# BERNSTEIN PROCESSES, EUCLIDEAN QUANTUM MECHANICS AND INTEREST RATE MODELS 

Paul Lescot<br>Laboratoire de Mathématiques Raphaël Salem<br>UMR 6085 CNRS-Université de Rouen<br>Bureau M2.24<br>Avenue de l'Université, B.P. 12<br>Technopôle du Madrillet<br>F76801 Saint-Etienne-du-Rouvray<br>Tél. (+ 33) (0)2 32955224<br>Fax (+33) (0)2 32955286<br>Paul.Lescot@univ-rouen.fr<br>http://www.univ-rouen.fr/LMRS/Persopage/Lescot

January 22nd, 2009


#### Abstract

We give an exposition, following joint works with J.-C. Zambrini, of the link between Euclidean Quantum Mechanics, Bernstein processes and isovectors for the heat equation. A new application to Mathematical Finance is then discussed.


## 1.Euclidean Quantum Mechanics

Schrödinger's equation for a (possibly time-dependent) potential $V(t, q)$ :

$$
i \hbar \frac{\partial \psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \Delta \psi+V \psi \equiv H \psi
$$

on $L^{2}\left(\mathbf{R}^{d}, d q\right)$ can be written, in space dimension $d=1$, and for $m=1$ :

$$
i \hbar \frac{\partial \psi}{\partial t}=-\frac{\hbar^{2}}{2} \frac{\partial^{2} \psi}{\partial q^{2}}+V \psi
$$

We shall henceforth treat $\theta=\sqrt{\hbar}$ as a new parameter.
In Zambrini's Euclidean Quantum Mechanics (see e.g.[1]), this equation splits into :

$$
\theta^{2} \frac{\partial \psi}{\partial t}=-\frac{\theta^{4}}{2} \frac{\partial^{2} \psi}{\partial q^{2}}+V \psi
$$

and

$$
-\theta^{2} \frac{\partial \psi}{\partial t}=-\frac{\theta^{4}}{2} \frac{\partial^{2} \psi}{\partial q^{2}}+V \psi, \quad\left(\mathcal{C}_{2}^{(V)}\right)
$$

the probability density being given, not by $\psi \bar{\psi}$ as in the usual Quantum Mechanics, but by $\eta \eta_{*}, \eta$ and $\eta_{*}$ denoting respectively an everywhere strictly positive solution of $\left(\mathcal{C}_{1}^{(V)}\right)$ and an everywhere strictly positive solution of $\left(\mathcal{C}_{2}^{(V)}\right)$. To these data is associated a Bernstein process z, satisfying the Stochastic Differential Equation :

$$
\begin{equation*}
d z(t)=\theta d w(t)+\tilde{B}(t, z(t)) d t \tag{B}
\end{equation*}
$$

relatively to the canonical increasing filtration of the Brownian $w$, and the Stochastic Differential Equation

$$
\begin{equation*}
d_{*} z(t)=\theta d_{*} w_{*}(t)+\tilde{B}_{*}(t, z(t)) d t \tag{*}
\end{equation*}
$$

relatively to the canonical decreasing filtration of another Brownian $w_{*}$, where

$$
\tilde{B} \equiv_{d e f} \theta^{2} \frac{\frac{\partial \eta}{\partial q}}{\eta}
$$

and

$$
\tilde{B}_{*} \equiv_{d e f}-\theta^{2} \frac{\frac{\partial \eta_{*}}{\partial q}}{\eta_{*}}
$$

Setting $S=-\theta^{2} \ln (\psi)$, equation $\left(\mathcal{C}_{1}^{(V)}\right)$ becomes the Hamilton-Jacobi-Bellman equation:

$$
\frac{\partial S}{\partial t}=-\frac{\theta^{2}}{2} \frac{\partial^{2} S}{\partial q^{2}}+\frac{1}{2}\left(\frac{\partial S}{\partial q}\right)^{2}-V
$$

Modulo the addition of the derivatives $E=-\frac{\partial S}{\partial t}$ and $B=-\frac{\partial S}{\partial q}$ as auxiliary unknown functions, $\left(\mathcal{C}_{3}^{(V)}\right)$ is equivalent to the vanishing of the following differential forms:

$$
\begin{gathered}
\omega=d S+E d t+B d q \\
\Omega=d \omega=d E d t+d B d q
\end{gathered}
$$

and

$$
\beta=\left(E+\frac{B^{2}}{2}-V\right) d q d t+\frac{\theta^{2}}{2} d B d t
$$

on a 2-dimensional submanifold of $\mathbf{M}=\mathbf{R}^{5}((t, q, S, E, B)$ being now considered as independent variables). Let then $L=\frac{1}{2} B^{2}+V$ denote the formal Lagrangian,

$$
\omega_{P C}=E d t+B d q=\omega-d S
$$

the Poincaré-Cartan form, and $I$ the ideal of $\mathcal{A}=\wedge T^{*}(\mathbf{M})$ generated by $\omega$, $d \omega$ and $\beta$. By an isovector we shall mean a vector field $N$ on $\mathbf{M}$ such that $\mathcal{L}_{N}(I) \subseteq I$; because of the linearity of $\left(\mathcal{C}_{1}^{(V)}\right)$ the Lie algebra $\mathcal{G}_{V}$ of these isovectors contains an infinite-dimensional abelian ideal $\mathcal{J}_{V}$, that possesses a canonical supplement $\mathcal{H}_{V}$.

In the free case $(V=0)$ this canonical supplement has dimension 6 and admits a natural basis, each element of which corresponds to a symmetry of the underlying physical system.

Let $\Phi_{N}=-N(S)$ be the phase associated to $N$, and

$$
D \equiv_{\operatorname{def}} \frac{\partial}{\partial t}+B \frac{\partial}{\partial q}+\frac{\hbar}{2} \frac{\partial^{2}}{\partial q^{2}}
$$

the formal Ito differential along the Bernstein process $z$. The following purely algebraic results are analogs of well-known theorems of Classical Analytical Mechanics:
Theorem 1.1. For each $N \in \mathcal{H}_{V}$ one has:
(1) $\mathcal{L}_{N}\left(\omega_{P C}\right)=d \Phi_{N}$;
(2) $\mathcal{L}_{N}(\Omega)=0$;
(3) $\mathcal{L}_{N}(L)+L \frac{d N^{t}}{d t}=D \Phi_{N}$.

For a detailed proof see [7], and for complete calculations in the free case $(V=0)$ see [6].

## 2. Rosencrans' Theorem

Let $N$ be an isovector (for $V=0$ ), let $\psi$ be a solution of $\mathcal{C}_{1}^{(0)}$, and let

$$
S=-\theta^{2} \ln (\psi)
$$

then $e^{\alpha N}$ maps $(t, q, S, E, B)$ to $\left(t_{\alpha}, q_{\alpha}, S_{\alpha}, E_{\alpha}, B_{\alpha}\right)$; setting

$$
e^{-\frac{S_{\alpha}}{\theta^{2}}}=\psi_{\alpha}\left(t_{\alpha}, q_{\alpha}\right),
$$

it follows that $\psi_{\alpha}$ is also a solution of $\left(\mathcal{C}_{1}^{(0)}\right)$. We shall denote

$$
e^{\alpha \hat{N}}: \psi \mapsto \psi_{\alpha}
$$

the associated one-parameter group ; it is easily seen that, for

$$
N=N^{t} \frac{\partial}{\partial t}+N^{q} \frac{\partial}{\partial q}-\Phi_{N} \frac{\partial}{\partial S}+\ldots
$$

then

$$
\hat{N}=-N^{t} \frac{\partial}{\partial t}-N^{q} \frac{\partial}{\partial q}+\frac{1}{\theta^{2}} \Phi_{N}
$$

and it follows that $N \mapsto-\hat{N}$ is a homomorphism of Lie algebras.
Let $\eta_{u}$ denote the solution de $\left(\mathcal{C}_{1}^{(0)}\right)$ with initial condition $u$ :

$$
\frac{\partial \eta_{u}}{\partial t}=-\frac{\theta^{2}}{2} \frac{\partial^{2} \eta_{u}}{\partial q^{2}}
$$

and

$$
\eta_{u}(0, q)=u(q) .
$$

Let us set:

$$
\rho_{N}(\alpha, t, q)=\left(e^{\alpha \hat{N}} \eta_{u}\right)(t, q)
$$

and

$$
\psi^{N}(\alpha, q) \equiv_{d e f} \rho_{N}(\alpha, 0, q)
$$

Then
Theorem 2.1. ([6], pp.321-322)
$\psi^{N}$ satisfies :

$$
\frac{\partial \psi^{N}}{\partial \alpha}=-N^{t}(0, q)\left(-\frac{\theta^{2}}{2} \frac{\partial^{2} \psi^{N}}{\partial \alpha^{2}}\right)-N^{q}(0, q) \frac{\partial \psi^{N}}{\partial q}+\frac{1}{\theta^{2}} \Phi_{N}(0, q) \psi^{N}
$$

and

$$
\psi^{N}(0, q)=u(q)
$$

Whence :

Corollary 2.2. Let $N$ be chosen so that $N^{t}(0, q)=-1, N^{q}(0, q)=-\frac{1}{\theta^{2}}(a q+b)$ and $\Phi_{N}(0, q)=c q^{2}+d q+f$, where $a, b, c, d, f$ denote real constants, then

$$
\eta_{u}^{V}(t, q) \equiv_{\text {def }} \psi^{N}(t, q)
$$

satisfies the "backwards heat equation with drift term $D(q)=a q+b$ and quadratic potential $V(q)=c q^{2}+d q+f+\frac{1}{2 \hbar^{2}}(D(q))^{2}-\frac{a}{2}$ ", corresponding to a vector potential

$$
\begin{gathered}
A=\frac{a q+b}{\theta^{2}}: \\
\theta^{2} \frac{\partial \eta_{u}^{V}}{\partial t}=-\frac{\theta^{4}}{2} \frac{\partial^{2} \eta_{u}^{V}}{\partial q^{2}}+(a q+b) \frac{\partial \eta_{u}^{V}}{\partial q}+\left(c q^{2}+d q+f\right) \eta_{u}^{V} \quad\left(\mathcal{C}_{4}^{(V)}\right)
\end{gathered}
$$

and

$$
\eta_{u}^{V}(0, q)=u(q)
$$

(In the case $D(q)=0$, the potential is given by $V(q)=c q^{2}+d q+f$ and $\eta_{u}^{(V)}$ satisfies $\mathcal{C}_{1}^{(V)}$; for the general case, cf. [1], pp.71-72).

## 3.The case of a linear potential

Here $V(q)=\lambda q$; it appears that:

$$
\eta_{u}^{V}(t, q)=e^{-\frac{\lambda^{2}}{6 \theta^{2}} t^{3}} e^{\frac{\lambda t q}{\theta^{2}}} \eta_{u}\left(t, q-\lambda \frac{t^{2}}{2}\right)
$$

Then $\eta_{u}^{V}$ satisfies $\left(\mathcal{C}_{1}^{(V)}\right)$; the drift term can be written :

$$
\begin{aligned}
\tilde{B_{V}}(t, q) & =\theta^{2} \frac{\partial}{\partial q}\left(\ln \left(\eta_{u}^{V}\right)(t, q)\right) \\
& =\theta^{2} \frac{\partial}{\partial q}\left(-\frac{\lambda^{2}}{6 \theta^{2}} t^{3}+\frac{\lambda t q}{\theta^{2}}+\ln \left(\eta_{u}\right)\left(t, q-\lambda \frac{t^{2}}{2}\right)\right) \\
& =\lambda t+\theta^{2} \frac{\partial}{\partial q}\left(\ln \left(\eta_{u}\right)\right)\left(t, q-\lambda \frac{t^{2}}{2}\right) \\
& =\lambda t+\tilde{B}\left(t, q-\lambda \frac{t^{2}}{2}\right)
\end{aligned}
$$

Therefore, we have :

$$
d z_{V}(t)=\theta d w(t)+\lambda t d t+\tilde{B}\left(t, z_{V}(t)-\lambda \frac{t^{2}}{2}\right) d t
$$

Let us set $y(t) \equiv_{\text {def }} z_{V}(t)-\lambda \frac{t^{2}}{2} ;$ then

$$
\begin{aligned}
d y(t) & =d z_{V}(t)-\lambda t d t \\
& =\theta d w(t)+\tilde{B}(t, y(t)) d t
\end{aligned}
$$

i.e. $y(t)$ is a Bernstein process $z(t)$ associated to solution $\eta_{u}$ of the free equation $\left(\mathcal{C}_{1}^{(0)}\right)$, and

$$
z_{V}(t)=z(t)+\lambda \frac{t^{2}}{2}
$$

In other terms, the "perturbation" by a constant force $\lambda$ produces a deterministic translation by $\lambda \frac{t^{2}}{2}$, which is logical on physical grounds.

Details are given in [7].

## 4.The case of a quadratic potential

For $V(t, q)=\frac{\omega^{2} q^{2}}{2}$, one finds :

$$
\eta_{u}^{V}(t, q)=\cosh (\omega t)^{-\frac{1}{2}} e^{\frac{\omega q^{2}}{2 \theta^{2}} \tanh (\omega t)} \eta_{u}\left(\frac{\tanh (\omega t)}{\omega}, \frac{q}{\cosh (\omega t)}\right)
$$

Whence

$$
\tilde{B_{V}}(t, q)=\omega q \tanh (\omega t)+\frac{1}{\cosh (\omega t)} \tilde{B}\left(\frac{\tanh (\omega t)}{\omega}, \frac{q}{\cosh (\omega t)}\right)
$$

Details are exposed in [9], $\S 5$, and a more general formula is proved in [5].

## 5.An example with $D \neq 0$

Here, we take $a=\theta^{2} \beta$, and $b=c=d=f=0$. With the notations of [1], pp. 71-72 (but, of course, replacing $\mathbf{R}^{3}$ with $\mathbf{R}$ ), $A=\beta q$, and

$$
V(q)=\frac{\beta^{2} q^{2}}{2}-\frac{\beta \theta^{2}}{2}
$$

Then $\eta_{u}^{V}$ satisfies

$$
\frac{\partial \eta_{u}^{V}}{\partial t}=-\frac{\theta^{2}}{2} \frac{\partial^{2} \eta_{u}^{V}}{\partial q^{2}}+\beta q \frac{\partial \eta_{u}^{V}}{\partial q}
$$

It is easy to see that :

$$
\eta_{u}^{V}(t, q)=\eta_{u}\left(\frac{1}{2 \beta}\left(e^{2 \beta t}-1\right), e^{\beta t} q\right)
$$

The drift term (cf.[1], p.72) is given by :

$$
\begin{aligned}
\tilde{B_{V}}(t, q) & =\theta^{2} \frac{\partial}{\partial q}\left(\ln \left(\eta_{u}^{V}\right)(t, q)\right)-A(t, q) \\
& =e^{\beta t} \tilde{B}\left(\frac{1}{2 \beta}\left(e^{2 \beta t}-1\right), e^{\beta t} q\right)-\beta q
\end{aligned}
$$

In particular, for $\eta=1$, one finds $\eta_{u}=1, \tilde{B_{V}}(t, q)=-\beta q, z(t)=\theta w(t)$ and

$$
d z_{V}(t)=\theta d w(t)-\beta z_{V}(t) d t
$$

i.e. $z_{V}(t)$ is an Ornstein-Uhlenbeck process, as expected.

## 6.ONE-FACTOR AFFINE INTEREST RATE MODELS

Such a model is characterized by the instantaneous rate $r(t)$, satisfying

$$
d r(t)=\sqrt{\alpha r(t)+\beta} d w(t)+(\phi-\lambda r(t)) d t
$$

(cf. [3]).
Let us set $\tilde{\phi}=\phi+\frac{\lambda \beta}{\alpha}$; then :
Theorem 6.1. Let

$$
z(t)=\sqrt{\alpha r(t)+\beta}
$$

then $z(t)$ is a Bernstein process for

$$
\theta=\frac{\alpha}{2}
$$

and the potential

$$
V(t, q)=\frac{A}{q^{2}}+B q^{2}
$$

where:

$$
A=\frac{\alpha^{2}}{8}\left(\tilde{\phi}-\frac{\alpha}{4}\right)\left(\tilde{\phi}-\frac{3 \alpha}{4}\right)
$$

and

$$
B=\frac{\lambda^{2}}{8}
$$

Corollary 6.2. The isovector algebra $\mathcal{H}_{V}$ associated with $V$ has dimension 6 if and only if $A=0$; in the opposite case, it has dimension 4.

But the condition $A=0$ is equivalent to $\tilde{\phi} \in\left\{\frac{\alpha}{4}, \frac{3 \alpha}{4}\right\}$, and these values of $\tilde{\phi}$ appear as special in Hénon's PhD thesis ([2]). I am now able to explain that coincidence([4],[5]).

## Acknowledgements

This work is an updated version of the text of my lecture given at ISMANS on October 24th, 2008. I am happy to thank the organizers Alain LE MEHAUTE and Alexandre WANG for their kind invitation and their hospitality.

## References

1. A.B.Cruzeiro and J.-C.Zambrini, Malliavin calculus and Euclidean Quantum Mechanics.I.Functional Calculus, J.Funct.Anal. 96(1) (1991), 62-95.
2. S.Hénon, Un modèle de taux avec volatilité stochastique, (Thèse) (2005).
3. B. Leblanc, O. Scaillet, Path dependent options on yields in the affine term structure model, Finance and Stochastics 2(4) (1998), 349-367.
4. P. Lescot, (en préparation).
5. P. Lescot, P. Patie, (en préparation).
6. P.Lescot, J.-C. Zambrini, Isovectors for the Hamilton-Jacobi-Bellman Equation, Formal Stochastic Differentials and First Integrals in Euclidean Quantum Mechanics, Proceedings of the Ascona conference (2002), Birkhaüser (Progress in Probability, vol 58), 2004, pp. 187-202.
7. P.Lescot, J.-C. Zambrini, Probabilistic deformation of contact geometry, diffusion processes and their quadratures, Seminar on Stochastic Analysis, Random Fields and applications V, Birkhaüser(Progress in Probability, vol. 59), 2008, pp. 203-226.
8. S.I.Rosencrans, Perturbation Algebra of an Elliptic Operator, Journal of Mathematical Analysis and Applications 56 (1976), 317-329.
9. J.-C. Zambrini, From the geometry of parabolic PDE to the geometry of SDE, Mathematical Analysis of Random Phenomena, World Sci., Hackensack, NJ, 2007, pp. 213-230.
(c)Paul Lescot, January 2009
