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Utility maximization in models with
conditionally independent increments

Jan Kallseh Johannes Muhle-Karbe

Abstract

We consider the problem of maximizing expected utility freenminal wealth in
models with stochastic factors. Using martingale methaub a conditioning argu-
ment, we determine the optimal strategy for power utilitgemnthe assumption that the
increments of the asset price are independent conditionalthe factor process.

Key words: utility maximization, stochastic factors, cdimhally independent in-
crements, martingale method

1 Introduction

A classical problem in Mathematical Finance is to maximizggeeted utility from terminal
wealth in a securities market (cf. [20,/ 22] for an overvieWis is often called thélerton
problem since it was first solved in a continuous-time setting by tdle{26, 27]. In partic-
ular, he explicitly determined the optimal strategy anddberesponding value function for
power and exponential utility functions and asset priceslelled as geometric Brownian
motions.

Since then, these results have been extended to other noddalsous kinds. For Lévy
processes (cf.[7, 8, 15, 3]), the value function can stildkbermined explicitly, whereas
the optimal strategy is determined by the root of a real-e@lfunction. For some affine
stochastic volatility models (cf. [21, 23,/25,/19]), thewalfunction can also be computed
in closed form by solving some ordinary differential eqaas, while the optimal strategy
can again be characterized by the root of a real-valuedifumct

For more general Markovian models, one is faced with moreluad partial (integro-)
differential equations that typically do not lead to exjpleolutions and require a substan-
tially more complicated verification procedure to ensueedptimality of a given candidate
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strategy (cf. e.g.[35] for power and [31] for exponentidlity). A notable exception is
given by models where the stochastic volatility is indepariabf the other drivers of the as-
set price process. In this case, it has been shown that timeadgtrategy isnyopig i.e. only
depends on the local dynamics of the asset price, cf..e.pfdlé&xponential and [4, 24, 6]
for power utility. In particular, it can be computed withdwving to solve any differential
equations.

In the present study, we establish that this generally himdgower utility, provided
that the asset price hasdependent increments conditional on some arbitrarydapto-
cess As in |11], the key idea is to condition on this process, whéssentially reduces
the problem to studying processes with independent inanesnd his in turn can be done
similarly as for Lévy processes in [15]. In the following, weake this idea precise. We
first introduce our setup of processes with conditionalgréments and prove that general
Lévy-driven models fit into this framework if the stochadactors are independent of the
other sources of randomness. Subsequently, we then statprave our main result in
3. Given condtionally independent increments of the assee pit provides a pointwise
characterization of the optimal strategy that closely megses the well-known results for
logarithmic utility (cf. e.g.|[10]). Afterwards, we presesome examples. In particular, we
show how the present results can be used to study whetheratkienal expected utility that
can be achieved in affine models is finite. For the proof of oaimmesult we utilize that
exponentials of processes with conditionally independertements are martingales if and
only if they ares-martingales. A proof of this result is provided in the apgien

For stochastic background, notation and terminology weritefthe monograph of Jacod
and Shiryaev [14]. In particular, for a semimartingalewe denote by.(X) the set ofX-
integrable predictable processes andgy X the stochastic integral gf € L(X) with
respect taX. Moreover, we writes’(X') for the stochastic exponential of a semimartingale
X. When dealing with stochastic processes, superscriptallysrefer to coordinates of a
vector rather than powers. Bywe denote the identity process, ilg= t.

2 Setup

Our mathematical framework for a frictionless market madels follows. Fix a terminal
timeT € R, and a filtered probability spadé, .7, (%#;)cjo.1), ). We consider traded
securities whose price processes are expressed in termsligbles of a numeraire secu-
rity. More specifically, these securities are modelled mirtdiscounted price process
which is assumed to be a semimartingale with valueg$jno)?. We consider an investor
whose preferences are modelled byaaver utility functionu(z) = 2'=?/(1 — p) for some
p € R \{0, 1} and who tries to maximize expected utility from terminal VileaHer ini-
tial endowment is denoted hy € (0, c0). Trading strategiesre described bjR¢-valued
predictable stochastic processes= (¢!, ..., %) € L(S), wherey! denotes the number
of shares of securityin the investor’s portfolio at time. A strategyy is calledadmissible
if its discountedwealth procesd/(¢) := v + ¢ * S is nonnegative (no negative wealth



allowed). An admissible strategy is callegtimal if it maximizesy — E(u(Vr(¢))) over
all competing admissible strategies

We need the following very mild assumption. Since the asseé process is positive,
it is equivalent to NFLVR by the fundamental theorem of agsieing.

Assumption 2.1 There exists arquivalent local martingale measuree. a probability
measure&) ~ P such that the' is a localQ)-martingale.

Since the asset price processs positive, Assumptioh 2.1 and [14, 1.2.27] imply that
S_ > 0 as well. By [14, 11.8.3], this means that there existsRifvalued semimartingale
X such thatS” = Si&(X") fori = 1,...,d. We interpretX as the returns that generae
in a multiplicative way. To solve the utility maximizatiomgblem, we make the following
crucial structural assumptions on tleturn processX .

Assumption 2.2 1. The semimartingale characteristids*, C*, vX) (cf. [14]) of X
relative to soméruncation functiorsuch ash(z) = 1y, <1} can be written as

t t t
B :/ bXds, Cf :/ cXds, v(0,t] x Q) :/ KX(@Q)ds,
0 0 0

with predictable processés$, c* and a transition kerngk* from (2 x R, &) into
(R4, 2%). The triplet(bX, X, K¥) is calleddifferentialor local characteristicof X.

2. There is a procesggsuch thatX also is a semimartingale with local characteristics
(b, X, K¥) relative to the augmented filtratidh := (¥, ),c(0.7] given by

% = ﬂa<§s U U(<yr>re[O,T}))a 0<t< T7

s>t
and such thatX, cX and K;X(G) are%,-measurable for fixed € [0, 7] andG € <.

By [14, 11.6.6], this means thaX has¥,-conditionally independent incremente. it
is a¥,-Pll.

Remarks.

1. Inthe present general framework, modelling the stoategras ordinary exponentials
St = Siexp(X?),i=1,...,dfor some semimartingal® leads to the same class of
models (cf.[[17, Propositions 2 and 3]).

2. The first part of Assumptidn 2.2 essentially means thaa#iset price process has no
fixed times of discontinuity. This condition is typicallytesdied, e.g. for diffusions,
Lévy processes and affine processes.

3. The second part of Assumption2.2 is the crucial one. Itmadaat the local dynamics
of the asset price are determined by the evolution of thega®¢ which can therefore
be interpreted as stochastic factor process
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In general, a semimartingal® will not remain a semimartingale with respect to an
enlarged filtration (cf. e.g. [0, Chapter VI] and the referes therein). Even if the semi-
martingale property is preserved, the characteristicemgdiy do not remain unchanged.
Nevertheless, we now show that some fairly general modékhshis property if the fac-
tor procesy is independent of the other sources of randomness in thelmode

Integrated Lévy models
In this section, we assume th&tis modelled as
X =y_-+ B, (2.1)

for anR?*"-valued semimartingalg and an independefit"-valued Lévy proces® with
Lévy triplet (b7, P, KP). Furthermore, we suppose that the underlying filtrafivis gen-
erated byB andy (or equivalently byX andy if d = n andy takes values in the invertible
R¥*4-matrices). The following result shows that Assumpfionig.gatisfied in this case.

Lemma 2.3 Relative to bothF' and G, X is a semimartingale witk¥,-measurable local
characteristicgb*, ¢*, K¥) given by

P =yt 4 [(hlyoa) - g b@) KO de), =y
KX(@) = / le(y_2)KB(dr) VG € B\{0).

In particular, Assumptioh 212 is satisfied.

PROOF SinceB is independent ofy andF is generated by and B, it follows from |2,
Theorem 15.5] thaB remains a Lévy process (and in particular a semimartingle$
natural filtration is replaced with eith&ror G. Since the distribution o does not depend
on the underlying filtration, we know from the Lévy-Khintde formula and [14, 11.4.19]
that B admits the same local characteristjt$, ¢, K?) with respect to its natural filtration
and bothF andG. Sincey_ is locally bounded and predictable relativeRoand G, the
processX is a semimartingale with respect Fbband G by [14, 1.4.31]. Its characteristics
can now be derived by applying [17, Proposition 2]. aemeasurability is obvious. [

Time-changed Lévy models

We now show that Assumptign 2.2 also holds for time-chang®g/imodels. For Brownian
motion, stochastic integration and time changes lead tenéisdly the same models by the
Dambis-Dubins-Schwarz theorem. For general Lévy processth jumps, however, the
two classes are quite different. More details concernirglieory of time changes can be
found in [13], whereas their use in modelling is dealt with5n17]. Here, we assume that
the process is given by

X:/ i(ys s + By g 2.2)
0
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for a (0, c0)-valued semimartingalg, a measurable mapping : R — R¢ such that
fOT \1(ys_)|ds < oo, P-a.s., and for an independeRt-valued Lévy proces® with Lévy-
Khintchine triplet(b?, c?, KP). Moreover, we suppose that the underlying filtration is gen-
erated byX andy. We have the following analogue of Leminal2.3.

Lemma 2.4 Relative to bothHF' and G, X is a semimartingale witk¥,-measurable local
characteristicg b, ¢, K*) given by

bV =y ) +05y, =Py, KXG)=KP(GQy. VG e B
In particular, Assumptioh 212 is satisfied.

PROOF Relative toF, the assertion follows literally as in the proof of [29, Posjiion 4.3].
For the corresponding statement relative to the augmentiediéin G, letY = fo ysds and
U, :=inf{q € Ry : Y, > r}. Define thes-fields

A = (o (Bpeew.s)s (Ur)rer, ).

s>t

Since B is independent off and hence’, it remains a Lévy process relative to the filtra-
tion H := (J4).cr, . Its distribution does not depend on the underlying filtatihence we
know from the Lévy-Khintchine formula and [14, 11.4.19] thitis a semimartingale with lo-
cal characteristic&?, ¢, K?) relative toH. By [17, Proposition 5] the time-changed pro-
cess(éﬁ)ﬁe 0.1] = (Byﬂ)ﬁe[(] 7] is @ semimartingale oft), 7'] relative to the time-changed
filtration (%ﬁg)ﬁe[o 11 = (I, )vep,r) With differential characterlstlcéb c, F) given by

by = bBy§_7 Cy = CByﬁ_, qu(G) = KB(G)ng_ VG e %d.

Furthermore, it follows as in the proof of [29, Propositior8]4thatjg’? = ¥, for all
€ [0,7]. The assertion now follows by applying [17, Proposition 21 &} to compute
the characteristics oX . O

Remarks.

1. For the proof of Lemmia 2.4 we had to assume that the giveatiih is generated by
the processy, X ) or equivalently(Y, X). In reality, though, the integrated volatility
Y and the volatilityy typically cannot be observed directly. Therefore the carain
filtration of the return proces& would be a more natural choice. Fortunatélyand
y are typically adapted to the latterf is an infinite activity process (cf. e.g. |34]).

2. A natural generalization df(2.2) is given by models of fibren

X = / ys ,...,ys ds+ZBY(),



for 11 : (0,00)" — R strictly positive semimartingaleg”, v = [ yds and
independent Lévy process&$’, i = 1,...,n. If one allows for the use of the even
larger filtration generated by all”), Bgzi), i = 1,...,n the proof of Lemma 2]4
remains valid. IfY’®) is interpreted as business time in some maikéhis class of

models allows assets to be influenced by the changing adiivitifferent markets.

3 Optimal portfolios

For asset prices with conditionally independent incremeve can now characterize the
solution to the Merton problem as follows.

Theorem 3.1 Suppose Assumptions12[1,12.2 hold and assume there exi&t$-amued
processr € L(X) such that the following conditions are satisfied up @R® dt-null set
on§2 x [0, 7.

1. KX{z eR*: 1+ 7"2<0}) =0.
2. [|z(147"2)™" — hz)| KX (dz) < .

3. Foralln € R?such thatk* ({x e RY: 1+ 7"z < 0}) = 0, we have

(n" —=") <bX — pcir +/ (% — h(x)) KX(dx)) <0,

1L+ 7Tz
4. fOT |as|ds < oo, where

X

a:=(1-pr'bt* - p(1=p) et

2
[T = 1= (= Th) K o)

Then there exists &,-measurable processsatisfying Conditions 1-4 such that the strategy
o= (..., ¢%) defined as

EF+ X)),

ol =7 (1) o i=L..d te[0T), (3.1)
t_

is optimal with value procesg (y) = v& (7 « X). The corresponding maximal expected

utility is given by
BVl = 1k (o ([ ) ).

In particular, if 7 is ¢-measurable, it is possible to choose-= .




PROOF Step 1 In view of Conditions 1-4, the measurable selection theo[82, The-
orem 3] and|[13, Proposition 1.1] show the existencerpkince (bX, X, K¥X) are %-
measurable by Assumptién 2.2. Hence we can assume withggibfagenerality that is
“,-measurable, because we can otherwise pagsrtstead.

Step 2 Sincer and hencep is F-predictable by assumption and, C ¥, for all t €
[0, 77, it follows that ¢ is G-predictable as well. In view of Assumptién 2.2, the local
characteristics ofX relative toF coincide with those relative t6&. Together with[14,
111.6.30] this implies that we have € L(X) and hence € L(S) w.r.t. G, too.

Step 3 The wealth process associated:tcs given by

Vie)=v+peS=v(l+&m*X)_ (X)) =0v8(m*X).

Since Condition 1 and [14, 1.4.61] imply(y) > 0, the strategy is admissible.

Step 4 Lety be any admissible strategy. Together with Assumpatioh 2di&4, 1.2.27],
admissibility impliesl/(¢) = 0 on the predictable séi/_(¢)) = 0}. Hence we can assume
without loss of generality that = 0 on {V_(¢)) = 0}, because we can otherwise consider
{/;V = lv_w)>01% Without changing the wealth process. Consequently, we cég w =
nV_(v) for someF-predictable process. The admissibility ofy impliesn, AX; > —1
which in turn yields

KX{z eR*:1+n/2<0})=0 (3.2)

outside somelP ® dt null set. Moreover, it follows as above thate L(S) w.r.t. G as
well. SincefOT las|ds < oo outside somé”-null set by Condition 4, the process

T T
L; == exp (/ ozsds) = Lo& (/ ozsds)
t ~ t

is indistinguishable from a cadlag process of finite vasiafind hence &-semimartingale,
becauser and (v, ¢*, KX) are%,-measurable. The loc&k-characteristicgb, c, K') of
(L/Lo)V(p)~PV(¢) can now be computed with [17, Propositions 2 and 3]. In paldic
we get

KO) = [16(Fv-(ormvow) (G - 1) ) K@)

(1 +7 )P

for all G € #\{0}, which combined with Condition 2 yields

/ |z| K (dz) < oo (3.3)
{lz|>1}
outside som@P & dt-null set. Moreover, insertion of the definition efleads to
b= / (h(z) — 2) K (dz) (3.4)
L_ T
= —p T _ T X X o X
FEv T =) (1 = [ (e i) ) K )
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and hence
b+ /(:c — h(z))K(dz) <0 (3.5)

dP®dt-almost everywhere ot x [0, T'] by (3.2) and Condition 3. In view of (3.3) arld (B.5)
the proces$L/Ly)V () PV (¢) is therefore &-supermartingale by [18, Lemma A.2] and
[16, Proposition 3.1].

Step 5Fory = ¢, (3.3), [3:4) and [18, Lemma A.2] show that= (L/Ly)(V (p)/v)'™?
is a strictly positives-martingale. By|[17, Proposition 3]log(Z) is a4,-PIl, henceZ and
inturn (L/Ly)V (¢)'~? areG-martingales by Lemni{a’A.1.

Step 6 Now we are ready to show thatis indeed optimal. Since is concave, we have

u(Vr(¥)) < u(Vr(e)) +u' (Vo) (Vr() — Vr(p)) (3.6)

for any admissible). This implies

E(u(Vr(¥)|%) < E(u(Vr(¢)|%) + LoE (%VT(W—”VT(W — = Vr(p)'?
< E(u(Vr(9))|%),

becaus€L/Ly)V () PV () is aG-supermartingale and./ Lo )V ()' 7 is aG-martingale,
both starting at'~?. Taking expectations, the optimality ¢f follows. Likewise, theG-
martingale property ofL/ L)V ()7 yields the maximal expected utility. O

Remarks.

1. The first condition ensures that the wealth process of phienal strategy is positive.
It is satisfied automatically if the asset price process iginoous. In the presence
of unbounded positive and negative jumps it rules out shbirig and leverage. The
second condition is only needed to formulate the crucialdt@n 3, which charac-
terizes the optimal strategy. A sufficient condition foniédidity is given by

X X € X _
While one does not have to require NFLVR if this stronger ¢towl holds as well,
it is less general than Condition 3 in the presence of jumpg12] for a related
discussion.

2. The fourth condition ensures that the maxirahditionalexpected utility is finite.
However, the maximalnconditionalexpected utility does not necessarily have to be
finite if the utility function is unbounded fgs > 1. By [14, 111.6.30], Condition 4 is
automatically satisfied for € L(.X) if X is continuous.

3. Giventhe mild regularity condition 4, the optimal sttt is completely described
by the local characteristics gti.e. it ismyopic This parallels well-known results for

8



logarithmic utility (cf. e.g.[10]). It is important to noténowever, that whereas the
optimal strategy is myopic in the general semimartingatedar logarithmic utility,
this only holds for power utility if the return proceashas conditionally independent
increments. Otherwise an additional non-myopic term afgpeae e.g. [21, 35, 23]

4 Examples

We now consider some concrete models where the results gfrév@ous section can be
applied. For ease of notation, we consider only a singleyrasset (i.ed = 1), but the
extension to multivariate versions of the corresponding@®is straightforward.

Generalized Black-Scholes models

Let B be a standard Brownian motiop,an independent semimartingale and again denote
by I the identity proces$, = t. Consider measurable functionps R — R ando : R —
(0,00) such thafu(y_) € L(I) ando(y—) € L(B) and suppose the discounted stock price
S is given by

S =506 (puly-) I +o(y-)* B).

ForX := pu(y_) I +o(y_) * B, [14, 1.4.19] and[17, Proposition 3] yield* = x(y_)
as well as=® = o%(y_) and K* = 0. In view of Lemmd2.B, Assumptidn 2.2 is satisfied.

Define
p(y-)

o (y)
By Theoreni3.1 and the second remark succeeding it, thegyat:= mvé& (7w« X)/S is
optimal provided thatr € L(X). If y_ is E-valued for som&” C R, this holds true e.qg. if
the mappingr — u(z)/0?(z) is bounded on compact subsetstf

Remark 4.1 This generalizes results of [6] by allowing for an arbitragmimartingale fac-
tor process instead of a Lévy-driven Ornstein-Uhlenbeekéeforth OU) process. Notice
however, that unlike [6] we only consider utility from temmail wealth and do not obtain a
solution to more general consumption problems. Finitenésise maximal expected util-
ity is ensured in the cage > 1 in our setup, which complements the results.of [6]. They
consider the case € (0, 1) and prove that the maximal expected utility is finite subject
suitable linear growth conditions on the coefficient fuant(-) ando(-) and an exponen-
tial moment condition on the driver of the OU process.

Barndorff-Nielsen and Shephard (2001)

If we setu(x) := x + dx for constants:, § € R, leto(z) := \/x and choose an OU process

dyy = —\yo— +dZ,,  yo € (0,00), (4.1)



for a constant\ > 0 and some subordinatdf in the generalized Black-Scholes model
above, we obtain the model of Barndorff-Nielsen and Shep|idr Sincey, > yoe 7 > 0

in this case,

) ks 0
poi(y-) py- p

is bounded and hence belongd/tX). Consequentlyp; = 7V (¢)/S is optimal.

Remark 4.2 This recovers the optimal strategy obtained by [4]. Sinylas in [6], [4]
considers the cagee (0, 1) and proves that the maximal expected utility is finite suttjec
an exponential moment condition on the Lévy meadiifeof Z. Our results complement
this by ascertaining that the same strategy is always op{with not necessarily finite
expected utility), as well as optimal with finite expecteditytin the casep > 1.

Carr et. al (2003)
In this section we turn to the time-changed Lévy models pseddy [5], i.e. we let
Xt:lUJt—‘—Bf(;ﬁyst, MGR, (42)

for a Lévy process3 with Lévy-Khintchine triplet(b?, ¢?, K®) and an independent OU
procesg given by [4.1). By Lemm&a 214, AssumptibnR.2 holds. Hence btaio

Corollary 4.3 Suppose3 has both positive and negative jumps and assume there axists
processr such that the following conditions are satisfied.

1. KB{z eRY: 1+ 72 <0}) =0.
2. [ ([ |e(1 +72)? — h(z)| KB(dz)) dt < oo,

3. Forallp € R? such thatk ?({z € R? : 1 + nx < 0} = 0, we have

(n—m) ((yﬂ_ + bB) — pcr +/ (ﬁ - h(x)) KB(dx)) <0.

Then there exists &-measurable process € L(X) satisfying Conditions 1-3 such that
¢ =7vé&(me+ X)_/S_ is optimal.

PROOF SinceB has both positive and negative jumps, the model satisfiesmysson2.1
by [28, Lemma 4.42]. Moreover; is bounded by Condition 1. Hence it belongs/toX)
and Condition 2 implies that Condition 4 of Theoreml| 3.1 i®alatisfied. By Lemma 2.4,
Conditions 1-3 imply Conditions 1-3 of Theorém13.1. Consatly, the assertion immedi-
ately follows from Theorerh 311 . O

For u = 0 one recovers [19, Theorem 3.4], where the optimal fractioof wealth
invested into stocks can be chosen to be deterministic. uFgr 0, the optimal fraction
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depends on the current level of the activity procgsAs for the generalized Black-Scholes
models above, it is important to emphasize that the optitnategy is only ensured to
lead to finite expected utility in the cage> 1. However, the results provided here allow
us to complete the study of the case (0, 1) for . = 0 started in{[19]. Using Corollary
4.3, we can now show that if there exists R satisfying Conditions 1-3, the exponential
moment condition in [19, Theorem 3.4] is necessary and sefffiéor the maximal expected
utility to be finite. The key observation is that the randomalale fOT agds from Theorem
[3.1 turns out to be infinitely divisible fqi = 0.

Corollary 4.4 Let 1 = 0 and suppose there exists € R satisfying the conditions of
Corollary[4.3. Then the maximal expected utility corresfiog to the optimal strategy
v :=mvé&(nX)_/S_ is always finite fop > 1, whereas fop € (0, 1) itis finite if and only

if
T poo e—)\t -1
/ / exp ( 3 C’z) K?(dz)dt < 0o (4.3)
o J1

C:=(p—1)b"r + p(12_p)cB7T2 - / ((1 + )P —1— (1 —p)ﬂ'h(l’)) KB (dx).

where

If the maximal expected utility is finite, it is given by

E(u(Vr(e)))

= e < /0 ' (bz&(s) + / (87 1 — &(s)h(z))KZ(dz)) ds + &(O)yo) :

-D

fora(t) = C(e™ 7= — 1)/

PROOF. After inserting the characteristics &f, Theoreni_ 31 shows that the maximal ex-
pected utility is given by

Bu(Va(o) = L F <exp (—C /O ' ytdt)) | (4.4)

The procesqy, |, ysds) is an affine semimartingale by [17, Proposition 2], hence [17
Corollary 3.2] implies that the characteristic functiontbé random variablqu Ysds IS
given by

E <exp (zu /0 ' ysds)) = exp (z’bu + / (e — 1 — iuh(z)) K(dx)) , VYuceR,

with
T 1— e—)\t
K(G) ::/ /1G( 5 z) KZ(dz)dt, VG e &
0
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and

—AT —AT
(e =1+AT l1—e

L /OT/ <h (1 —;_MZ> ! _;_Mh(z)> K7(d2)dt.

SinceK? is a Lévy measure, i.e. satisfié&” ({0}) = 0 and integrates$ A |x|?, one easily
verifies thatb is finite and K is a Lévy measure, too. By the Lévy-Khintchine formula,
the distribution offOT ysds is therefore infinitely divisible. Consequently (4.4) ai88]
Corollary 11.6 and Theorem 25.17] yield thatu(Vr(y))) is finite if and only if

T 6—)\t -1
/ e K (dx) = / / exp ( Cz) K%(dz)dt
{le>1} 0 J{-e20)z/A>1) A

is finite. Since\ > 0 and the Lévy measur&Z of the subordinatof is concentrated on
R, by [33, 21.5], the assertion follows. Fpr> 1, Condition 3 of Corollary 43 and the
Bernoulli inequality show that’ is positive. Consequently, (4.3) is always satisfied. (]

Since the exponential moment condition in Corollary 4.4atefs on the time horizon,
it is potentially only satisfied ifl" is sufficiently small. This resembles the situation in the
Heston model, where the maximal expected utility can beiteffior some parameters and
sufficiently largeT, if p € (0, 1) (cf. [19]). However, a qualitatively different phenomenon
arises here. Whereas expected utility can only tend to tgfima continuously in the Heston
model, it can suddenly jump to infinity here. This means that wtility maximization
problem is not stable with respect to the time horizon in taise.

Example 4.5 (Sudden explosion of maximal expected utilityln the setup of Corollary
4.4 considep € (0,1), KB = 0,08 # 0, c® = 1 and hence” = (b®)%(p — 1)/2p < 0.
Define the Lévy measure
C dz
Z A
K?(dz) := 11 ,00)(2) exp (52) pox

and letb? = 0 relative to the truncation functioh(z) = 0 onR. SettingT,, := log(2)/\,

we obtain
> e M1 ) p <1, fort<T,,
exp Cz | K“(dz)< — -
/1 < A (d2) =00, fort>T,.

Consequently, by Corollafy 4.4, the maximal expectedtytifiat can be obtained by trading
on [0, T is finite for T’ < T,,, and satisfies

1-p

exp(log(2)/A + |C/2A|yo) < 0.

E(u(Ve(¢))) < 7

Hence the maximal expected utility is actually bounded fralnove forT < T,,. For
T > T, however, is is infinite by Corollafy 4.4.
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Sinceu(Vr(p)) = Vr(e)'?/(1 — p) is an exponentially affine process for= 0,
the finiteness of the maximal expected utility is intimatiéhked to moment explosions of
affine processes, ct.[9] and the references therein for ohetals.

A Appendix

In the proof of Theorern 3.1 we used that exponentials of meegwith conditionally inde-
pendent increments are martingales if and only if theyvaneartingales. In this appendix,
we give a proof of this result.

Lemma A.1 Let X be anR-valued process wittk, = 0 and conditionally independent
increments relative to some-field 7. If X admits local characteristic$b, ¢, K') with
respect to some truncation functiénthe following are equivalent.

1. exp(X) is a martingale o0, 7).
2. exp(X) is a local martingale orj0, 7).
3. exp(X) is ac-martingale on0, 7.

4. Upto adP @ dt-null set, we havg{wl} e K (dz) < oo and

b+ g + /(er — 1 — h(2))K(dz) = 0. (A1)

PrROOF. The implication§ =2 = [3 follow from [16, Lemma 3.1]. Moreover, [16, Lemma
3.1]and[[17, Proposition 3] yield 3 [4. Consequently, it remains to show=Al

By [1€, Proposition 3.1], the-martingaleexp(X) is a supermartingale. Therefore it
suffices to showZ (exp(Xr)) = 1. In view of |2, Satz 44.3] a regular versidi(w, dx) of
the conditional distribution oK w.r.t. 77 exists. From|[2, 844] and [14, 11.6.6] we get

/ei“xR(w, dx)
= E(exp(iuXy)|A)(w)

1 ,
= exp <iuBT(w) — §UCT(W)U + /[OT] Rd(elu;c —1 - ’iuh(x))l/(w, dt, d:l?)) ’

whereB =0b+1,C = ¢+ [ andv = K ® I denote the semimartingale characteristics of
X. By the Lévy-Khintchine formula [33, Theorem 8.1}(w, -) is therefore a.s. infinitely
divisible. Since any supermartingale is a special semingate by [13, Proposition 2.18],

it follows from [16, Corollary 3.1] thatxp(X*) is a local martingale. Hence

/ e"v(dt,dr) < oo, P-a.s. (A.2)
0,T]x {z>1}
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by [17, Proposition 3] and [16, Lemma 3.1]. By [33, Corolldry.6 and Theorem 25.17],
(A1) and [A2) show thaf e” R(w,dz) = 1, P-a.s. and hence

E(exp(X7)) // R(w,dx)P(dw) = 1.

This proves the assertion.
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