

∗. Therefore, all of
their affine nice extensions will have Cohen-Macaulay tangent cones and lo-
cal rings with non-decreasing Hilbert functions, by Theorem 3.2. The toric
variety VS ⊂ A4 considered in the previous item (1) and its nice extensions
illustrate this as well.

(3) Take S = {(6, 0), (0, 2), (7, 0), (6, 4), (15, 0)}. Then it is easy to see that
IS = 〈x1x

2
2 − x4, x

3
3 − x1x5, x

5
1 − x2

5〉. Since VS ⊂ A5 is a toric surface of
codimension 3, IS is a complete intersection and thus the local ring of VS

is Gorenstein. But, the tangent cone at the origin, is determined by IS
∗ =

〈x2
5, x4, x

3
3x5, x

6
3, x1x5〉 and thus is not Cohen-Macaulay. Nevertheless, its

Hilbert function HS is non-decreasing:
HS(0) = 1, HS(1) = 4, HS(2) = 8, HS(3) = 13, HS(r) = 6r − 6, for r ≥ 4.
Consider now all nice extensions of VS ; defined by the following semigroups
Sℓ,m = {(6ℓ, 0), (0, 2ℓ), (7ℓ, 0), (6ℓ, 4ℓ), (15ℓ, 0),m}. Therefore, Theorem 3.5
produces infinitely many new toric surfaces with local rings of dimension 2
and embedding codimension 4 whose Hilbert functions are non-decreasing
even though their tangent cones are not Cohen-Macaulay. Indeed, one may
produce this sort of examples in any embedding codimension by taking a
sequence of nice extensions of the same example, since in each step the
embedding codimension increases by one.
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