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2 PAUL LESCOT

ABSTRACT

We give an exposition, following joint works with J.-C. Zambrini, of the link
between Euclidean Quantum Mechanics, Bernstein processes and isovectors for the
heat equation. A new application to Mathematical Finance is then discussed.
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1.EUCLIDEAN QUANTUM MECHANICS

Schrédinger’s equation for a (possibly time-dependent) potential V' (¢, q) :

e N _

on Lz(Rd, dq) can be written, in space dimension d = 1, and for m = 1:
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We shall henceforth treat § = VI as a new parameter.
In Zambrini’s Euclidean Quantum Mechanics (see e.g.[1]), this equation splits
into :
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the probability density being given, not by ¢ as in the usual Quantum Mechanics,
but by nn., n and 7, denoting respectively an everywhere strictly positive solution
of (CY/)) and an everywhere strictly positive solution of (Cév)). To these data is
associated a Bernstein process z, satisfying the Stochastic Differential Equation :

dz(t) = 0dw(t) + B(t, 2(t))dt ((B))

relatively to the canonical increasing filtration of the Brownian w, and the Stochas-
tic Differential Equation

dez(t) = Odw. (t) + B.(t, 2(t))dt ((B.))

relatively to the canonical decreasing filtration of another Brownian w,, where
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Setting S = —6?1n(1), equation (CY/)) becomes the Hamilton—Jacobi-Bellman
equation :
oS  029*°S 1 .0S
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Modulo the addition of the derivatives E = —% and B = —(Z—S as auxiliary
q

unknown functions, (C?EV)) is equivalent to the vanishing of the following differential

forms :

w=dS + Edt + Bdq ,

Q = dw = dEdt + dBdq ,

and
2 2

B 0
B = (B + = —V)dqdt + 7-dBdt

on a 2-dimensional submanifold of M = R?® ((t,q, S, E, B) being now considered
as independent variables). Let then L = §B2 + V denote the formal Lagrangian ,

wpc = Edt+ Bdqg = w — dS

the Poincaré—Cartan form, and I the ideal of A = AT*(M) generated by w, dw
and 3. By an isovector we shall mean a vector field N on M such that Ly (1) C I;

because of the linearity of (C§V)) the Lie algebra Gy of these isovectors contains an
infinite—dimensional abelian ideal Jy , that possesses a canonical supplement Hy .
In the free case (V = 0) this canonical supplement has dimension 6 and admits a
natural basis, each element of which corresponds to a symmetry of the underlying
physical system.
Let & = —N(5) be the phase associated to N, and

0 0 ho?
D=4t —+B—+-—
“f 51 T o T 208
the formal Ito differential along the Bernstein process z. The following purely alge-
braic results are analogs of well-known theorems of Classical Analytical Mechanics:

Theorem 1.1. For each N € Hy one has :

(1) Ln(wpc) =doNn
(2) Ly(@)=0 ;
dN
(3) Ln(L) + LW = Doy
For a detailed proof see [7], and for complete calculations in the free case (V = 0)
see [6].
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2. ROSENCRANS’ THEOREM

Let N be an isovector (for V = 0), let ¢ be a solution of Cio), and let
§ = —67In(w);
then e*Y maps (t,q, S, E, B) to (ta, @, Sa; Ea, Ba) ; setting
Sq
e = wa(ton%x) )
it follows that 1, is also a solution of (C;O)). We shall denote
N o o

the associated one—parameter group ; it is easily seen that, for

0 0 0

= Nt 92 _ i
N=N 8t+N 3q (I)N65+"'
then 5 5 )
V= _NtZ _Nye 2o
N Nat N8q+02q)N"

and it follows that N — —N is a homomorphism of Lie algebras.
Let n,, denote the solution de (Cio)) with initial condition w :

oy _ 020",

ot~ 2 92
and
7.(0,9) = u(q) .
Let us set : R
p(a,t,q) = (e*Vn.)(t, q)
and
N (a0, q) Zaey pn(a,0,q) -
Then

Theorem 2.1. ([6], pp.321-322)
YN satisfies :

il

foJe

92 aZwN

N
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N0, )2~ + Loy (0, qu"

:_Nt(ovq)( 8(] 0

and

PN (0,9) = u(q) -

Whence :
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1
Corollary 2.2. Let N be chosen so that N*(0,q) = —1, N%(0,q) = —9—2(aq +0b)
and ®n(0,q) = cq® + dq + f, where a,b,c,d, f denote real constants, then

ny (t,q) Zaer V™ (t,q)

satisfies the “backwards heat equation with drift term D(q) = aq + b and quadratic
1
potential V(q) = cq®>+dq+ f+—=(D(q))* - a 7. corresponding to a vector potential

2h2 2
aqg+b
A= 02 :
anv 94 8277V anV v
2 u 7 u b u 2 d 14 )
ot 2 o T (aat b+ e +dg+ fing ()
and
m (0,q) = u(q) -
(V)

(In the case D(q) = 0, the potential is given by V(q) = cq®> + dg + f and n
satisfies C;V) ; for the general case, cf. [1], pp.71-72).
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3. THE CASE OF A LINEAR POTENTIAL

Here V(q) = Aq ; it appears that :

A_th M t2
m (t,q) =e 602 ¢ 02 n(t;q = A5) -

Then 7Y satisfies (C%V)) ; the drift term can be written :

Bu(t4) = 0 (m(n)(1,0))

dq

0 A Mg 2
=02 (——=3+ L +1In(n,)(t,g — A\—
St + G+ (g =A%)
=M+ ng(ln( N(t,q — Aﬁ)
- +2
Therefore, we have :
- +2
dzy (t) = 0dw(t) + Mtdt + B(t, zv (t) — )\E)dt .

12
Let us set y(t) =ges 2v(t) — )\5 ; then

dy(t) = dzy (t) — Atdt
= dw(t) + B(t,y(t))dt ,

i.e. y(t) is a Bernstein process z(t) associated to solution 7, of the free equation
(C§0)), and
t2
2y (t) = 2(t) + /\5 .

In other terms, the “perturbation”by a constant force A produces a deterministic
t2
translation by )\5, which is logical on physical grounds.

Details are given in [7].
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4. THE CASE OF A QUADRATIC POTENTIAL

22
For V(t,q) = %, one finds :

2
w
24 tanh(wt)  tanh(wt) q

v = ~2¢202
N, (t,q) = cosh(wt) " 2e N ( — cosh(wt)) .
Whence
- 1 ~ tanh(wt) q
By (t,q) = wgtanh(wt B .
v(tq) = wqtanh(wt) + cosh(wt) ( w cosh(wt))

Details are exposed in [9], §5, and a more general formula is proved in [5].
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5.AN EXAMPLE WITH D # 0
Here, we take a = 623, and b = ¢ = d = f = 0. With the notations of [1], pp.
71-72 (but, of course, replacing R?® with R), A = 3¢, and

B po?
) 2

V(q)

Then n) satisfies
ony 09w

B Oy,
ot 2 0g> '

dq

+ Bq

It is easy to see that :
1% L opt Bt
UM (tv(.Z):nu(%(e _1)76 Q) :

The drift term (cf.[1], p.72) is given by :

BV(tv Q)

eZ(%(m@X )(t.9)) — Alt,q)

= emB(%(ew —1),¢"q) — Bq .

In particular, for n = 1, one finds n, = 1, By (t,q) = —fq, 2(t) = w(t) and
dzy (t) = 0dw(t) — Bzv (t)dt ,

i.e. zy(t) is an Ornstein—Uhlenbeck process, as expected.
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6.ONE-FACTOR AFFINE INTEREST RATE MODELS

Such a model is characterized by the instantaneous rate r(t), satisfying
dr(t) = /ar(t) + 8 dw(t) + (¢ — Ar(t)) dt

(ct. [3).

Letusset$:¢+)\6

— ; then :
«

Theorem 6.1. Let
z(t) = ar(t)+ 6 ;

then z(t) is a Bernstein process for

«@
0=—
2
and the potential
A
where :
a® - a - 3a
A= §(¢—Z)( -7
and
2
B=2
8

Corollary 6.2. The isovector algebra Hy associated with V' has dimension 6 if
and only if A =0 ; in the opposite case, it has dimension 4.
~ 3
But the condition A = 0 is equivalent to ¢ € {%, Za}’ and these values of

¢ appear as special in Hénon’s PhD thesis ([2]). I am now able to explain that
coincidence([4],[5]).
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