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Utility maximization in models with
conditionally independent increments

Jan Kallsen∗ Johannes Muhle-Karbe†

Abstract

We consider the problem of maximizing expected utility fromterminal wealth in
models with stochastic factors. Using martingale methods and a conditioning argu-
ment, we determine the optimal strategy for power utility under the assumption that the
increments of the asset price are independent conditionally on the factor process.

Key words: utility maximization, stochastic factors, conditionally independent in-
crements, martingale method

1 Introduction

A classical problem in Mathematical Finance is to maximize expected utility from terminal
wealth in a securities market (cf. [20, 22] for an overview).This is often called theMerton
problem, since it was first solved in a continuous-time setting by Merton [26, 27]. In partic-
ular, he explicitly determined the optimal strategy and thecorresponding value function for
power and exponential utility functions and asset prices modelled as geometric Brownian
motions.

Since then, these results have been extended to other modelsof various kinds. For Lévy
processes (cf. [7, 8, 15, 3]), the value function can still bedetermined explicitly, whereas
the optimal strategy is determined by the root of a real-valued function. For some affine
stochastic volatility models (cf. [21, 23, 25, 19]), the value function can also be computed
in closed form by solving some ordinary differential equations, while the optimal strategy
can again be characterized by the root of a real-valued function.

For more general Markovian models, one is faced with more involved partial (integro-)
differential equations that typically do not lead to explicit solutions and require a substan-
tially more complicated verification procedure to ensure the optimality of a given candidate
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strategy (cf. e.g. [35] for power and [31] for exponential utility). A notable exception is
given by models where the stochastic volatility is independent of the other drivers of the as-
set price process. In this case, it has been shown that the optimal strategy ismyopic, i.e. only
depends on the local dynamics of the asset price, cf. e.g. [11] for exponential and [4, 24, 6]
for power utility. In particular, it can be computed withouthaving to solve any differential
equations.

In the present study, we establish that this generally holdsfor power utility, provided
that the asset price hasindependent increments conditional on some arbitrary factor pro-
cess. As in [11], the key idea is to condition on this process, which essentially reduces
the problem to studying processes with independent increments. This in turn can be done
similarly as for Lévy processes in [15]. In the following, wemake this idea precise. We
first introduce our setup of processes with conditionally increments and prove that general
Lévy-driven models fit into this framework if the stochasticfactors are independent of the
other sources of randomness. Subsequently, we then state and prove our main result in
3. Given condtionally independent increments of the asset price, it provides a pointwise
characterization of the optimal strategy that closely resembles the well-known results for
logarithmic utility (cf. e.g. [10]). Afterwards, we present some examples. In particular, we
show how the present results can be used to study whether the maximal expected utility that
can be achieved in affine models is finite. For the proof of our main result we utilize that
exponentials of processes with conditionally independentincrements are martingales if and
only if they areσ-martingales. A proof of this result is provided in the appendix.

For stochastic background, notation and terminology we refer to the monograph of Jacod
and Shiryaev [14]. In particular, for a semimartingaleX, we denote byL(X) the set ofX-
integrable predictable processes and byϕ • X the stochastic integral ofϕ ∈ L(X) with
respect toX. Moreover, we writeE (X) for the stochastic exponential of a semimartingale
X. When dealing with stochastic processes, superscripts usually refer to coordinates of a
vector rather than powers. ByI we denote the identity process, i.e.It = t.

2 Setup

Our mathematical framework for a frictionless market modelis as follows. Fix a terminal
time T ∈ R+ and a filtered probability space(Ω,F , (Ft)t∈[0,T ], P ). We consider traded
securities whose price processes are expressed in terms of multiples of a numeraire secu-
rity. More specifically, these securities are modelled by their discounted price processS,
which is assumed to be a semimartingale with values in(0,∞)d. We consider an investor
whose preferences are modelled by apower utility functionu(x) = x1−p/(1 − p) for some
p ∈ R+\{0, 1} and who tries to maximize expected utility from terminal wealth. Her ini-
tial endowment is denoted byv ∈ (0,∞). Trading strategiesare described byRd-valued
predictable stochastic processesϕ = (ϕ1, . . . , ϕd) ∈ L(S), whereϕit denotes the number
of shares of securityi in the investor’s portfolio at timet. A strategyϕ is calledadmissible
if its discountedwealth processV (ϕ) := v + ϕ • S is nonnegative (no negative wealth
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allowed). An admissible strategy is calledoptimal, if it maximizesψ 7→ E(u(VT (ψ))) over
all competing admissible strategiesψ.

We need the following very mild assumption. Since the asset price process is positive,
it is equivalent to NFLVR by the fundamental theorem of assetpricing.

Assumption 2.1 There exists anequivalent local martingale measure, i.e. a probability
measureQ ∼ P such that theS is a localQ-martingale.

Since the asset price processS is positive, Assumption 2.1 and [14, I.2.27] imply that
S− > 0 as well. By [14, II.8.3], this means that there exists anR

d-valued semimartingale
X such thatSi = Si0E (X i) for i = 1, . . . , d. We interpretX as the returns that generateS
in a multiplicative way. To solve the utility maximization problem, we make the following
crucial structural assumptions on thereturn processX.

Assumption 2.2 1. The semimartingale characteristics(BX , CX , νX) (cf. [14]) of X
relative to sometruncation functionsuch ash(x) = x1{|x|≤1} can be written as

BX
t =

∫ t

0

bXs ds, CX
t =

∫ t

0

cXs ds, νX([0, t] ×G) =

∫ t

0

KX
s (G)ds,

with predictable processesbX , cX and a transition kernelKX from (Ω×R+,P) into
(Rd,Bd). The triplet(bX , cX , KX) is calleddifferentialor local characteristicsofX.

2. There is a processy such thatX also is a semimartingale with local characteristics
(bX , cX , KX) relative to the augmented filtrationG := (Gt)t∈[0,T ] given by

Gt :=
⋂

s>t

σ(Fs ∪ σ((yr)r∈[0,T ])), 0 ≤ t ≤ T,

and such thatbXt , c
X
t andKX

t (G) areG0-measurable for fixedt ∈ [0, T ] andG ∈ Bd.
By [14, II.6.6], this means thatX hasG0-conditionally independent increments, i.e. it
is aG0-PII.

Remarks.

1. In the present general framework, modelling the stock prices as ordinary exponentials
Si = Si0 exp(X̃ i), i = 1, . . . , d for some semimartingalẽX leads to the same class of
models (cf. [17, Propositions 2 and 3]).

2. The first part of Assumption 2.2 essentially means that theasset price process has no
fixed times of discontinuity. This condition is typically satisfied, e.g. for diffusions,
Lévy processes and affine processes.

3. The second part of Assumption 2.2 is the crucial one. It means that the local dynamics
of the asset price are determined by the evolution of the processy, which can therefore
be interpreted as astochastic factor process.
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In general, a semimartingaleX will not remain a semimartingale with respect to an
enlarged filtration (cf. e.g. [30, Chapter VI] and the references therein). Even if the semi-
martingale property is preserved, the characteristics generally do not remain unchanged.
Nevertheless, we now show that some fairly general models satisfy this property if the fac-
tor processy is independent of the other sources of randomness in the model.

Integrated Lévy models

In this section, we assume thatX is modelled as

X = y− • B, (2.1)

for anR
d×n-valued semimartingaley and an independentR

n-valued Lévy processB with
Lévy triplet (bB, cB, KB). Furthermore, we suppose that the underlying filtrationF is gen-
erated byB andy (or equivalently byX andy if d = n andy takes values in the invertible
R
d×d-matrices). The following result shows that Assumption 2.2is satisfied in this case.

Lemma 2.3 Relative to bothF andG, X is a semimartingale withG0-measurable local
characteristics(bX , cX , KX) given by

bX = y−b
B +

∫
(h(y−x) − y−h(x))K

B(dx), cX = y−c
By⊤−,

KX(G) =

∫
1G(y−x)K

B(dx) ∀G ∈ B
d\{0}.

In particular, Assumption 2.2 is satisfied.

PROOF. SinceB is independent ofy andF is generated byy andB, it follows from [2,
Theorem 15.5] thatB remains a Lévy process (and in particular a semimartingale), if its
natural filtration is replaced with eitherF or G. Since the distribution ofB does not depend
on the underlying filtration, we know from the Lévy-Khintchine formula and [14, II.4.19]
thatB admits the same local characteristics(bB, cB, KB) with respect to its natural filtration
and bothF andG. Sincey− is locally bounded and predictable relative toF andG, the
processX is a semimartingale with respect toF andG by [14, I.4.31]. Its characteristics
can now be derived by applying [17, Proposition 2]. TheG0-measurability is obvious. �

Time-changed Lévy models

We now show that Assumption 2.2 also holds for time-changed Lévy models. For Brownian
motion, stochastic integration and time changes lead to essentially the same models by the
Dambis-Dubins-Schwarz theorem. For general Lévy processes with jumps, however, the
two classes are quite different. More details concerning the theory of time changes can be
found in [13], whereas their use in modelling is dealt with in[5, 17]. Here, we assume that
the processX is given by

X =

∫ ·

0

µ(ys−)ds+BR

·

0 ys−ds, (2.2)
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for a (0,∞)-valued semimartingaley, a measurable mappingµ : R → R
d such that∫ T

0
|µ(ys−)|ds < ∞, P -a.s., and for an independentR

d-valued Lévy processB with Lévy-
Khintchine triplet(bB, cB, KB). Moreover, we suppose that the underlying filtration is gen-
erated byX andy. We have the following analogue of Lemma 2.3.

Lemma 2.4 Relative to bothF andG, X is a semimartingale withG0-measurable local
characteristics(bX , cX , KX) given by

bX = µ(y−) + bBy−, cX = cBy−, KX(G) = KB(G)y− ∀G ∈ B
d.

In particular, Assumption 2.2 is satisfied.

PROOF. Relative toF, the assertion follows literally as in the proof of [29, Proposition 4.3].
For the corresponding statement relative to the augmented filtrationG, letY =

∫ ·

0
ysds and

Ur := inf{q ∈ R+ : Yq ≥ r}. Define theσ-fields

Ht :=
⋂

s>t

σ((Bq)q∈[0,s], (Ur)r∈R+).

SinceB is independent ofy and henceY , it remains a Lévy process relative to the filtra-
tion H := (Ht)t∈R+ . Its distribution does not depend on the underlying filtration, hence we
know from the Lévy-Khintchine formula and [14, II.4.19] that it is a semimartingale with lo-
cal characteristics(bB , cB, KB) relative toH. By [17, Proposition 5] the time-changed pro-
cess(B̃ϑ)ϑ∈[0,T ] := (BYϑ

)ϑ∈[0,T ] is a semimartingale on[0, T ] relative to the time-changed

filtration (H̃ϑ)ϑ∈[0,T ] := (HYϑ
)ϑ∈[0,T ] with differential characteristics(̃b, c̃, F̃ ) given by

b̃ϑ = bByϑ−, c̃ϑ = cByϑ−, K̃ϑ(G) = KB(G)yϑ− ∀G ∈ B
d.

Furthermore, it follows as in the proof of [29, Proposition 4.3] that H̃t = Gt for all
t ∈ [0, T ]. The assertion now follows by applying [17, Proposition 2 and 3] to compute
the characteristics ofX. �

Remarks.

1. For the proof of Lemma 2.4 we had to assume that the given filtration is generated by
the process(y,X) or equivalently(Y,X). In reality, though, the integrated volatility
Y and the volatilityy typically cannot be observed directly. Therefore the canonical
filtration of the return processX would be a more natural choice. Fortunately,Y and
y are typically adapted to the latter ifB is an infinite activity process (cf. e.g. [34]).

2. A natural generalization of (2.2) is given by models of theform

X =

∫ ·

0

µ(y
(1)
s− , . . . , y

(n)
s− )ds+

n∑

i=1

B
(i)

Y (i),
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for µ : (0,∞)n → R
d, strictly positive semimartingalesy(i), Y (i) =

∫ ·

0
y

(i)
s ds and

independent Lévy processesB(i), i = 1, . . . , n. If one allows for the use of the even
larger filtration generated by ally(i), B(i)

Y (i), i = 1, . . . , n the proof of Lemma 2.4
remains valid. IfY (i) is interpreted as business time in some marketi, this class of
models allows assets to be influenced by the changing activity in different markets.

3 Optimal portfolios

For asset prices with conditionally independent increments we can now characterize the
solution to the Merton problem as follows.

Theorem 3.1 Suppose Assumptions 2.1, 2.2 hold and assume there exists anR
d-valued

processπ ∈ L(X) such that the following conditions are satisfied up to adP ⊗ dt-null set
onΩ × [0, T ].

1. KX({x ∈ R
d : 1 + π⊤x ≤ 0}) = 0.

2.
∫ ∣∣x(1 + π⊤x)−p − h(x)

∣∣KX(dx) <∞.

3. For all η ∈ R
d such thatKX({x ∈ R

d : 1 + η⊤x < 0}) = 0, we have

(η⊤ − π⊤)

(
bX − pcXπ +

∫ (
x

(1 + π⊤x)p
− h(x)

)
KX(dx)

)
≤ 0,

4.
∫ T

0
|αs|ds <∞, where

α := (1 − p)π⊤bX − p(1 − p)

2
π⊤cXπ

+

∫ (
(1 + π⊤x)1−p − 1 − (1 − p)π⊤h(x)

)
KX(dx).

Then there exists aG0-measurable process̃π satisfying Conditions 1-4 such that the strategy
ϕ = (ϕ1, . . . , ϕd) defined as

ϕit := π̃i(t)
vE (π̃ • X)t−

Sit−
, i = 1, . . . , d, t ∈ [0, T ], (3.1)

is optimal with value processV (ϕ) = vE (π̃ • X). The corresponding maximal expected
utility is given by

E(u(VT (ϕ))) =
v1−p

1 − p
E

(
exp

(∫ T

0

αsds

))
.

In particular, if π is G0-measurable, it is possible to chooseπ̃ = π.
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PROOF. Step 1: In view of Conditions 1-4, the measurable selection theorem [32, The-
orem 3] and [13, Proposition 1.1] show the existence ofπ̃, since(bX , cX , KX) are G0-
measurable by Assumption 2.2. Hence we can assume without loss of generality thatπ is
G0-measurable, because we can otherwise pass toπ̃ instead.

Step 2: Sinceπ and henceϕ is F-predictable by assumption andFt ⊂ Gt for all t ∈
[0, T ], it follows thatϕ is G-predictable as well. In view of Assumption 2.2, the local
characteristics ofX relative toF coincide with those relative toG. Together with [14,
III.6.30] this implies that we haveπ ∈ L(X) and henceϕ ∈ L(S) w.r.t.G, too.

Step 3: The wealth process associated toϕ is given by

V (ϕ) = v + ϕ • S = v(1 + E (π • X)− • (π • X)) = vE (π • X).

Since Condition 1 and [14, I.4.61] implyV (ϕ) > 0, the strategyϕ is admissible.
Step 4: Letψ be any admissible strategy. Together with Assumption 2.1 and [14, I.2.27],

admissibility impliesV (ψ) = 0 on the predictable set{V−(ψ) = 0}. Hence we can assume
without loss of generality thatψ = 0 on {V−(ψ) = 0}, because we can otherwise consider
ψ̃ := 1{V−(ψ)>0}ψ without changing the wealth process. Consequently, we can write ψ =

ηV−(ψ) for someF-predictable processη. The admissibility ofψ impliesη⊤t ∆Xt ≥ −1

which in turn yields
KX({x ∈ R

d : 1 + η⊤t x < 0}) = 0 (3.2)

outside somedP ⊗ dt null set. Moreover, it follows as above thatψ ∈ L(S) w.r.t. G as
well. Since

∫ T

0
|αs|ds <∞ outside someP -null set by Condition 4, the process

Lt := exp

(∫ T

t

αsds

)
= L0E

(∫ T

·

αsds

)

t

is indistinguishable from a càdlàg process of finite variation and hence aG-semimartingale,
becauseπ and (bX , cX , KX) areG0-measurable. The localG-characteristics(b, c,K) of
(L/L0)V (ϕ)−pV (ψ) can now be computed with [17, Propositions 2 and 3]. In particular,
we get

K(G) =

∫
1G

(
L−

L0

V−(ϕ)−pV−(ψ)

(
1 + η⊤x

(1 + π⊤x)p
− 1

))
KX(dx),

for all G ∈ B\{0}, which combined with Condition 2 yields
∫

{|x|>1}

|x|K(dx) <∞ (3.3)

outside somedP ⊗ dt-null set. Moreover, insertion of the definition ofα leads to

b =

∫
(h(x) − x)K(dx) (3.4)

+
L−

L0
V−(ϕ)−pV−(ψ)(η⊤ − π⊤)

(
bX − pcXπ +

∫ (
x

(1 + π⊤x)p
− h(x)

)
KX(dx)

)
,
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and hence

b+

∫
(x− h(x))K(dx) ≤ 0 (3.5)

dP⊗dt-almost everywhere onΩ×[0, T ] by (3.2) and Condition 3. In view of (3.3) and (3.5)
the process(L/L0)V (ϕ)−pV (ψ) is therefore aG-supermartingale by [18, Lemma A.2] and
[16, Proposition 3.1].

Step 5: Forψ = ϕ, (3.3), (3.4) and [18, Lemma A.2] show thatZ := (L/L0)(V (ϕ)/v)1−p

is a strictly positiveσ-martingale. By [17, Proposition 3] ,log(Z) is aG0-PII, henceZ and
in turn (L/L0)V (ϕ)1−p areG-martingales by Lemma A.1.

Step 6: Now we are ready to show thatϕ is indeed optimal. Sinceu is concave, we have

u(VT (ψ)) ≤ u(VT (ϕ)) + u′(VT (ϕ))(VT (ψ) − VT (ϕ)) (3.6)

for any admissibleψ. This implies

E(u(VT (ψ))|G0) ≤ E(u(VT (ϕ))|G0) + L0E

(
LT
L0
VT (ϕ)−pVT (ψ) − LT

L0
VT (ϕ)1−p

∣∣∣∣G0

)

≤ E(u(VT (ϕ))|G0),

because(L/L0)V (ϕ)−pV (ψ) is aG-supermartingale and(L/L0)V (ϕ)1−p is aG-martingale,
both starting atv1−p. Taking expectations, the optimality ofϕ follows. Likewise, theG-
martingale property of(L/L0)V (ϕ)1−p yields the maximal expected utility. �

Remarks.

1. The first condition ensures that the wealth process of the optimal strategy is positive.
It is satisfied automatically if the asset price process is continuous. In the presence
of unbounded positive and negative jumps it rules out shortselling and leverage. The
second condition is only needed to formulate the crucial Condition 3, which charac-
terizes the optimal strategy. A sufficient condition for itsvalidity is given by

bX − pcXπ +

∫ (
x

(1 + π⊤x)p
− h(x)

)
KX(dx) = 0.

While one does not have to require NFLVR if this stronger condition holds as well,
it is less general than Condition 3 in the presence of jumps, cf. [12] for a related
discussion.

2. The fourth condition ensures that the maximalconditionalexpected utility is finite.
However, the maximalunconditionalexpected utility does not necessarily have to be
finite if the utility function is unbounded forp > 1. By [14, III.6.30], Condition 4 is
automatically satisfied forπ ∈ L(X) if X is continuous.

3. Given the mild regularity condition 4, the optimal strategy att is completely described
by the local characteristics att, i.e. it ismyopic. This parallels well-known results for
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logarithmic utility (cf. e.g. [10]). It is important to note, however, that whereas the
optimal strategy is myopic in the general semimartingale case for logarithmic utility,
this only holds for power utility if the return processX has conditionally independent
increments. Otherwise an additional non-myopic term appears, see e.g. [21, 35, 23]

4 Examples

We now consider some concrete models where the results of theprevious section can be
applied. For ease of notation, we consider only a single risky asset (i.e.d = 1), but the
extension to multivariate versions of the corresponding models is straightforward.

Generalized Black-Scholes models

Let B be a standard Brownian motion,y an independent semimartingale and again denote
by I the identity processIt = t. Consider measurable functionsµ : R → R andσ : R →
(0,∞) such thatµ(y−) ∈ L(I) andσ(y−) ∈ L(B) and suppose the discounted stock price
S is given by

S = S0E (µ(y−) • I + σ(y−) • B).

ForX := µ(y−) • I + σ(y−) • B, [14, II.4.19] and [17, Proposition 3] yieldbX = µ(y−)

as well ascX = σ2(y−) andKX = 0. In view of Lemma 2.3, Assumption 2.2 is satisfied.
Define

π :=
µ(y−)

pσ2(y−)
.

By Theorem 3.1 and the second remark succeeding it, the strategyϕ := πvE (π • X)/S is
optimal provided thatπ ∈ L(X). If y− isE-valued for someE ⊂ R, this holds true e.g. if
the mappingx 7→ µ(x)/σ2(x) is bounded on compact subsets ofE.

Remark 4.1 This generalizes results of [6] by allowing for an arbitrarysemimartingale fac-
tor process instead of a Lévy-driven Ornstein-Uhlenbeck (henceforth OU) process. Notice
however, that unlike [6] we only consider utility from terminal wealth and do not obtain a
solution to more general consumption problems. Finitenessof the maximal expected util-
ity is ensured in the casep > 1 in our setup, which complements the results of [6]. They
consider the casep ∈ (0, 1) and prove that the maximal expected utility is finite subjectto
suitable linear growth conditions on the coefficient functionsµ(·) andσ(·) and an exponen-
tial moment condition on the driver of the OU process.

Barndorff-Nielsen and Shephard (2001)

If we setµ(x) := κ+ δx for constantsκ, δ ∈ R, letσ(x) :=
√
x and choose an OU process

dyt = −λyt− + dZt, y0 ∈ (0,∞), (4.1)

9



for a constantλ > 0 and some subordinatorZ in the generalized Black-Scholes model
above, we obtain the model of Barndorff-Nielsen and Shephard [1]. Sinceyt ≥ y0e

−λT > 0

in this case,

π :=
µ(y−)

pσ2(y−)
=

κ

py−
+
δ

p

is bounded and hence belongs toL(X). Consequently,ϕt = πV (ϕ)/S is optimal.

Remark 4.2 This recovers the optimal strategy obtained by [4]. Similarly as in [6], [4]
considers the casep ∈ (0, 1) and proves that the maximal expected utility is finite subject to
an exponential moment condition on the Lévy measureKZ of Z. Our results complement
this by ascertaining that the same strategy is always optimal (with not necessarily finite
expected utility), as well as optimal with finite expected utility in the casep > 1.

Carr et. al (2003)

In this section we turn to the time-changed Lévy models proposed by [5], i.e. we let

Xt = µt+BR

t

0 ysds
, µ ∈ R, (4.2)

for a Lévy processB with Lévy-Khintchine triplet(bB, cB, KB) and an independent OU
processy given by (4.1). By Lemma 2.4, Assumption 2.2 holds. Hence we obtain

Corollary 4.3 SupposeB has both positive and negative jumps and assume there existsa
processπ such that the following conditions are satisfied.

1. KB({x ∈ R
d : 1 + πx ≤ 0}) = 0.

2.
∫ T

0

(∫
|x(1 + πx)−p − h(x)|KB(dx)

)
dt <∞.

3. For all η ∈ R
d such thatKB({x ∈ R

d : 1 + ηx < 0} = 0, we have

(η − π)

((
µ

y−
+ bB

)
− pcBπ +

∫ (
x

(1 + πx)p
− h(x)

)
KB(dx)

)
≤ 0.

Then there exists aG0-measurable process̃π ∈ L(X) satisfying Conditions 1-3 such that
ϕ = π̃vE (π • X)−/S− is optimal.

PROOF. SinceB has both positive and negative jumps, the model satisfies Assumption 2.1
by [28, Lemma 4.42]. Moreover,π is bounded by Condition 1. Hence it belongs toL(X)

and Condition 2 implies that Condition 4 of Theorem 3.1 is also satisfied. By Lemma 2.4,
Conditions 1-3 imply Conditions 1-3 of Theorem 3.1. Consequently, the assertion immedi-
ately follows from Theorem 3.1 . �

For µ = 0 one recovers [19, Theorem 3.4], where the optimal fractionπ of wealth
invested into stocks can be chosen to be deterministic. Forµ 6= 0, the optimal fraction
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depends on the current level of the activity processy. As for the generalized Black-Scholes
models above, it is important to emphasize that the optimal strategyϕ is only ensured to
lead to finite expected utility in the casep > 1. However, the results provided here allow
us to complete the study of the casep ∈ (0, 1) for µ = 0 started in [19]. Using Corollary
4.3, we can now show that if there existsπ ∈ R satisfying Conditions 1-3, the exponential
moment condition in [19, Theorem 3.4] is necessary and sufficient for the maximal expected
utility to be finite. The key observation is that the random variable

∫ T

0
αsds from Theorem

3.1 turns out to be infinitely divisible forµ = 0.

Corollary 4.4 Let µ = 0 and suppose there existsπ ∈ R satisfying the conditions of
Corollary 4.3. Then the maximal expected utility corresponding to the optimal strategy
ϕ := πvE (πX)−/S− is always finite forp > 1, whereas forp ∈ (0, 1) it is finite if and only
if ∫ T

0

∫ ∞

1

exp

(
e−λt − 1

λ
Cz

)
KZ(dz)dt <∞ (4.3)

where

C := (p− 1)bBπ +
p(1 − p)

2
cBπ2 −

∫ (
(1 + πx)1−p − 1 − (1 − p)πh(x)

)
KB(dx).

If the maximal expected utility is finite, it is given by

E(u(VT (ϕ)))

=
v1−p

1 − p
exp

(∫ T

0

(
bZα̃(s) +

∫
(eeα(s)z − 1 − α̃(s)h(z))KZ(dz)

)
ds+ α̃(0)y0

)
,

for α̃(t) = C(e−λ(T−t) − 1)/λ.

PROOF. After inserting the characteristics ofX, Theorem 3.1 shows that the maximal ex-
pected utility is given by

E(u(VT (ϕ))) =
v1−p

1 − p
E

(
exp

(
−C

∫ T

0

ytdt

))
. (4.4)

The process(y,
∫ ·

0
ysds) is an affine semimartingale by [17, Proposition 2], hence [17,

Corollary 3.2] implies that the characteristic function ofthe random variable
∫ T

0
ysds is

given by

E

(
exp

(
iu

∫ T

0

ysds

))
= exp

(
ibu+

∫ (
eiux − 1 − iuh(x)

)
K(dx)

)
, ∀u ∈ R,

with

K(G) :=

∫ T

0

∫
1G

(
1 − e−λt

λ
z

)
KZ(dz)dt, ∀G ∈ B

11



and

b := bZ
(
e−λT − 1 + λT

λ2

)
+ y0

(
1 − e−λT

λ

)

+

∫ T

0

∫ (
h

(
1 − e−λt

λ
z

)
− 1 − e−λt

λ
h(z)

)
KZ(dz)dt.

SinceKZ is a Lévy measure, i.e. satisfiesKZ({0}) = 0 and integrates1 ∧ |x|2, one easily
verifies thatb is finite andK is a Lévy measure, too. By the Lévy-Khintchine formula,
the distribution of

∫ T

0
ysds is therefore infinitely divisible. Consequently (4.4) and [33,

Corollary 11.6 and Theorem 25.17] yield thatE(u(VT (ϕ))) is finite if and only if
∫

{|x|>1}

e−CxK(dx) =

∫ T

0

∫

{|(1−e−λt)z/λ|>1}

exp

(
e−λt − 1

λ
Cz

)
KZ(dz)dt

is finite. Sinceλ > 0 and the Lévy measureKZ of the subordinatorZ is concentrated on
R+ by [33, 21.5], the assertion follows. Forp > 1, Condition 3 of Corollary 4.3 and the
Bernoulli inequality show thatC is positive. Consequently, (4.3) is always satisfied. �

Since the exponential moment condition in Corollary 4.4 depends on the time horizon,
it is potentially only satisfied ifT is sufficiently small. This resembles the situation in the
Heston model, where the maximal expected utility can be infinite for some parameters and
sufficiently largeT , if p ∈ (0, 1) (cf. [19]). However, a qualitatively different phenomenon
arises here. Whereas expected utility can only tend to infinity in a continuously in the Heston
model, it can suddenly jump to infinity here. This means that the utility maximization
problem is not stable with respect to the time horizon in thiscase.

Example 4.5 (Sudden explosion of maximal expected utility)In the setup of Corollary
4.4 considerp ∈ (0, 1), KB = 0, bB 6= 0, cB = 1 and henceC = (bB)2(p − 1)/2p < 0.
Define the Lévy measure

KZ(dz) := 1(1,∞)(z) exp

(
C

2λ
z

)
dz

z2
,

and letbZ = 0 relative to the truncation functionh(z) = 0 on R. SettingT∞ := log(2)/λ,
we obtain ∫ ∞

1

exp

(
e−λt − 1

λ
Cz

)
KZ(dz)

{
≤ 1, for t ≤ T∞,

= ∞, for t > T∞.

Consequently, by Corollary 4.4, the maximal expected utility that can be obtained by trading
on [0, T ] is finite forT ≤ T∞ and satisfies

E(u(VT (ϕ))) ≤ v1−p

1 − p
exp(log(2)/λ+ |C/2λ|y0) <∞.

Hence the maximal expected utility is actually bounded fromabove forT ≤ T∞. For
T > T∞, however, is is infinite by Corollary 4.4.
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Sinceu(VT (ϕ)) = VT (ϕ)1−p/(1 − p) is an exponentially affine process forµ = 0,
the finiteness of the maximal expected utility is intimatelylinked to moment explosions of
affine processes, cf. [9] and the references therein for moredetails.

A Appendix

In the proof of Theorem 3.1 we used that exponentials of processes with conditionally inde-
pendent increments are martingales if and only if they areσ-martingales. In this appendix,
we give a proof of this result.

Lemma A.1 Let X be anR-valued process withX0 = 0 and conditionally independent
increments relative to someσ-field H . If X admits local characteristics(b, c,K) with
respect to some truncation functionh, the following are equivalent.

1. exp(X) is a martingale on[0, T ].

2. exp(X) is a local martingale on[0, T ].

3. exp(X) is aσ-martingale on[0, T ].

4. Up to adP ⊗ dt-null set, we have
∫
{x>1}

exK(dx) <∞ and

b+
c

2
+

∫
(ex − 1 − h(x))K(dx) = 0. (A.1)

PROOF. The implications 1⇒ 2⇒ 3 follow from [16, Lemma 3.1]. Moreover, [16, Lemma
3.1] and [17, Proposition 3] yield 3⇔ 4. Consequently, it remains to show 4⇒ 1.

By [16, Proposition 3.1], theσ-martingaleexp(X) is a supermartingale. Therefore it
suffices to showE(exp(XT )) = 1. In view of [2, Satz 44.3] a regular versionR(ω, dx) of
the conditional distribution ofXT w.r.t.H exists. From [2, §44] and [14, II.6.6] we get

∫
eiuxR(ω, dx)

= E(exp(iuXT )|H )(ω)

= exp

(
iuBT (ω) − 1

2
uCT (ω)u+

∫

[0,T ]×Rd

(eiux − 1 − iuh(x))ν(ω, dt, dx)

)
,

whereB = b • I, C = c • I andν = K ⊗ I denote the semimartingale characteristics of
X. By the Lévy-Khintchine formula [33, Theorem 8.1],R(ω, ·) is therefore a.s. infinitely
divisible. Since any supermartingale is a special semimartingale by [13, Proposition 2.18],
it follows from [16, Corollary 3.1] thatexp(X i) is a local martingale. Hence

∫

[0,T ]×{x>1}

exν(dt, dx) <∞, P -a.s. (A.2)
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by [17, Proposition 3] and [16, Lemma 3.1]. By [33, Corollary11.6 and Theorem 25.17],
(A.1) and (A.2) show that

∫
exR(ω, dx) = 1, P -a.s. and hence

E(exp(XT )) =

∫ ∫
exR(ω, dx)P (dω) = 1.

This proves the assertion.
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