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The Bellman Equation for Power UtilityMaximization with SemimartingalesMarel NutzETH Zurih, Department of Mathematis, 8092 Zurih, Switzerlandmarel.nutz�math.ethz.hThis Version: Deember 9, 2009.AbstratWe study utility maximization for power utility random �elds withand without intermediate onsumption in a general semimartingalemodel with losed portfolio onstraints. We show that any optimalstrategy leads to a solution of the orresponding Bellman equation.The optimal strategies are desribed pointwise in terms of the oppor-tunity proess, whih is haraterized as the minimal solution of theBellman equation. We also give veri�ation theorems for this equation.Keywords power utility, Bellman equation, opportunity proess, semimartingaleharateristis, BSDE.AMS 2000 Subjet Classi�ations Primary 91B28; seondary 93E20, 60G44.JEL Classi�ation G11, C61.Aknowledgements. Finanial support by Swiss National Siene Founda-tion Grant PDFM2-120424/1 is gratefully aknowledged. The author thanksChristoph Czihowsky for disussions and Martin Shweizer and NiholasWestray for omments on the draft.1 IntrodutionA lassial problem of mathematial �nane is the maximization of expetedutility obtained from onsumption or from terminal wealth. This paper fo-uses on power utility funtions and presents the orresponding dynamiprogramming in a general onstrained semimartingale framework. The ho-mogeneity of these utility funtions leads to a fatorization of the valueproess into a part depending on the urrent wealth and the so-alled oppor-tunity proess L. In our setting, the Bellman equation desribes the driftrate of L and lari�es the loal struture of our problem. Finding an optimalstrategy boils down to maximizing a random funtion y 7→ g(ω, t, y) on R
dfor every state ω and date t. This funtion is given in terms of the semi-martingale harateristis of L as well as the asset returns, and its maximum1
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yields the drift rate of L. The role of the opportunity proess is to augmentthe information ontained in the return harateristis in order to have aloal su�ient statisti for the global optimization problem.We present three main results. First, we show that if there exists anoptimal strategy for the utility maximization problem, the opportunity pro-ess L solves the Bellman equation and we provide a loal desription of theoptimal strategies. We state the Bellman equation in two forms, as an iden-tity for the drift rate of L and as a bakward stohasti di�erential equation(BSDE) for L. Seond, we haraterize the opportunity proess as the mini-mal solution of this equation. Finally, given some solution and an assoiatedstrategy, one an ask whether the strategy is optimal and the solution isthe opportunity proess. We present two di�erent approahes whih lead toveri�ation theorems not omparable in strength unless the onstraints areonvex.The present dynami programming approah should be seen as omple-mentary to onvex duality, whih remains the only method to obtain exis-tene of optimal strategies in general models; see Kramkov and Shaher-mayer [18℄, Karatzas and �itkovi¢ [17℄, Karatzas and Kardaras [16℄. In someases the Bellman equation an be solved diretly, e.g., in the setting ofExample 5.8 with ontinuous asset pries or in the Lévy proess setting ofNutz [23℄. In addition to the existene, one then typially obtains additionalproperties of the optimal strategies.This paper is organized as follows. The next setion spei�es the opti-mization problem in detail, realls the opportunity proess and the martin-gale optimality priniple, and �xes the notation for the harateristis. Wealso introdue set-valued proesses desribing the budget ondition and statethe assumptions on the portfolio onstraints. Setion 3 derives the Bellmanequation, �rst as a drift ondition and then as a BSDE. It beomes more ex-pliit as we speialize to the ase of ontinuous asset pries. The de�nition ofa solution of the Bellman equation is given in Setion 4, where we show theminimality of the opportunity proess. Setion 5 deals with the veri�ationproblem, whih is onverse to the derivation of the Bellman equation sineit requires the passage from the loal maximization to the global optimiza-tion problem. We present an approah via the value proess and a seondapproah via a de�ator, whih orresponds to the dual problem in a suit-able setting. Appendix A belongs to Setion 3 and ontains the measurableseletions for the onstrution of the Bellman equation. It is omplementedby Appendix B, where we onstrut an alternative parametrization of themarket model by representative portfolios.
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2 PreliminariesThe following notation is used. If x, y ∈ R are reals, x+ = max{x, 0}and x ∧ y = min{x, y}. We set 1/0 := ∞ where neessary. If z ∈ R
dis a d-dimensional vetor, zi is its ith oordinate, z⊤ its transpose, and

|z| = (z⊤z)1/2 the Eulidean norm. If X is an R
d-valued semimartingaleand π is an R

d-valued preditable integrand, the vetor stohasti integralis a salar semimartingale with initial value zero and denoted by ∫
π dX orby π • X. The quadrati variation is the d × d-matrix [X] := [X,X] and if

Y is a salar semimartingale, [X,Y ] is the d-vetor with [X,Y ]i := [Xi, Y ].Relations between measurable funtions hold almost everywhere unless oth-erwise mentioned. Our referene for any unexplained notion from stohastialulus is Jaod and Shiryaev [13℄.2.1 The Optimization ProblemWe �x the time horizon T ∈ (0,∞) and a stohasti basis (Ω,F ,F, P ),where the �ltration F = (Ft)t∈[0,T ] satis�es the usual assumptions of rightontinuity and ompleteness as well as F0 = {∅,Ω} P -a.s. We onsider an
R

d-valued àdlàg semimartingale R with R0 = 0 representing the returns of drisky assets. Their disounted pries are given by the stohasti exponential
S = E(R) = (E(R1), . . . , E(Rd)). Our agent also has a bank aount at hisdisposal; it does not pay interest.The agent is endowed with a deterministi initial apital x0 > 0. Atrading strategy is a preditable R-integrable R

d-valued proess π, where
πi indiates the fration of wealth (or the portfolio proportion) investedin the ith risky asset. A onsumption strategy is a nonnegative optionalproess c suh that ∫ T

0 ct dt < ∞ P -a.s. We want to onsider two ases.Either onsumption ours only at the terminal time T (utility from �terminalwealth� only); or there is intermediate onsumption plus a bulk onsumptionat the time horizon. To unify the notation, we introdue the measure µ on
[0, T ] by

µ(dt) :=

{
0 in the ase without intermediate onsumption,
dt in the ase with intermediate onsumption.Let also µ◦ := µ+δ{T}, where δ{T} is the unit Dira measure at T . The wealthproess X(π, c) orresponding to a pair (π, c) is de�ned by the equation

Xt(π, c) = x0 +

∫ t

0
Xs−(π, c)πs dRs −

∫ t

0
cs µ(ds), 0 ≤ t ≤ T.We de�ne the set of trading and onsumption pairs

A0(x0) :=
{
(π, c) : X(π, c) > 0, X−(π, c) > 0 and cT = XT (π, c)

}
.3



These are the strategies that satisfy the budget onstraint. The onvention
cT = XT (π, c) means that all the remaining wealth is onsumed at time
T . We onsider also exogenous onstraints imposed on the agent. For eah
(ω, t) ∈ Ω × [0, T ] we are given a set Ct(ω) ⊆ R

d whih ontains the origin.The set of (onstrained) admissible strategies is
A(x0) :=

{
(π, c) ∈ A0(x0) : πt(ω) ∈ Ct(ω) for all (ω, t)

}
;it is nonempty as 0 ∈ Ct(ω). Further assumptions on the set-valued mapping

C will be introdued in Setion 2.4. We �x the initial apital x0 and usuallywrite A for A(x0). We write c ∈ A and all c admissible if there exists πsuh that (π, c) ∈ A; an analogous onvention is used for similar expressions.We will often parametrize the onsumption strategies as a fration ofwealth. Let (π, c) ∈ A and X = X(π, c). Then
κ :=

c

Xis alled the propensity to onsume orresponding to (π, c). This yields a one-to-one orrespondene between the pairs (π, c) ∈ A and the pairs (π, κ) suhthat π ∈ A and κ is a nonnegative optional proess satisfying ∫ T
0 κs ds <∞

P -a.s. and κT = 1 (see Nutz [22, Remark 2.1℄ for details). We shall abusethe notation and identify a onsumption strategy with the orrespondingpropensity to onsume, e.g., we write (π, κ) ∈ A. Note that
X(π, κ) = x0E

(
π • R− κ • µ

)
.This simpli�es verifying that some pair (π, κ) is admissible as X(π, κ) > 0implies X−(π, κ) > 0 (f. [13, II.8a℄).The preferenes of the agent are modeled by a time-additive randomutility funtion as follows. Let D be a àdlàg, adapted, stritly positiveproess suh that E[ ∫ T

0 Ds µ
◦(ds)

]
< ∞ and �x p ∈ (−∞, 0) ∪ (0, 1). Wede�ne the power utility random �eld

Ut(x) := Dt
1
px

p, x ∈ (0,∞), t ∈ [0, T ].This is the general form of a p-homogeneous utility random �eld suh thata onstant onsumption yields �nite expeted utility. Interpretations andappliations for the proess D are disussed in [22℄. We denote by U∗ theonvex onjugate of x 7→ Ut(x),
U∗

t (y) = sup
x>0

{
Ut(x) − xy

}
= −1

qy
qDβ

t ; (2.1)here q := p
p−1 ∈ (−∞, 0) ∪ (0, 1) is the exponent onjugate to p and theonstant β := 1

1−p > 0 is the relative risk tolerane of U . Note that weexlude the well-studied logarithmi utility (e.g., Goll and Kallsen [10℄) whihorresponds to p = 0. 4



The expeted utility orresponding to a onsumption strategy c ∈ A is
E

[ ∫ T
0 Ut(ct)µ

◦(dt)
], i.e., either E[UT (cT )] or E[

∫ T
0 Ut(ct) dt+UT (cT )]. Theutility maximization problem is said to be �nite if

u(x0) := sup
c∈A(x0)

E
[ ∫ T

0
Ut(ct)µ

◦(dt)
]
<∞. (2.2)Note that this ondition is void if p < 0 as then U < 0. If (2.2) holds, astrategy (π, c) ∈ A(x0) is alled optimal if E[ ∫ T

0 Ut(ct)µ
◦(dt)

]
= u(x0).Finally, we introdue the following sets; they are of minor importaneand used only in the ase p < 0:

Af :=
{
(π, c) ∈ A :

∫ T
0 Ut(ct)µ

◦(dt) > −∞
}
,

AfE :=
{
(π, c) ∈ A : E

[∫ T
0 Ut(ct)µ

◦(dt)
]
> −∞

}
.Antiipating that (2.2) will be in fore, the indies stand for ��nite� and��nite expetation�. Clearly AfE ⊆ Af ⊆ A, and equality holds if p ∈ (0, 1).2.2 Opportunity ProessWe reall the opportunity proess, a redued form of the value proess in thelanguage of ontrol theory. We assume (2.2) in this setion, whih ensuresthat the following proess is �nite. By [22, Proposition 3.1, Remark 3.7℄there exists a unique àdlàg semimartingale L, alled opportunity proess,suh that

Lt
1
p

(
Xt(π, c)

)p
= ess sup

c̃∈A(π,c,t)
E

[ ∫ T

t
Us(c̃s)µ

◦(ds)
∣∣∣Ft

] (2.3)for any (π, c) ∈ A, where A(π, c, t) :=
{
(π̃, c̃) ∈ A : (π̃, c̃) = (π, c) on [0, t]

}.We note that LT = DT and that u(x0) = L0
1
px

p
0 is the value funtionfrom (2.2). The following is ontained in [22, Lemma 3.5℄.Lemma 2.1. L is a speial semimartingale for all p. If p ∈ (0, 1), then

L,L− > 0. If p < 0, the same holds provided that an optimal strategy exists.Proposition 2.2 ([22, Proposition 3.4℄). Let (π, c) ∈ AfE. Then the proess
Lt

1
p

(
Xt(π, c)

)p
+

∫ t

0
Us(cs)µ(ds), t ∈ [0, T ]is a supermartingale; it is a martingale if and only if (π, c) is optimal.This is the �martingale optimality priniple�. The expeted terminalvalue of this proess equals E[

∫ T
0 Ut(ct)µ

◦(dt)], hene the assertion fails for
(π, c) ∈ A \ AfE. 5



2.3 Semimartingale CharateristisIn the remainder of this setion we introdue tools whih are neessary todesribe the optimization problem loally. The use of semimartingale har-ateristis and set-valued proesses follows [10℄ and [16℄, whih onsider log-arithmi utility and onvex onstraints. That problem di�ers from ours inthat it is �myopi�, i.e., the harateristis of R are su�ient to desribe theloal problem and so there is no opportunity proess.We refer to [13℄ for bakground regarding semimartingale harateristisand random measures. Let µR be the integer-valued random measure assoi-ated with the jumps of R and let h : R
d → R

d be a ut-o� funtion, i.e., h isbounded and h(x) = x in a neighborhood of x = 0. Let (BR, CR, νR) be thepreditable harateristis of R relative to h. The anonial representationof R (f. [13, II.2.35℄) is
R = BR +Rc + h(x) ∗ (µR − νR) + (x− h(x)) ∗ µR. (2.4)The �nite variation proess (x − h(x)) ∗ µR ontains essentially the �large�jumps of R. The rest is the anonial deomposition of the semimartingale

R̄ = R − (x − h(x)) ∗ µR, whih has bounded jumps: BR = BR(h) ispreditable of �nite variation, Rc is a ontinuous loal martingale, and h(x)∗
(µR − νR) is a totally disontinuous loal martingale.As L is a speial semimartingale (Lemma 2.1), it has a anonial de-omposition L = L0 + AL + ML. Here L0 is onstant, AL is preditableof �nite variation and also alled the drift of L, ML is a loal martingale,and AL

0 = ML
0 = 0. Analogous notation will be used for other speial semi-martingales. It is then possible to onsider the harateristis (AL, CL, νL)of L with respet to the identity instead of a ut-o� funtion. Writing x′ forthe identity on R, the anonial representation is

L = L0 +AL + Lc + x′ ∗ (µL − νL);see [13, II.2.38℄. It will be onvenient to use the joint harateristis of the
R

d×R-valued proess (R,L). We denote a generi point in R
d×R by (x, x′)and let (BR,L, CR,L, νR,L) be the harateristis of (R,L) with respet to thefuntion (x, x′) 7→ (h(x), x′). More preisely, we hoose �good� versions ofthe harateristis so that they satisfy the properties given in [13, II.2.9℄. Forthe (d+ 1)-dimensional proess (R,L) we have the anonial representation

(
R
L

)
=

(
0
L0

)
+

(
BR

AL

)
+

(
Rc

Lc

)
+

(
h(x)
x′

)
∗(µR,L−νR,L)+

(
x− h(x)

0

)
∗µR,L.We denote by (bR,L, cR,L, FR,L;A) the di�erential harateristis withrespet to a preditable loally integrable inreasing proess A, e.g.,

At := t+
∑

i

Var(BRL,i)t +
∑

i,j

Var(CRL,ij)t +
(
|(x, x′)|2 ∧ 1

)
∗ νR,L

t .6



Then bR,L • A = BR,L, cR,L • A = CR,L, and FR,L • A = νR,L. We write
bR,L = (bR, aL)⊤ and cR,L =

(
cR cRL

(cRL)⊤ cL

)
, i.e., cRL is a d-vetor satisfying

(cRL) • A = 〈Rc, Lc〉. We will often use that
∫

Rd×R

(|x|2 + |x′|2) ∧ (1 + |x′|) FR,L(d(x, x′)) <∞ (2.5)beause L is a speial semimartingale (f. [13, II.2.29℄). Let Y be any salarsemimartingale with di�erential harateristis (bY , cY , F Y ) relative to Aand a ut-o� funtion h̄. We all
aY := bY +

∫ (
x− h̄(x)

)
F Y (dx)the drift rate of Y whenever the integral is well de�ned with values in

[−∞,∞], even if it is not �nite. Note that aY does not depend on thehoie of h̄. If Y is speial, the drift rate is �nite and even A-integrable (andvie versa). As an example, aL is the drift rate of L and aL • A = AL yieldsthe drift.Remark 2.3. Assume Y is a nonpositive salar semimartingale. Then itsdrift rate aY is well de�ned with values in [−∞,∞). Indeed, Y = Y−+∆Y ≤
0 shows that x ≤ −Y− F Y (dx)-a.e.If Y is a salar semimartingale with drift rate aY ∈ [−∞, 0], we all Y asemimartingale with nonpositive drift rate. Here aY need not be �nite, as inthe ase of a ompound Poisson proess with negative, non-integrable jumps.We refer to Kallsen [14℄ for the onept of σ-loalization. Realling that F0is trivial, we onlude the following, e.g., from [16, Appendix 3℄.Lemma 2.4. Let Y be a semimartingale with nonpositive drift rate.(i) Y is a σ-supermartingale ⇔ aY is �nite ⇔ Y is σ-loally of lass (D).(ii) Y is a loal supermartingale ⇔ aY ∈ L(A) ⇔ Y is loally of lass (D).(iii) If Y is uniformly bounded from below, it is a supermartingale.2.4 Constraints and DegeneraiesWe introdue some set-valued proesses that will be used in the sequel, thatis, for eah (ω, t) they desribe a subset of R

d. We refer to Rokafellar [24℄and Aliprantis and Border [1, �18℄ for bakground.We start by expressing the budget onstraint in this fashion. The proess
C

0
t (ω) :=

{
y ∈ R

d : FR
t (ω)

{
x ∈ R

d : y⊤x < −1
}

= 0
}was alled the natural onstraints in [16℄. Clearly C 0 is losed, onvex,and ontains the origin. Moreover, one an hek (see [16, �3.3℄) that it is7



preditable in the sense that for eah losed G ⊆ R
d, the lower inverse image

(C 0)−1(G) = {(ω, t) : Ct(ω) ∩G 6= ∅} is preditable. (Here one an replaelosed by ompat or by open; see [24, 1A℄.) A statement suh as �C 0 islosed� means that C 0
t (ω) is losed for all (ω, t); moreover, we will oftenomit the arguments (ω, t). We also onsider the slightly smaller set-valuedproess

C
0,∗ :=

{
y ∈ R

d : FR
{
x ∈ R

d : y⊤x ≤ −1
}

= 0
}
.These proesses relate to the budget onstraint as follows.Lemma 2.5. A proess π ∈ L(R) satis�es E(π • R) ≥ 0 (> 0) up to evanes-ene if and only if π ∈ C 0 (C 0,∗) P ⊗A-a.e.Proof. Reall that E(π • R) > 0 if and only if 1 + π⊤∆R > 0 ([13, II.8a℄).Writing V (x) = 1{x: 1+π⊤x≤0}(x), we have that (P ⊗ A){π /∈ C 0,∗} =

E[V (x) ∗ νR
T ] = E[V (x) ∗ µR

T ] = E
[∑

s≤T 1{x: 1+π⊤
s ∆Rs≤0}

]. For the equiva-lene with C 0, interhange strit and non-strit inequality signs.The proess C 0,∗ is not losed in general (nor relatively open). Clearly
C 0,∗ ⊆ C 0, and in fat C 0 is the losure of C 0,∗: for y ∈ C 0

t (ω), the sequene
{(1 + n−1)y}n≥1 is in C

0,∗
t (ω) and onverges to y. This implies that C 0,∗is preditable; f. [1, 18.3℄. We will not be able to work diretly with C 0,∗beause losedness is essential for the measurable seletion arguments thatwill be used.We turn to the exogenous portfolio onstraints, i.e., the set-valued proess

C ontaining the origin. We onsider the following onditions:(C1) C is preditable.(C2) C is losed.(C3) If p ∈ (0, 1): There exists a (0, 1)-valued proess η suh that
y ∈ (C ∩ C 0) \ C 0,∗ =⇒ ηy ∈ C for all η ∈ (η, 1), P ⊗A-a.e.Condition (C3) is learly satis�ed if C ∩ C 0 ⊆ C 0,∗, whih inludes thease of a ontinuous proess R, and it is always satis�ed if C is star-shapedwith respet to the origin or even onvex. If p < 0, (C3) should be read asalways being satis�ed. We motivate (C3) byExample 2.6. We assume that there is no intermediate onsumption and

x0 = 1. Consider the one-period binomial model of a �nanial market, i.e.,
S = E(R) is a salar proess whih is onstant up to time T , where it hasa single jump, say, P [∆RT = −1] = p0 and P [∆RT = K] = 1 − p0, where
K > 0 is a onstant and p0 ∈ (0, 1). The �ltration is generated by R andwe onsider C ≡ {0} ∪ {1}. Then E[U(XT (π))] = U(1) if πT = 0 and
E[U(XT (π))] = p0U(0) + (1− p0)U(1 +K) if πT = 1. If U(0) > −∞, and if
K is large enough, πT = 1 performs better and its terminal wealth vanisheswith probability p0 > 0. Of ourse, this annot happen if U(0) = −∞,8



i.e., p < 0. The onstants an also be hosen suh that both strategies areoptimal, so there is no uniqueness.We have inluded only positive wealth proesses in our de�nition of A;only these math our multipliative setting. Under (C3), the Inada ondition
U ′(0) = ∞ ensures that vanishing wealth is not optimal.The �nal set-valued proess is related to linear dependenies of the assets.As in [16℄, the preditable proess of null-investments is

N :=
{
y ∈ R

d : y⊤bR = 0, y⊤cR = 0, FR{x : y⊤x 6= 0} = 0
}
.Its values are linear subspaes of R

d, hene losed, and provide the pointwisedesription of the null-spae of H 7→ H • R. That is, H ∈ L(R) satis�es
H • R ≡ 0 if and only if H ∈ N P ⊗ A-a.e. An investment with values in
N has no e�et on the wealth proess.3 The Bellman EquationWe have now introdued the neessary notation to formulate our �rst mainresult. Two speial ases of our Bellman equation an be found in the workof Mania and Tevzadze [20℄ and Hu et al. [12℄. These artiles onsider mod-els with ontinuous asset pries and we shall indiate the onnetions as wespeialize to that ase in Setion 3.3. A related equation also arises in thestudy of mean-variane hedging by �erný and Kallsen [5℄ in the ontext ofloally square-integrable semimartingales, although they do not use dynamiprogramming expliitly. Due to the quadrati setting, that equation is moreexpliit than ours and the mathematial treatment is quite di�erent. Czi-howsky and Shweizer [6℄ study a one-onstrained version of the relatedMarkowitz problem and there the equation is no longer expliit.The Bellman equation highlights the loal struture of our utility max-imization problem. In addition, it has two main bene�ts. First, it an beused as an abstrat tool to derive properties of the optimal strategies and theopportunity proess. Seond, one an try to solve the equation diretly in agiven model and to dedue the optimal strategies. This is the point of viewtaken in Setion 5 and obviously requires the preise form of the equation.The following assumptions are in fore for the entire Setion 3.Assumptions 3.1. The utility maximization problem is �nite, there existsan optimal strategy (π̂, ĉ) ∈ A, and C satis�es (C1)-(C3).3.1 Bellman Equation in Joint CharateristisOur �rst main result is the Bellman equation stated as a desription ofthe drift rate of the opportunity proess. Reall the onjugate funtion U∗from (2.1). 9



Theorem 3.2. The drift rate aL of the opportunity proess satis�es
− p−1aL = U∗(L−) dµ

dA + max
y∈C∩C 0

g(y), (3.1)where g is the preditable random funtion
g(y) := L−y

⊤
(
bR + cRL

L−
+ (p−1)

2 cRy
)

+

∫

Rd×R

x′y⊤h(x)FR,L(d(x, x′))

+

∫

Rd×R

(L− + x′)
{
p−1(1 + y⊤x)p − p−1 − y⊤h(x)

}
FR,L(d(x, x′)).(3.2)The unique (P ⊗ µ◦-a.e.) optimal propensity to onsume is

κ̂ =
(D
L

) 1

1−p
. (3.3)Any optimal trading strategy π∗ satis�es

π∗ ∈ arg max
C∩C 0

g (3.4)and the orresponding optimal wealth proess and onsumption are given by
X∗ = x0E

(
π∗ • R− κ̂ • µ

)
; c∗ = X∗κ̂.Note that the maximization in (3.1) an be understood as a loal versionof the optimization problem. Indeed, realling (2.1), the right hand sideof (3.1) is the maximum of a single funtion over ertain points (k, y) ∈ R×R

dthat orrespond to the admissible ontrols (κ, π). Moreover, optimal ontrolsare related to maximizers of this funtion, a harateristi feature of anydynami programming equation. The maximum of g is not expliit due tothe jumps of R; this simpli�es in the ontinuous ase onsidered in Setion 3.3below. Some mathematial omments are also in order.Remark 3.3. (i) The random funtion g is well de�ned on C 0 in theextended sense (see Lemma A.2) and it does not depend on the hoieof the ut-o� funtion h by [13, II.2.25℄.(ii) For p < 0 we have a more preise statement: Given π∗ ∈ L(R) and κ̂as in (3.3), (π∗, κ̂) is optimal if and only if π∗ takes values in C ∩ C 0and maximizes g. This will follow from Corollary 5.4 applied to thetriplet (L, π∗, κ̂).(iii) For p ∈ (0, 1), partial results in this diretion follow from Setion 5.The question is trivial for onvex C by the next item.(iv) If C is onvex, arg maxC∩C 0 g is unique in the sense that the di�ereneof any two elements lies in N (see Lemma A.3).10



We split the proof of Theorem 3.2 into several steps; the plan is as follows.Let (π, κ) ∈ AfE and denote X = X(π, κ). We reall from Proposition 2.2that
Z(π, κ) := L1

pX
p +

∫
Us(κsXs)µ(ds)is a supermartingale, and a martingale if and only if (π, κ) is optimal. Henewe shall alulate its drift rate and then maximize over (π, κ); the maximumwill be attained at any optimal strategy. This is fairly straightforward andessentially the ontent of Lemma 3.7 below. In the Bellman equation, wemaximize over a subset of R

d for eah (ω, t) and not over a set of strategies.This �nal step is a measurable seletion problem and its solution will be theseond part of the proof.Lemma 3.4. Let (π, κ) ∈ Af . The drift rate of Z(π, κ) is
aZ(π,κ) = X(π, κ)p−

(
p−1aL + f(κ) dµ

dA + g(π)
)
∈ [−∞,∞),where ft(k) := Ut(k) −Lt−k and g is given by (3.2). Moreover, aZ(π̂,κ̂) = 0,and aZ(π,κ) ∈ (−∞, 0] for (π, κ) ∈ AfE.Proof. We an assume that the initial apital is x0 = 1. Let (π, κ) ∈ Af ,then in partiular Z := Z(π, κ) is �nite. We also set X := X(π, κ). By It�'sformula, we have Xp = E(π • R− κ • µ)p = E(Y ) with

Y = p(π • R− κ • µ) + p(p−1)
2 π⊤cRπ • A+

{
(1 + π⊤x)p − 1 − pπ⊤x

}
∗ µR.Integrating by parts in the de�nition of Z and using Xs = Xs− µ(ds)-a.e.(path-by-path), we have X−p

−
• Z = p−1(L−L0+L− • Y +[L, Y ])+U(κ) • µ.Here

[L, Y ] = [Lc, Y c] +
∑

∆L∆Y

= pπ⊤cRL
• A+ px′π⊤x ∗ µR,L + x′

{
(1 + π⊤x)p − 1 − pπ⊤x

}
∗ µR,L.Thus X−p

−
• Z equals

p−1(L− L0) + L−π • R+ f(κ) • µ+ L−
(p−1)

2 π⊤cRπ • A+ π⊤cRL
• A

+ x′π⊤x ∗ µR,L + (L− + x′)
{
p−1(1 + π⊤x)p − p−1 − π⊤x

}
∗ µR,L.Writing x = h(x) + x− h(x) and R̄ = R− (x− h(x)) ∗ µR as in (2.4),

X−p
−

• Z = (3.5)
p−1(L− L0) + L−π • R̄+ f(κ) • µ+ L−π

⊤
(

cRL

L−
+ (p−1)

2 cRπ
)

• A

+ x′π⊤h(x) ∗ µR,L + (L− + x′)
{
p−1(1 + π⊤x)p − p−1 − π⊤h(x)

}
∗ µR,L.11



Sine π need not be loally bounded, we use from now on a preditable ut-o� funtion h suh that π⊤h(x) is bounded, e.g., h(x) = x1{|x|≤1}∩{|π⊤x|≤1}.Then the ompensator of x′π⊤h(x) ∗ µR,L exists, sine L is speial.Let (π, κ) ∈ AfE. Then the ompensator of the last integral in theright hand side of (3.5) also exists; indeed, all other terms in that equalityare speial, sine Z is a supermartingale. The drift rate an now be readfrom (3.5) and (2.4), and it is nonpositive by the supermartingale property.The drift rate vanishes for the optimal (π̂, κ̂) by the martingale onditionfrom Proposition 2.2.Now onsider (π, κ) ∈ Af \ AfE. Note that neessarily p < 0 (otherwise
Af = AfE). Thus Z ≤ 0, so by Remark 2.3 the drift rate aZ is wellde�ned with values in [−∞,∞)�alternatively, this an also be read fromthe integrals in (3.5) via (2.5). Using diretly the de�nition of aZ , we �ndthe same formula for aZ is as above.We do not have the supermartingale property for (π, κ) ∈ Af \AfE , so itis not evident that aZ(π,κ) ≤ 0 in that ase. However, we have the followingLemma 3.5. Let (π, κ) ∈ Af . Then aZ(π, κ) ∈ [0,∞] implies aZ(π, κ) = 0.Proof. Denote Z = Z(π, κ). For p > 0 we have Af = AfE and thelaim is immediate from Lemma 3.4. Let p < 0. Then Z ≤ 0 and byLemma 2.4(iii), aZ ∈ [0,∞] implies that Z is a submartingale . Hene
E[ZT ] = E

[ ∫ T
0 Ut(κtXt(π, κ))µ

◦(dt)
]
> −∞, that is, (π, κ) ∈ AfE . NowLemma 3.4 yields aZ(π, κ) ≤ 0.We observe in Lemma 3.4 that the drift rate splits into separate funtionsinvolving κ and π, respetively. For this reason, we an single out theProof of the onsumption formula (3.3). Let (π, κ) ∈ A. Note the follow-ing feature of our parametrization: we have (π, κ∗) ∈ A for any nonnega-tive optional proess κ∗ suh that ∫ T

0 κ∗s µ(ds) < ∞ and κ∗T = 1. Indeed,
X(π, κ) = x0E(π • R− κ • µ) is positive by assumption. As µ is ontinuous,
X(π, κ∗) = x0E(π • R− κ∗ • µ) is also positive.In partiular, let (π̂, κ̂) be optimal, β = (1−p)−1 and κ∗ = (D/L)β ; then
(π̂, κ∗) ∈ A. In fat the paths of U(κ∗X(π̂, κ∗)) = p−1Dβp+1X(π̂, κ∗)pL−βpare bounded P -a.s. (beause the proesses are àdlàg; L,L− > 0 and βp+1 =
β > 0) so that (π̂, κ∗) ∈ Af .Note that P ⊗ µ-a.e., we have κ∗ = (D/L−)β = arg maxk≥0 f(k), hene
f(κ∗) ≥ f(κ̂). Suppose (P ⊗ µ){f(κ∗) > f(κ̂)} > 0, then the formula fromLemma 3.4 and aZ(π̂,κ̂) = 0 imply aZ(π̂,κ∗) ≥ 0 and (P⊗A){aZ(π̂,κ∗) > 0} > 0,a ontradition to Lemma 3.5. It follows that κ̂ = κ∗ P ⊗ µ-a.e. sine f hasa unique maximum.Remark 3.6. The previous proof does not use the assumptions (C1)-(C3).12



Lemma 3.7. Let π be a preditable proess with values in C ∩ C 0,∗. Then
(P ⊗A)

{
g(π̂) < g(π)

}
= 0.Proof. We argue by ontradition and assume (P ⊗ A){g(π̂) < g(π)} > 0.By rede�ning π, we may assume that π = π̂ on the omplement of thispreditable set. Then

g(π̂) ≤ g(π) and (P ⊗A){g(π̂) < g(π)} > 0. (3.6)As π is σ-bounded, we an �nd a onstant C > 0 suh that π̃ := π1|π|≤C +
π̂1|π|>C again satis�es (3.6); that is, we may assume that π is R-integrable.Sine π ∈ C ∩ C 0,∗, this implies (π, κ̂) ∈ A (as observed above, the on-sumption κ̂ plays no role here). The ontradition follows as in the previousproof.In view of Lemma 3.7, the main task will be to onstrut a measurablemaximizing sequene for g.Lemma 3.8. Under Assumptions 3.1, there exists a sequene (πn) of pre-ditable C ∩ C 0,∗-valued proesses suh that

lim sup
n

g(πn) = sup
C∩C 0

g P ⊗A-a.e.We defer the proof of this lemma to Appendix A, together with the studyof the properties of g. The theorem an then be proved as follows.Proof of Theorem 3.2. Let πn be as in Lemma 3.8. Then Lemma 3.7 with
π = πn yields g(π̂) = supC∩C 0 g, whih is (3.4). By Lemma 3.4 we have
0 = aZ(π̂,κ̂) = p−1aL + f(κ̂) dµ

dA + g(π̂). This is (3.1) as f(κ̂) = U∗(L−)
P ⊗ µ-a.e. due to (3.3).3.2 Bellman Equation as BSDEIn this setion we express the Bellman equation as a BSDE. The uniqueorthogonal deomposition of the loal martingale ML with respet to R(f. [13, III.4.24℄) leads to the representation

L = L0 +AL + ϕL
• Rc +WL ∗ (µR − νR) +NL. (3.7)Where, using the notation of [13℄, ϕL ∈ L2

loc(R
c), WL ∈ Gloc(µ

R), and NLis a loal martingale suh that 〈(NL)c, Rc〉 = 0 and MP
µR(∆NL|P̃) = 0. Thelast statement means that E[(V∆NL)∗µR

T ] = 0 for any su�iently integrablepreditable funtion V = V (ω, t, x). We also introdue
ŴL

t :=

∫

Rd

WL(t, x) νR({t} × dx),13



then ∆
(
WL ∗ (µR − νR)

)
= WL(∆R)1{∆R6=0} − ŴL by de�nition of thetotally disontinuous loal martingale WL ∗ (µR − νR) and we an write

∆L = ∆AL +WL(∆R)1{∆R6=0} − ŴL + ∆NL.We reall that Assumptions 3.1 are in fore. Now (3.1) an be restated asfollows, the random funtion g being the same as before but in new notation.Corollary 3.9. The opportunity proess L and the proesses de�ned by (3.7)satisfy the BSDE
L = L0 − pU∗(L−) • µ− p max

y∈C∩C 0

g(y) • A+ϕL
• Rc +WL ∗ (µR − νR)+NL(3.8)with terminal ondition LT = DT , where g is given by

g(y) :=

L−y
⊤
(
bR + cR

( ϕL

L−
+ (p−1)

2 y
))

+

∫

Rd

(
∆AL +WL(x) − ŴL

)
y⊤h(x)FR(dx)

+

∫

Rd

(
L− + ∆AL +WL(x) − ŴL

){
p−1(1 + y⊤x)p − p−1 − y⊤h(x)

}
FR(dx).We observe that the orthogonal part NL plays a minor role here. In asuitable setting, it is linked to the �dual problem�; see Remark 5.18.It is possible (but notationally more umbersome) to prove a version ofLemma 3.4 using g as in Corollary 3.9 and the deomposition (3.7), thusinvolving only the harateristis of R instead of the joint harateristisof (R,L). Using this approah, we see that the inreasing proess A in theBSDE an be hosen based on R and without referene to L. This is desirableif we want to onsider other solutions of the equation, as in Setion 4. Oneonsequene is that A an be hosen to be ontinuous if and only if R isquasi left ontinuous (f. [13, II.2.9℄). Sine p−1AL = −f(κ̂) • µ− g(π̂) • A,

Var(AL) is absolutely ontinuous with respet to A+ µ, and we onlude:Remark 3.10. If R is quasi left ontinuous, AL is ontinuous.If R is quasi left ontinuous, νR({t} × R
d) = 0 for all t by [13, II.1.19℄,hene ŴL = 0 and we have the simpler formula

g(y) = L−y
⊤
(
bR + cR

( ϕL

L−
+ (p−1)

2 y
))

+

∫

Rd

WL(x)y⊤h(x)FR(dx)

+

∫

Rd

(
L− +WL(x)

){
p−1(1 + y⊤x)p − p−1 − y⊤h(x)

}
FR(dx).

14



3.3 The Case of Continuous PriesIn this setion we speialize the previous results to the ase where R is aontinuous semimartingale and mild additional onditions are satis�ed. Asusual in this setting, the martingale part of R will be denoted by M ratherthan Rc. In addition to Assumptions 3.1, the following onditions are infore for the present Setion 3.3.Assumptions 3.11.(i) R is ontinuous,(ii) R = M +
∫
d〈M〉λ for some λ ∈ L2

loc(M) (struture ondition),(iii) the orthogonal projetion of C onto N ⊥ is losed.Note that C 0,∗ = R
d due to (i), in partiular (C3) is void. When R isontinuous, it neessarily satis�es (ii) when a no-arbitrage property holds;see Shweizer [25℄. By (i) and (ii) we an write the di�erential harateristisof R with respet to, e.g., At := t +

∑d
i=1〈M

i〉t. It will be onvenient tofatorize cR = σσ⊤, where σ is a preditable matrix-valued proess; hene
σσ⊤ dA = d〈M〉. Then (ii) implies N = ker σ⊤ beause σσ⊤y = 0 implies
(σ⊤y)⊤(σ⊤y) = 0. Sine σ⊤ : ker(σ⊤)⊥ → σ⊤R

d is a homeomorphism, wesee that (iii) is equivalent to
σ⊤C is losed.This ondition depends on the semimartingale R. It is equivalent to thelosedness of C itself if σ has full rank. For ertain onstraint sets (e.g.,losed polyhedral or ompat) the ondition is satis�ed for all matries σ, butnot so, e.g., for non-polyhedral one onstraints. We mention that violationof (iii) leads to nonexistene of optimal strategies in simple examples (f. [23,Example 3.5℄) and we refer to Czihowsky and Shweizer [7℄ for bakground.Under (i), (3.7) is the more usual Kunita-Watanabe deomposition

L = L0 +AL + ϕL
• M +NL,where ϕL ∈ L2

loc(M) and NL is a loal martingale suh that [M,NL] = 0;see Ansel and Striker [2, as 3℄. If ∅ 6= K ⊆ R
d is a losed set, we denotethe Eulidean distane to K by dK(x) = min{|x − y| : y ∈ K}, and d2

K isthe squared distane. We also de�ne the (set-valued) projetion ΠK whihmaps x ∈ R
d to the points in K with minimal distane to x,

ΠK(x) =
{
y ∈ K : |x− y| = dK(x)

}
6= ∅.If K is onvex, ΠK is the usual (single-valued) Eulidean projetion. In thepresent ontinuous setting, the random funtion g simpli�es onsiderably:

g(y) = L−y
⊤ σσ⊤

(
λ+

ϕL

L−
+ p−1

2 y
) (3.9)and so the Bellman BSDE beomes more expliit.15



Corollary 3.12. Any optimal trading strategy π∗ satis�es
σ⊤π∗ ∈ Πσ⊤C

{
σ⊤(1 − p)−1

(
λ+

ϕL

L−

)}
.The opportunity proess satis�es the BSDE

L = L0 − pU∗(L−) • µ+ F (L−, ϕ
L) • A+ ϕL

• M +NL; LT = DT ,where
F (L−, ϕ

L) =

1

2
L−

{
p(1 − p)d2

σ⊤C

(
σ⊤(1 − p)−1

(
λ+

ϕL

L−

))
+ p

p−1

∣∣∣σ⊤
(
λ+

ϕL

L−

)∣∣∣
2
}
.If C is a onvex one, F (L−, ϕ

L) = p
2(p−1)L−

∣∣Πσ⊤C
{
σ⊤

(
λ + ϕL

L−

)}∣∣2. If
C = R

d, then F (L−, ϕ
L) • A = p

2(p−1)

∫
L−

(
λ + ϕL

L−

)⊤
d〈M〉

(
λ + ϕL

L−

) andthe unique (mod. N ) optimal trading strategy is π∗ = (1 − p)−1
(
λ+ ϕL

L−

).Proof. Let β = (1−p)−1. We obtain σ⊤(arg maxC g) = Πσ⊤C
{
σ⊤β

(
λ+ ϕL

L−

)}by ompleting the square in (3.9), moreover, for any π∗ ∈ arg maxC g,
g(π∗) = 1

2L−

{
β
(
λ+

ϕL

L−

)⊤
σσ⊤

(
λ+

ϕL

L−

)
− β−1d2

σ⊤C

(
σ⊤β

(
λ+

ϕL

L−

))}
.In the ase where C , and hene σ⊤C , is a onvex one, Π := Πσ⊤C is single-valued, positively homogeneous, and Πx is orthogonal to x − Πx for any

x ∈ R
d. Writing Ψ := σ⊤

(
λ+ ϕL

L−

) we get g(π∗) = L−β(ΠΨ)⊤(Ψ− 1
2ΠΨ) =

L−
1
2β

(
ΠΨ)⊤

(
ΠΨ). Finally, ΠΨ = Ψ if C = R

d. The result follows fromCorollary 3.9.Of ourse the onsumption formula (3.3) and Remark 3.3 still apply.The BSDE for the unonstrained ase C = R
d (and µ = 0, D = 1) waspreviously obtained in [20℄ in a similar spirit. A variant of the onstrainedBSDE for an It� proess model (and µ = 0, D = 1) appears in [12℄, wherea onverse approah is taken: the equation is derived only formally andthen existene results for BSDEs are employed together with a veri�ationargument. We shall extend that result in Setion 5 (Example 5.8) when westudy veri�ation.If L is ontinuous, the BSDE of Corollary 3.12 simpli�es if it is statedfor log(L) rather than L, but in general the given form is more onvenientas the jumps are �hidden� in NL. 16



Remark 3.13. (i) Continuity of R does not imply that L is ontinuous. Forinstane, in the It� proess model of Barndor�-Nielsen and Shephard [3℄ withLévy driven oe�ients, the opportunity proess is not ontinuous. See, e.g.,Theorem 3.3 and the subsequent remark in Kallsen and Muhle-Karbe [15℄. If
R satis�es the struture ondition and the �ltration F is ontinuous, it learlyfollows that L is ontinuous. Here F is alled ontinuous if all F-martingalesare ontinuous, as, e.g., for the Brownian �ltration. In general, L is relatedto the preditable harateristis of the asset returns rather than their levels.As an example, Lévy models have jumps but onstant harateristis; here
L turns out to be a smooth funtion (see [23℄).(ii) In the present setting we see that F has quadrati growth in ϕL,so that the Bellman equation is a �quadrati BSDE� (see also Example 5.8).In general, F does not satisfy the bounds whih are usually assumed inthe theory of suh BSDEs. Together with existene results for the utilitymaximization problem (see the itations from the introdution), the Bellmanequation yields various examples of BSDEs with the opportunity proess asa solution. This inludes terminal onditions DT whih are integrable andunbounded (see also [22, Remark 2.4℄).4 Minimality of the Opportunity ProessThis setion onsiders the Bellman equation as suh, having possibly manysolutions, and we haraterize the opportunity proess as the minimal solu-tion. As mentioned above, it seems more natural to use the BSDE formula-tion for this purpose (but see Remark 4.4). We �rst have to larify what wemean by a solution of the BSDE. We onsider R and A as given. Sine the�nite variation part in the BSDE is preditable, a solution will ertainly bea speial semimartingale. If ℓ is any speial semimartingale, there exists aunique orthogonal deomposition [13, III.4.24℄

ℓ = ℓ0 +Aℓ + ϕℓ
• Rc +W ℓ ∗ (µR − νR) +N ℓ, (4.1)using the same notation as in (3.7). These proesses are essentially unique,and so it su�es to onsider the left hand side of the BSDE for the notionof a solution. (In BSDE theory, a solution would be, at least, a quadruple.)We de�ne the random funtion gℓ as in Corollary 3.9, with L replaed by ℓ.Sine ℓ is speial, we have

∫

Rd×R

(|x|2 + |x′|2) ∧ (1 + |x′|) FR,ℓ(d(x, x′)) <∞ (4.2)and the arguments from Lemma A.2 show that gℓ is well de�ned on C 0 withvalues in R ∪ {sign(p)∞}. Hene we an onsider (formally at �rst) theBSDE (3.8) with L replaed by ℓ, i.e.,
ℓ = ℓ0−pU

∗(ℓ−) • µ−p max
y∈C∩C 0

gℓ(y) • A+ϕℓ
• Rc+W ℓ∗(µR−νR)+N ℓ (4.3)17



with terminal ondition ℓT = DT .De�nition 4.1. A àdlàg speial semimartingale ℓ is alled a solution of theBellman equation (4.3) if
• ℓ, ℓ− > 0,
• there exists a C ∩ C 0,∗-valued proess π̌ ∈ L(R) suh that gℓ(π̌) =

supC∩C 0 gℓ <∞,
• ℓ and the proesses from (4.1) satisfy (4.3) with ℓT = DT .Moreover, we de�ne κ̌ := (D/ℓ)β , where β = (1 − p)−1. We all (π̌, κ̌) thestrategy assoiated with ℓ, and for brevity, we also all (ℓ, π̌, κ̌) a solution.If the proess π̌ is not unique, we hoose and �x one. The assumption

ℓ > 0 exludes pathologial ases where ℓ jumps to zero and beomes posi-tive immediately afterwards and thereby ensures that κ̌ is admissible. Morepreisely, the following holds.Remark 4.2. Let (ℓ, π̌, κ̌) be a solution of the Bellman equation.(i) (π̌, κ̌) ∈ AfE.(ii) supC∩C 0 gℓ is a preditable, A-integrable proess.(iii) If p ∈ (0, 1), gℓ is �nite on C ∩ C 0.(iv) The ondition ℓ > 0 is automatially satis�ed if (a) p ∈ (0, 1) or if (b)
p < 0 and there is no intermediate onsumption and Assumptions 3.1are satis�ed.Proof. (i) We have ∫ T

0 κ̌s µ(ds) <∞ P -a.s. sine the paths of ℓ are boundedaway from zero. Moreover, ∫ T
0 Ut(κ̌tXt(π̌, κ̌))µ(dt) < ∞ as in the proofof (3.3) (stated after Lemma 3.5). This shows (π̌, κ̌) ∈ Af . The fat that

(π̌, κ̌) ∈ AfE is ontained in the proof of Lemma 4.9 below.(ii) We have 0 = gℓ(0) ≤ supC∩C 0 gℓ = gℓ(π̌). Hene supC∩C 0 gℓ • A iswell de�ned, and it is �nite beause otherwise (4.3) ould not hold.(iii) Note that p > 0 implies gℓ > −∞ by its de�nition and (4.2), while
gℓ <∞ by assumption.(iv) If p > 0, (4.3) states that Aℓ is dereasing. As ℓ− > 0 implies ℓ ≥ 0,
ℓ is a supermartingale by Lemma 2.4. Sine ℓT = DT > 0, the minimumpriniple for nonnegative supermartingales shows ℓ > 0. Under (b) theassertion is a onsequene of Theorem 4.5 below (whih shows ℓ ≥ L > 0)upon noting that the ondition ℓ > 0 is not used in its proof when there isno intermediate onsumption.It may seem debatable to make existene of the maximizer π̌ part of thede�nition of a solution. However, assoiating a ontrol with the solution isruial for the following theory. Some justi�ation is given by the followingresult for the ontinuous ase (where C 0,∗ = R

d).18



Proposition 4.3. Let ℓ be any àdlàg speial semimartingale suh that
ℓ, ℓ− > 0. Under Assumptions 3.11, (C1) and (C2), there exists a C ∩C 0,∗-valued preditable proess π̌ suh that gℓ(π̌) = supC∩C 0 gℓ <∞ and any suhproess is R-integrable.Proof. As gℓ is analogous to (3.9), it is ontinuous and its supremum over
R

d is �nite. By ontinuity of R and the struture ondition, π ∈ L(R) if andonly if ∫ T
0 π⊤ d〈M〉π =

∫ T
0 |σ⊤π|2 dA <∞ P -a.s.Assume �rst that C is ompat, then Lemma A.4 yields a measurableseletor π for arg maxC g. As in the proof of Corollary 3.12, σ⊤π ∈ Πσ⊤C σ⊤ψfor ψ := β

(
λ+ ϕℓ

ℓ−

), whih satis�es ∫ T
0 |σ⊤ψ|2 dA <∞ by de�nition of λ and

ϕL. We note that |σ⊤π| ≤ |σ⊤ψ| + |σ⊤π − σ⊤ψ| ≤ 2|σ⊤ψ| due to thede�nition of the projetion and 0 ∈ C .In the general ase we approximate C by a sequene of ompat on-straints C n := C ∩ {x ∈ R
d : |x| ≤ n}, eah of whih yields a seletor πnfor arg maxC n g. By the above, |σ⊤πn| ≤ 2|σ⊤ψ|, so the sequene (σ⊤πn)nis bounded for �xed (ω, t). A random index argument as in the proof ofLemma A.4 yields a seletor ϑ for a luster point of this sequene. We have

ϑ ∈ σ⊤C by losedness of this set and we �nd a seletor π̌ for the preim-age ((σ⊤)−1ϑ) ∩ C using [24, 1Q℄. We have π̌ ∈ arg maxC g as the sets C ninrease to C and ∫ T
0 |σ⊤π̌|2 dA ≤ 2

∫ T
0 |σ⊤ψ|2 dA <∞ shows π̌ ∈ L(R).Another example for the onstrution of π̌ is given in [23, �5℄. In general,two ingredients are needed: Existene of a maximizer for �xed (ω, t) willtypially require a ompatness ondition in the form of a no-arbitrage as-sumption (in the previous proof, this is the struture ondition). Moreover,a measurable seletion is required; here the tehniques from the appendiesmay be useful.Remark 4.4. The BSDE formulation of the Bellman equation has the ad-vantage that we an hoose A based on R and speak about the lass ofall solutions. However, we do not want to write proofs in this umber-some notation. One we �x a solution ℓ (and maybe L, and �nitely manyother semimartingales), we an hoose a new referene proess Ã = A + A′(where A′ is inreasing), with respet to whih our semimartingales admitdi�erential harateristis; in partiular we an use the joint harateristis

(bR,ℓ, cR,ℓ, FR,ℓ; Ã). As we hange A, all drift rates hange in that theyare multiplied by dÃ/dA, so any (in)equalities between them are preserved.With this in mind, we shall use the joint harateristis of (R, ℓ) in the se-quel without further omment and treat the two formulations of the Bellmanequation as equivalent.Our de�nition of a solution of the Bellman equation is loose in terms ofintegrability assumptions. Even in the ontinuous ase, it is unlear �how19



many� solutions exist. The next result shows that we an always identify Lby taking the smallest one, i.e., L ≤ ℓ for any solution ℓ.Theorem 4.5. Under Assumptions 3.1, the opportunity proess L is har-aterized as the minimal solution of the Bellman equation.Remark 4.6. As a onsequene, the Bellman equation has a bounded solu-tion if and only if the opportunity proess is bounded (and similarly for otherintegrability properties). In onjuntion with [22, �4.2℄ this yields examplesof quadrati BSDEs whih have bounded terminal value (for DT bounded),but no bounded solution.The proof of Theorem 4.5 is based on the following result; it is the fun-damental property of any Bellman equation.Proposition 4.7. Let (ℓ, π̌, κ̌) be a solution of the Bellman equation. Forany (π, κ) ∈ Af ,
Z(π, κ) := ℓ1

p

(
X(π, κ)

)p
+

∫
Us

(
κsXs(π, κ)

)
µ(ds) (4.4)is a semimartingale with nonpositive drift rate. Moreover, Z(π̌, κ̌) is a loalmartingale.Proof. Let (π, κ) ∈ Af . Note that Z := Z(π, κ) satis�es sign(p)Z ≥ 0,hene has a well de�ned drift rate aZ by Remark 2.3. The drift rate an bealulated as in Lemma 3.4: If f ℓ is de�ned similarly to the funtion f inthat lemma but with L replaed by ℓ, then

aZ = X(π, κ)p−
{
p−1aℓ + f ℓ(κ) dµ

dA + gℓ(π)
}

= X(π, κ)p−
{(
f ℓ(κ) − f ℓ(κ̌)

) dµ
dA + gℓ(π) − gℓ(π̌)

}
.This is nonpositive beause κ̌ and π̌ maximize f ℓ and gℓ. For (π, κ) :=

(π̌, κ̌) we have aZ = 0 and Z is a σ-martingale, thus a loal martingale as
sign(p)Z ≥ 0.Remark 4.8. In Proposition 4.7, �semimartingale with nonpositive driftrate� an be replaed by �σ-supermartingale� if gℓ is �nite on C ∩ C 0.Theorem 4.5 follows from the next lemma (whih is atually stronger).We reall that for p < 0 the opportunity proess L an be de�ned withoutfurther assumptions.Lemma 4.9. Let ℓ be a solution of the Bellman equation. If p < 0, then
L ≤ ℓ. For p ∈ (0, 1), the same holds if (2.2) is satis�ed and there exists anoptimal strategy. 20



Proof. Let (ℓ, π̌, κ̌) be a solution and de�ne Z(π, κ) as in (4.4).Case p < 0: We hoose (π, κ) := (π̌, κ̌). As Z(π̌, κ̌) is a negative lo-al martingale by Proposition 4.7, it is a submartingale. In partiular,
E[ZT (π̌, κ̌)] > −∞, and using LT = DT , this is the statement that theexpeted utility is �nite, i.e., (π̌, κ̌) ∈ AfE�this ompletes the proof of Re-mark 4.2(i). Reall that µ◦ = µ + δ{T}. With X̌ := X(π̌, κ̌) and č := κ̌X̌ ,and using ℓT = DT = LT , we dedue
ℓt

1
pX̌

p
t +

∫ t

0
Us(čs)µ(ds) = Zt(π̌, κ̌) ≤ E

[
ZT (π̌, κ̌)

∣∣Ft

]

≤ ess supc̃∈A(π̌,č,t)E
[ ∫ T

t
Us(c̃s)µ

◦(ds)
∣∣∣Ft

]
+

∫ t

0
Us(čs)µ(ds)

= Lt
1
pX̌

p
t +

∫ t

0
Us(čs)µ(ds),where the last equality holds by (2.3). As 1

pX̌
p
t < 0, we have ℓt ≥ Lt.Case p ∈ (0, 1): We hoose (π, κ) := (π̂, κ̂) to be an optimal strategy.Then Z(π̂, κ̂) ≥ 0 is a supermartingale by Proposition 4.7 and Lemma 2.4(iii),and we obtain

ℓt
1
pX̂

p
t +

∫ t

0
Us(ĉs)µ(ds) = Zt(π̂, κ̂) ≥ E

[
ZT (π̂, κ̂)

∣∣Ft

]

= E
[ ∫ T

0
Us(ĉs)µ

◦(ds)
∣∣∣Ft

]
= Lt

1
pX̂

p
t +

∫ t

0
Us(ĉs)µ(ds)by the optimality of (π̂, κ̂) and (2.3). More preisely, we have used the fatthat (π̂, κ̂) is also onditionally optimal (see [22, Remark 3.3℄). As 1

pX̂
p
t > 0,we onlude ℓt ≥ Lt.5 Veri�ationSuppose that we have found a solution of the Bellman equation; then we wantto know whether it is the opportunity proess and whether the assoiatedstrategy is optimal. In appliations, it might not be lear a priori thatan optimal strategy exists or even that the utility maximization problemis �nite. Therefore, we stress that in this setion these properties are notassumed. Also, we do not need the assumptions on C made in Setion 2.4�they are not neessary beause we start with a given solution.Generally speaking, veri�ation involves the andidate for an optimalontrol, (π̌, κ̌) in our ase, and all the ompeting ones. It is often verydi�ult to hek a ondition involving all these ontrols, so it is desirable tohave a veri�ation theorem whose assumptions involve only (π̌, κ̌).We present two veri�ation approahes. The �rst one is via the value pro-ess and is lassial for general dynami programming: it uses little struture21



of the given problem. For p ∈ (0, 1), it yields the desirable result. However,in a general setting, this is not the ase for p < 0. The seond approahuses the onavity of the utility funtion. To fully exploit this and make theveri�ation onditions neessary, we will assume that C is onvex. In thisase, we shall obtain the desired veri�ation theorem for all values of p.5.1 Veri�ation via the Value ProessThe basis of this approah is the following simple result; we state it separatelyfor better omparison with Lemma 5.10 below. In the entire setion, Z(π, κ)is de�ned by (4.4) whenever ℓ is given.Lemma 5.1. Let ℓ be any positive àdlàg semimartingale with ℓT = DT andlet (π̌, κ̌) ∈ A. Assume that for all (π, κ) ∈ AfE, the proess Z(π, κ) is asupermartingale. Then Z(π̌, κ̌) is a martingale if and only if (2.2) holds and
(π̌, κ̌) is optimal and ℓ = L.Proof. �⇒�: Reall that Z0(π, κ) = ℓ0

1
px

p
0 does not depend on (π, κ) andthat E[ZT (π, κ)] = E[

∫ T
0 Ut(κt(Xt(π, κ)))µ

◦(dt)] is the expeted utility or-responding to (π, κ). With X̌ := X(π̌, κ̌), the (super)martingale ondi-tion implies that E[
∫ T
0 Ut(κ̌tX̌t)µ

◦(dt)] ≥ E[
∫ T
0 Ut(κtXt(π, κ))µ

◦(dt)] forall (π, κ) ∈ AfE. Sine for (π, κ) ∈ A\AfE the expeted utility is −∞, thisshows that (π̌, κ̌) is optimal with E[ZT (π̌, κ̌)] = Z0(π̌, κ̌) = ℓ0
1
px

p
0 < ∞. Inpartiular, the opportunity proess L is well de�ned. By Proposition 2.2,

L1
pX̌

p +
∫
Us(čs)µ(ds) is a martingale, and as its terminal value equals

ZT (π̌, κ̌), we dedue ℓ = L by omparison with (4.4), using X̌ > 0. Theonverse is ontained in Proposition 2.2.We an now state our �rst veri�ation theorem.Theorem 5.2. Let (ℓ, π̌, κ̌) be a solution of the Bellman equation.(i) If p ∈ (0, 1), the following are equivalent:(a) Z(π̌, κ̌) is of lass (D),(b) Z(π̌, κ̌) is a martingale,() (2.2) holds and (π̌, κ̌) is optimal and ℓ = L.(ii) If p < 0, the following are equivalent:(a) Z(π, κ) is of lass (D) for all (π, κ) ∈ AfE,(b) Z(π, κ) is a supermartingale for all (π, κ) ∈ AfE,() (π̌, κ̌) is optimal and ℓ = L.Proof. When p > 0 and (π, κ) ∈ Af , Z(π, κ) is positive and aZ(π,κ) ≤ 0 byProposition 4.7, hene Z(π, κ) is a supermartingale aording to Lemma 2.4.By Proposition 4.7, Z(π̌, κ̌) is a loal martingale, so it is a martingale if andonly if it is of lass (D). Lemma 5.1 implies the result.22



If p < 0, Z(π, κ) is negative. Thus the loal martingale Z(π̌, κ̌) is asubmartingale, and a martingale if and only if it is also a supermartingale.Note that a lass (D) semimartingale with nonpositive drift rate is a super-martingale. Conversely, any negative supermartingale Z is of lass (D) dueto the bounds 0 ≥ Z ≥ E[ZT |F]. Again, Lemma 5.1 implies the result.Theorem 5.2 is �as good as it gets� for p > 0, but as announed, the resultfor p < 0 is not satisfatory. In partiular settings, this an be improved.Remark 5.3 (p < 0). (i) Assume we know a priori that if there is anoptimal strategy (π̂, κ̂) ∈ A, then
(π̂, κ̂) ∈ A(D) :=

{
(π, κ) ∈ A : X(π, κ)p is of lass (D)}.In this ase we an redue our optimization problem to the lass A(D). Iffurthermore ℓ is bounded (whih is not a strong assumption when p < 0), thelass (D) ondition in Theorem 5.2(ii) is automatially satis�ed for (π, κ) ∈

A(D). The veri�ation then redues to heking that (π̌, κ̌) ∈ A(D).(ii) How an we establish the ondition needed for (i)? One possibilityis to show that L is uniformly bounded away from zero; then the onditionfollows (see the argument in the next proof). Of ourse, L is not knownwhen we try to apply this. However, [22, �4.2℄ gives veri�able onditionsfor L to be (bounded and) bounded away from zero. They are stated forthe unonstrained ase C = R
d, but an be used nevertheless: if LR

d is theopportunity proess orresponding to C = R
d, the atual L satis�es L ≥ LR

dbeause the supremum in (2.3) is taken over a smaller set in the onstrainedase.In the situation where ℓ and L−1 are bounded, we an also use the fol-lowing result. Note also its use in Remark 3.3(ii) and reall that 1/0 := ∞.Corollary 5.4. Let p < 0 and let (ℓ, π̌, κ̌) be a solution of the Bellmanequation. Let L be the opportunity proess and assume that ℓ/L is uniformlybounded. Then (π̌, κ̌) is optimal and ℓ = L.Proof. Fix arbitrary (π, κ) ∈ AfE and let X = X(π, κ). The proess
L1

p

(
X(π, κ)

)p
+

∫
Us(κsXs)µ(ds) is a negative supermartingale by Propo-sition 2.2, hene of lass (D). Sine ∫

Us(κsXs)µ(ds) is dereasing and itsterminal value is integrable (de�nition of AfE), L1
pX

p is also of lass (D).The assumption yields that ℓ1
pX

p is of lass (D), and then so is Z(π, κ).As bounded solutions are of speial interest in BSDE theory, let us notethe following onsequene.Corollary 5.5. Let p < 0. Under Assumptions 3.1 the following are equiv-alent: 23



(i) L is bounded and bounded away from zero,(ii) there exists a unique bounded solution of the Bellman equation, andthis solution is bounded away from zero.One an note that in the setting of [22, �4.2℄, these onditions are furtherequivalent to a reverse Hölder inequality for the market model.We give an illustration of Theorem 5.2 also for the ase p ∈ (0, 1). Thusfar, we have onsidered only the given exponent p and assumed (2.2). Inmany situations, there will exist some p0 ∈ (p, 1) suh that, if we onsiderthe exponent p0 instead of p, the utility maximization problem is still �nite.Note that by Jensen's inequality this is a stronger assumption. We de�nefor q0 ≥ 1 the lass of semimartingales ℓ bounded in Lq0(P ),
B(q0) := {ℓ : supτ‖ℓτ‖Lq0 (P ) <∞},where the supremum ranges over all stopping times τ .Corollary 5.6. Let p ∈ (0, 1) and let there be a onstant k1 > 0 suh that

D ≥ k1. Assume that the utility maximization problem is �nite for some
p0 ∈ (p, 1) and let q0 ≥ 1 be suh that q0 > p0/(p0 − p). If (ℓ, π̌, κ̌) is asolution of the Bellman equation with ℓ ∈ B(q0), then ℓ = L and (π̌, κ̌) isoptimal.Proof. Let ℓ ∈ B(q0) be a solution, (π̌, κ̌) the assoiated strategy, and X̌ =
X(π̌, κ̌). By Theorem 5.2 and an argument as in the previous proof, it su�esto show that ℓX̌p is of lass (D). Let δ > 1 be suh that δ/q0 + δp/p0 = 1.For every stopping time τ , Hölder's inequality yields

E[(ℓτ X̌
p
τ )δ ] = E[(ℓq0

τ )δ/q0(X̌p0

τ )δp/p0 ] ≤ E[ℓq0

τ ]δ/q0E[X̌p0

τ ]δp/p0 .We show that this is bounded uniformly in τ ; then {ℓτ X̌
p
τ : τ stopping time}is bounded in Lδ(P ) and hene uniformly integrable. Indeed, E[ℓq0

τ ] isbounded by assumption. The set of wealth proesses orresponding to admis-sible strategies is stable under stopping. Therefore E[DT
1
p0
X̌p0

τ ] ≤ u(p0)(x0),the value funtion for the utility maximization problem with exponent p0.The result follows as DT ≥ k1.Remark 5.7. In [22, Example 4.6℄ we give a ondition whih implies that theutility maximization problem is �nite for all p0 ∈ (0, 1). Conversely, givensuh a p0 ∈ (p, 1), one an hek with Jensen's inequality that L ∈ B(p0/p)if D is uniformly bounded from above.Example 5.8. We apply our results in an It� model with bounded meanvariane tradeo� proess together with an existene result for BSDEs. Thefollowing generalizes [12, �3℄. Let W be an m-dimensional standard Brown-ian motion (m ≥ d) and assume that F is generated by W . We onsider
dRt = bt dt+ σt dWt,24



where b is preditable R
d-valued and σ is preditable R

d×m-valued witheverywhere full rank; moreover, we onsider onstraints C satisfying (C1)and (C2). We are in the situation of Assumptions 3.3 with dM = σ dW and
λ = (σσ⊤)−1b. The proess θ := σ⊤λ is alled market prie of risk. Weassume that there are onstants ki > 0 suh that

0 < k1 ≤ D ≤ k2 and ∫ T

0
|θs|

2 ds ≤ k3.The latter ondition is alled bounded mean-variane tradeo�. Note that
dQ/dP = E(−λ • M)T = E(−θ • W )T de�nes a loal martingale measurefor E(R). By [22, �4.2℄ the utility maximization problem is �nite for all pand the opportunity proess L is bounded and bounded away from zero. Itis ontinuous due to Remark 3.13(i).As suggested above, we write the Bellman BSDE for Y := log(L) ratherthan L in this setting. If Y = AY + ϕY • M +NY is the Kunita-Watanabedeomposition, we write Z := σ⊤ϕY and hoose Z⊥ suh that Z⊥ • W = NYby Brownian representation. The orthogonality of the deomposition implies
σ⊤Z⊥ = 0 and that Z⊤Z⊥ = 0. We write δ = 1 if there is intermediateonsumption and δ = 0 otherwise. Then It�'s formula and Corollary 3.12(with At := t) yield the BSDE

dY = f(Y,Z,Z⊥) dt + (Z + Z⊥) dW ; YT = log(DT ) (5.1)with
f(Y,Z,Z⊥) = 1

2p(1 − p) d2
σ⊤C

(
β(θ + Z)

)
+ q

2 |θ + Z|2

+ δ(p − 1)Dβ exp
(
(q − 1)Y

)
− 1

2(|Z|2 + |Z⊥|2).Here β = (1−p)−1 and q = p/(p−1); the dependene on (ω, t) is suppressedin the notation. Using the orthogonality relations and p(1− p)β2 = −q, onean hek that f(Y,Z,Z⊥) = f(Y,Z+Z⊥, 0) =: f(Y, Z̃), where Z̃ := Z+Z⊥.As 0 ∈ C , we have d2
σ⊤C

(x) ≤ |x|2. Hene there exist a onstant C > 0 andan inreasing ontinuous funtion φ suh that
|f(y, z̃)| ≤ C

(
|θ|2 + φ(y) + |z̃|2

)
.The following monotoniity property handles the exponential nonlinearityaused by the onsumption: As p− 1 < 0 and q − 1 < 0,

−y
[
f(y, z̃) − f(0, z̃)

]
≤ 0.Thus we have Briand and Hu's [4, Condition (A.1)℄ after noting that theyall −f what we all f , and [4, Lemma 2℄ states the existene of a boundedsolution Y to the BSDE (5.1). Let us hek that ℓ := exp(Y ) is the op-portunity proess. We de�ne an assoiated strategy (π̌, κ̌) by κ̌ := (D/ℓ)β25



and Proposition 4.3; then we have a solution (ℓ, π̌, κ̌) of the Bellman equa-tion in the sense of De�nition 4.1. For p < 0 (p ∈ (0, 1)), Corollary 5.4(Corollary 5.6) yields ℓ = L and the optimality of (π̌, κ̌). In fat, the sameveri�ation argument applies if we replae π̌ by any other preditable C -valued π∗ suh that σ⊤π∗ ∈ Πσ⊤C {β(θ + Z)}; reall from Proposition 4.3that π∗ ∈ L(R) automatially.Summing up, L = exp(Y ) is the opportunity proess and the set ofoptimal strategies equals the set of all (π∗, κ̂) suh that κ̂ = (D/L)β µ◦-a.e.and π∗ is preditable, C -valued and σ⊤π∗ ∈ Πσ⊤C {β(θ + Z)} P ⊗ dt-a.e.One an remark that the previous arguments show Y ′ = log(L) whenever
Y ′ is a solution of the BSDE (5.1) whih is uniformly bounded from above.Hene we have proved uniqueness for (5.1) in this lass of solutions, whihis not immediate from BSDE theory.We lose this setion with a formula intended for future appliations.Remark 5.9. Let (ℓ, π̌, κ̌) be a solution of the Bellman equation. Sometimesexponential formulas an be used to verify that Z(π̌, κ̌) is of lass (D).Let h be a preditable ut-o� funtion suh that π̌⊤h(x) is bounded, e.g.,
h(x) = x1{|x|≤1}∩{|π̌⊤x|≤1}, and de�ne Ψ to be the loal martingale
ℓ−1
−

• M ℓ + pπ̌ • Rc + pπ̌⊤h(x) ∗ (µR − νR) + p(x′/ℓ−)π̌⊤h(x) ∗ (µR,ℓ − νR,ℓ)

+ (1 + x′/ℓ−)
{
(1 + π̌⊤x)p − 1 − pπ̌⊤h(x)

}
∗ (µR,ℓ − νR,ℓ).Then E(Ψ) > 0, and if E(Ψ) is of lass (D), then Z(π̌, κ̌) is also of lass (D).Proof. Let Z = Z(π̌, κ̌). By a alulation as in the proof of Lemma 3.4 andthe loal martingale ondition from Proposition 4.7, (1

pX̌
p
−)−1 • Z = ℓ− • Ψ.Hene Z = Z0E(Ψ) in the ase without intermediate onsumption. Forthe general ase, we have seen in the proof of Corollary 5.4 that Z is oflass (D) whenever ℓ1

pX̌
p is. Writing the de�nition of κ̌ as κ̌p−1 = ℓ−/D

µ-a.e., we have ℓ1
pX̌

p = Z −
∫
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1
pX̌

p dµ = (ℓ−
1
pX̌

p
−) • (Ψ − κ̌ • µ), hene

ℓ1
pX̌

p = Z0E(Ψ − κ̌ • µ) = Z0E(Ψ) exp(−κ̌ • µ). It remains to note that
exp(−κ̌ • µ) ≤ 1.5.2 Veri�ation via De�atorThe goal of this setion is a veri�ation theorem whih involves only the an-didate for the optimal strategy and holds for general semimartingale models.Our plan is as follows. Let (ℓ, π̌, κ̌) be a solution of the Bellman equationand assume for the moment that C is onvex. As the onave funtion gℓhas a maximum at π̌, the diretional derivatives at π̌ in all diretions shouldbe nonpositive (if they an be de�ned). A alulation will show that, at thelevel of proesses, this yields a supermartingale property whih is well knownfrom duality theory and allows for veri�ation. In the ase of non-onvex26



onstraints, the diretional derivatives need not be de�ned in any sense. Nev-ertheless, the formally orresponding quantities yield the expeted result. Tomake the �rst order onditions neessary, we later speialize to onvex C . Asin the previous setion, we �rst state a basi result; it is essentially lassial.Lemma 5.10. Let ℓ be any positive àdlàg semimartingale with ℓT = DT .Suppose there exists (π̌, κ̌) ∈ A with κ̌ = (D/ℓ)β and let X̌ := X(π̌, κ̌).Assume Y := ℓX̌p−1 has the property that for all (π, κ) ∈ A,
Γ(π, κ) := X(π, κ)Y +

∫
κsXs(π, κ)Ys µ(ds)is a supermartingale. Then Γ(π̌, κ̌) is a martingale if and only if (2.2) holdsand (π̌, κ̌) is optimal and ℓ = L.Proof. �⇒�: Let (π, κ) ∈ A and denote c = κX(π, κ) and č = κ̌X̌ . Notethe partial derivative ∂U(č) = Dκ̌p−1X̌p−1 = ℓX̌p−1 = Y . Conavity of Uimplies U(c) − U(č) ≤ ∂U(č)(c− č) = Y (c− č), hene
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= E[ΓT (π, κ)] − E[ΓT (π̌, κ̌)].Let Γ(π̌, κ̌) be a martingale; then Γ0(π, κ) = Γ0(π̌, κ̌) and the supermartin-gale property imply that the last line is nonpositive. As (π, κ) was arbitrary,
(π̌, κ̌) is optimal with expeted utility E[ ∫ T
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px
p
0ℓ0 <∞. The rest is as in the proof of Lemma 5.1.The proess Y is a supermartingale de�ator in the language of [16℄. Werefer to [22℄ for the onnetion of the opportunity proess with onvex du-ality, whih in fat suggests Lemma 5.10. Note that unlike Z(π, κ) from theprevious setion, Γ(π, κ) is positive for all values of p.Our next goal is to link the supermartingale property to loal �rst orderonditions. Let y, y̌ ∈ C ∩C 0 (we will plug in π̌ for y̌). The formal diretionalderivative of gℓ at y̌ in the diretion of y is (y− y̌)⊤∇gℓ(y̌) = Gℓ(y, y̌), where,by formal di�erentiation under the integral sign,

Gℓ(y, y̌) := (5.2)
ℓ−(y − y̌)⊤

(
bR + cRℓ

ℓ−
+ (p− 1)cRy̌

)
+

∫

Rd×R

(y − y̌)⊤x′h(x)FR,ℓ(d(x, x′))

+

∫

Rd×R

(ℓ− + x′)
{
(1 + y̌⊤x)p−1(y − y̌)⊤x− (y − y̌)⊤h(x)

}
FR,ℓ(d(x, x′)).We take this expression as the de�nition ofGℓ(y, y̌) whenever the last integralis well de�ned (the �rst one is �nite by (4.2)). The di�erentiation annot bejusti�ed in general, but see the subsequent setion.27



Lemma 5.11. Let y ∈ C 0 and y̌ ∈ C 0,∗∩{gℓ > −∞}. Then Gℓ(y, y̌) is wellde�ned with values in (−∞,∞] and G(·, y̌) is lower semiontinuous on C 0.Proof. Writing (y− y̌)⊤x = 1 + y⊤x− (1 + y̌⊤x), we an express Gℓ(y, y̌) as
ℓ−(y − y̌)⊤

(
bR + cRℓ

ℓ−
+ (p− 1)cRy̌

)
+

∫

Rd×R

(y − y̌)⊤x′h(x)FR,ℓ(d(x, x′))

+

∫

Rd×R

(ℓ− + x′)
{ 1 + y⊤x

(1 + y̌⊤x)1−p
− 1 − (y + (p− 1)y̌)⊤h(x)

}
FR,ℓ(d(x, x′))

−

∫

Rd×R

(ℓ− + x′)
{
(1 + y̌⊤x)p − 1 − py̌⊤h(x)

}
FR,ℓ(d(x, x′)).The �rst integral is �nite and ontinuous in y by (4.2). The last inte-gral above ours in the de�nition of gℓ(y̌); it is �nite if gℓ(y̌) > −∞and equals +∞ otherwise. Finally, onsider the seond integral above andall its integrand ψ = ψ(y, y̌, x, x′). The Taylor expansion 1+y⊤x

(1+y̌⊤x)1−p =

1 + (y + (p − 1)y̌)⊤x + (p−1)
2

(
2y + (p − 2)y̌

)⊤
x x⊤y̌ + o(|x|3) shows that∫

{|x|+|x′|≤1} ψ dF
R,ℓ is well de�ned and �nite. It also shows that given aompat K ⊂ R
d, there is ε > 0 suh that ∫

{|x|+|x′|≤ε}ψ dF
R,ℓ is ontinuousin y ∈ K (and also in y̌ ∈ K). The details are as in Lemma A.2. Moreover,for y ∈ C 0 we have the lower bound ψ ≥ (ℓ−+x′){−1−(y+(p−1)y̌)⊤h(x)},whih is FR,ℓ-integrable on {|x| + |x′| > ε} for any ε > 0, again by (4.2).The result now follows by Fatou's lemma.We an now onnet the loal �rst order onditions for gℓ and the globalsupermartingale property: it turns out that the formal derivative Gℓ deter-mines the sign of the drift rate of Γ (f. (5.3) below), whih leads to thefollowing proposition. Here and in the sequel, we denote X̌ = X(π̌, κ̌).Proposition 5.12. Let (ℓ, π̌, κ̌) be a solution of the Bellman equation and

(π, κ) ∈ A. Then Γ(π, κ) := ℓX̌p−1X(π, κ) +
∫
κsℓsX̌

p−1
s Xs(π, κ)µ(ds) is asupermartingale (loal martingale) if and only if Gℓ(π, π̌) ≤ 0 (= 0).Proof. De�ne R̄ = R − (x − h(x)) ∗ µR as in (2.4). We abbreviate π̄ :=

(p − 1)π̌ + π and similarly κ̄ := (p − 1)κ̌ + κ. We defer to Lemma C.1 aalulation showing that (
X̌p−1

− X−(π, κ)
)−1

•

(
ℓX̌p−1X(π, κ)

) equals
ℓ− ℓ0 + ℓ−π̄ • R̄− ℓ−κ̄ • µ+ ℓ−(p− 1)

( p−2
2 π̌ + π

)⊤
cRπ̌ • A+ π̄⊤cRℓ

• A

+ π̄⊤x′h(x) ∗ µR,ℓ+ (ℓ− + x′)
{
(1 + π̌⊤x)p−1(1 + π⊤x) − 1 − π̄⊤h(x)

}
∗ µR,ℓ.Here we use a preditable ut-o� funtion h suh that π̄⊤h(x) is bounded,e.g., h(x) = x1{|x|≤1}∩{|π̄⊤x|≤1}. Sine (ℓ, π̌, κ̌) is a solution, the drift of ℓ is

Aℓ = −pU∗(ℓ−) • µ− pgℓ(π̌) • A = (p− 1)ℓ−κ̌ • µ− pgℓ(π̌) • A.28



By Remark 2.3, Γ := Γ(π, κ) has a well de�ned drift rate aΓ with values in
(−∞,∞]. From the two formulas above and (2.4) we dedue

aΓ = X̌p−1
− X(π, κ)−G

ℓ(π, π̌). (5.3)Here X̌p−1
− X(π, κ)− > 0 by admissibility. If Γ is a supermartingale, then

aΓ ≤ 0, and the onverse holds by Lemma 2.4 in view of Γ ≥ 0.We obtain our seond veri�ation theorem from Proposition 5.12 andLemma 5.10.Theorem 5.13. Let (ℓ, π̌, κ̌) be a solution of the Bellman equation. Assumethat P ⊗A-a.e., Gℓ(y, π̌) ∈ [−∞, 0] for all y ∈ C ∩ C 0,∗. Then
Γ(π̌, κ̌) := ℓX̌p +

∫
κ̌sℓsX̌

p
s µ(ds)is a loal martingale. It is a martingale if and only if (2.2) holds and (π̌, κ̌)is optimal and ℓ = L is the opportunity proess.If C is not onvex, one an think of situations where the diretionalderivative of gℓ at the maximum is positive�i.e., the assumption on Gℓ(y, π̌)is su�ient but not neessary. This hanges in the subsequent setion.5.2.1 The Convex-Constrained CaseWe assume in this setion that C is onvex; then C ∩C 0 is also onvex. Ouraim is to show that the nonnegativity ondition on Gℓ in Theorem 5.13 isautomatially satis�ed in this ase. We start with an elementary but ruialobservation about �di�erentiation under the integral sign�.Lemma 5.14. Consider two distint points y0 and y̌ in R

d and let C =
{ηy0 + (1 − η)y̌ : 0 ≤ η ≤ 1}. Let ρ be a funtion on Σ × C, where Σ issome Borel spae with measure ν, suh that x 7→ ρ(x, y) is ν-measurable,∫
ρ+(x, ·) ν(dx) < ∞ on C, and y 7→ ρ(x, y) is onave. In partiular, thediretional derivative

Dy̌,yρ(x, ·) := lim
ε→0+

ρ
(
x, y̌ + ε(y − y̌)

)
− ρ(x, y̌)

εexists in (−∞,∞] for all y ∈ C. Let α be another onave funtion on C.De�ne γ(y) := α(y)+
∫
ρ(x, y) ν(dx) and assume that γ(y0) and γ(y̌) are�nite and γ(y̌) = maxC γ. Then for all y ∈ C,

Dy̌,yγ = Dy̌,yα+

∫
Dy̌,yρ(x, ·) ν(dx) ∈ (−∞, 0] (5.4)and in partiular Dy̌,yρ(x, ·) <∞ ν(dx)-a.e.29



Proof. Note that γ is onave, hene we also have γ > −∞ on C. Let v =
(y− y̌) and ε > 0, then γ(y̌+εv)−γ(y̌)

ε = α(y̌+εv)−α(y̌)
ε +

∫ ρ(x,y̌+εv)−ρ(x,y̌)
ε ν(dx).By onavity, these quotients inrease monotonially as ε ↓ 0, in partiulartheir limits exist. The left hand side is nonpositive as y̌ is a maximum andmonotone onvergene yields (5.4).For ompleteness, let us mention that if γ(y) = −∞, there are exampleswhere the left hand side of (5.4) is −∞ but the right hand side is �nite;we shall deal with this ase separately. We dedue the following version ofTheorem 5.13; as disussed, it involves only the ontrol (π̌, κ̌).Theorem 5.15. Let (ℓ, π̌, κ̌) be a solution of the Bellman equation and as-sume that C is onvex. Then Γ(π̌, κ̌) := ℓX̌p +

∫
κ̌sℓsX̌

p
s µ(ds) is a loalmartingale. It is a martingale if and only if (2.2) holds and (π̌, κ̌) is optimaland ℓ = L.Proof. To apply Theorem 5.13, we have to hek that Gℓ(y, π̌) ∈ [−∞, 0] for

y ∈ C ∩ C 0,∗. Reall that π̌ is a maximizer for gℓ and that Gℓ was de�nedby di�erentiation under the integral sign. Lemma 5.14 yields Gℓ(y, π̌) ≤ 0whenever y ∈ {gℓ > −∞}. This ends the proof for p ∈ (0, 1) as gℓ is then�nite. If p < 0, the de�nition of gℓ and Remark A.7 show that the set
{gℓ > −∞} ontains the set ⋃

η∈[0,1) η(C ∩ C 0) whih, in turn, is learlydense in C ∩ C 0,∗. Hene {gℓ > −∞} is dense in C ∩ C 0,∗ and we obtain
Gℓ(y, π̌) ∈ [−∞, 0] for all y ∈ C ∩ C 0,∗ using the lower semiontinuity fromLemma 5.11.Remark 5.16. (i) We note that Γ(π̌, κ̌) = pZ(π̌, κ̌) if Z is de�ned asin (4.4). In partiular, Remark 5.9 an be used also for Γ(π̌, κ̌).(ii) Muhle-Karbe [21℄ onsiders ertain one-dimensional (unonstrained)a�ne models and introdues a su�ient optimality ondition in the form ofan algebrai inequality (see [21, Theorem 4.20(3)℄). This ondition an beseen as a speial ase of the statement that GL(y, π̌) ∈ [−∞, 0] for y ∈ C 0,∗;in partiular, we have shown its neessity.Of ourse, all our veri�ation results an be seen as a uniqueness resultfor the Bellman equation. As an example, Theorem 5.15 yields:Corollary 5.17. If C is onvex, there is at most one solution of the Bellmanequation in the lass of solutions (ℓ, π̌, κ̌) suh that Γ(π̌, κ̌) is of lass (D).Similarly, one an give orollaries for the other results. We lose with aomment onerning onvex duality.Remark 5.18. (i) A major insight in [18℄ was that the �dual domain� forutility maximization (here with C = R

d) should be a set of supermartin-gales rather than (loal) martingales when the prie proess has jumps. A30



one-period example for log-utility [18, Example 5.1'℄ showed that the su-permartingale solving the dual problem an indeed have nonvanishing drift.In that example it is lear that this arises when the budget onstraint be-omes binding. For general models and log-utility, [10℄ omments on thisphenomenon. The alulations of this setion yield an instrutive �loal�piture also for power utility.Under Assumptions 3.1, the opportunity proess L and the optimal strat-egy (π̂, κ̂) solve the Bellman equation. Assume that C is onvex and let
X̂ = X(π̂, κ̂). Consider Ŷ = LX̂p−1, whih was the solution to the dualproblem in [22℄. We have shown that Ŷ E(π • R) is a supermartingale forevery π ∈ A, i.e., Ŷ is a supermartingale de�ator. Choosing π = 0, we seethat Ŷ is itself a supermartingale, and by (5.3) its drift rate satis�es

a
bY = X̂p−1

− GL(0, π̂) = −X̂p−1
− π̂⊤∇g(π̂).Hene Ŷ is a loal martingale if and only if π̂⊤∇g(π̂) = 0. One an saythat −π̂⊤∇g(π̂) < 0 means that the onstraints are binding, whereas in an�unonstrained� ase the gradient of g would vanish; i.e., Ŷ has nonvanish-ing drift rate at a given (ω, t) whenever the onstraints are binding. Evenif C = R

d, we still have the budget onstraint C 0 in the maximization of
g. If in addition R is ontinuous, C 0 = R

d and we are truly in an unon-strained situation. Then Ŷ is a loal martingale; indeed, in the setting ofCorollary 3.12 we alulate
Ŷ = y0E

(
− λ • M +

1

L−

• NL
)
, y0 := L0x

p−1
0 .Note how NL, the martingale part of L orthogonal to R, yields the solutionto the dual problem.(ii) From the proof of Proposition 5.12 we have that the general formulafor the loal martingale part of Ŷ is

M
bY = X̂p−1

−
•

(
ML + L−(p− 1)π̂ • M R̄ + (p − 1)π̂⊤x′h(x) ∗ (µR,L − νR,L)

+ (L− + x′)
{
(1 + π̂⊤x)p−1 − 1 − (p− 1)π̂⊤h(x)

}
∗ (µR,L − νR,L)

)
.This is relevant in the problem of q-optimal equivalent martingale measures;f. Goll and Rüshendorf [11℄ for a general perspetive. Let u(x0) <∞, D ≡

1, µ = 0, C = R
d, and assume that the set M of equivalent loal martingalemeasures for S = E(R) is nonempty. Given q = p/(p− 1) ∈ (−∞, 0) ∪ (0, 1)onjugate to p, Q ∈ M is alled q-optimal if E[−q−1(dQ/dP )q ] is �nite andminimal over M . If q < 0, i.e., p ∈ (0, 1), then u(x0) < ∞ is equivalent tothe existene of some Q ∈ M suh that E[−q−1(dQ/dP )q ] < ∞; moreover,Assumptions 3.1 are satis�ed (see Kramkov and Shahermayer [18, 19℄).Using [18, Theorem 2.2(iv)℄ we onlude that31



(a) the q-optimal martingale measure exists if and only if abY ≡ 0 and M bYis a true martingale;(b) in that ase, 1 + y−1
0 M

bY is its P -density proess.A Proof of Lemma 3.8: A Measurable MaximizingSequeneThis main goal of this appendix is to onstrut of a measurable maximizingsequene for the random funtion g (f. Lemma 3.8). The entire setion isunder Assumptions 3.1. Before beginning the proof, we disuss the propertiesof g; reall that
g(y) := L−y

⊤
(
bR + cRL

L−
+ (p−1)

2 cRy
)

+

∫

Rd×R

x′y⊤h(x)FR,L(d(x, x′))

+

∫

Rd×R

(L− + x′)
{
p−1(1 + y⊤x)p − p−1 − y⊤h(x)

}
FR,L(d(x, x′)).(A.1)Lemma A.1. L− + x′ is stritly positive FL(dx′)-a.e.Proof. (P ⊗ νL){L− +x′ ≤ 0} = E[1{L−+x′≤0} ∗ ν

L
T ] = E[1{L−+x′≤0} ∗µ

L
T ] =

E
[∑

s≤T 1{Ls≤0}1{∆Ls 6=0}

]
= 0 as L > 0 by Lemma 2.1.Fix (ω, t) and let l := Lt−(ω). Furthermore, let F be any Lévy measureon R

d+1 whih is equivalent to FR,L
t (ω) and satis�es (2.5). Equivaleneimplies that C 0

t (ω),C 0,∗
t (ω), and Nt(ω) are the same if de�ned with respetto F instead of FR. Given ε > 0, let

IF
ε (y) :=

∫

{|x|+|x′|≤ε}
(l + x′)

{
p−1(1 + y⊤x)p − p−1 − y⊤h(x)

}
F (d(x, x′)),

IF
>ε(y) :=

∫

{|x|+|x′|>ε}
(l + x′)

{
p−1(1 + y⊤x)p − p−1 − y⊤h(x)

}
F (d(x, x′)),so that

IF (y) := IF
ε (y) + IF

>ε(y)is the last integral in (A.1) when F = FR,L
t (ω). We know from the proofof Lemma 3.4 that IF R,L

(π) is well de�ned and �nite for any π ∈ AfE (ofourse, when p > 0, this is essentially due to the assumption (2.2)). Forgeneral F , IF has the following properties.Lemma A.2. Consider a sequene yn → y∞ in C 0.(i) For any y ∈ C 0, the integral IF (y) is well de�ned in R ∪ {sign(p)∞}.(ii) For ε ≤ (2 supn |yn|)
−1 we have IF

ε (yn) → IF
ε (y∞).32



(iii) If p ∈ (0, 1), IF is l.s.., that is, lim infn I
F (yn) ≥ IF (y∞).(iv) If p < 0, IF is u.s.., that is, lim supn I

F (yn) ≤ IF (y∞). Moreover,
y ∈ C 0 \ C 0,∗ implies IF (y) = −∞.Proof. The �rst item follows from the subsequent onsiderations.(ii) We may assume that h is the identity on {|x| ≤ ε}; then on this set

p−1(1+y⊤x)p−p−1−y⊤h(x) =: ψ(z)|z=y⊤x, where the funtion ψ is smoothon {|z| ≤ 1/2} ⊆ R satisfying
ψ(z) = p−1(1 + z)p − p−1 − z = p−1

2 z2 + o(|z|3)beause 1 + z is bounded away from 0. Thus ψ(z) = z2ψ̃(z) with a funtion
ψ̃ that is ontinuous and in partiular bounded on {|z| ≤ 1/2}.As a Lévy measure, F integrates (|x′|2 + |x|2) on ompats; in partiular,
G(d(x, x′)) := |x|2 F (d(x, x′)) de�nes a �nite measure on {|x| + |x′| ≤ ε}.Hene IF

ε (y) is well de�ned and �nite for |y| ≤ (2ε)−1, and dominated onver-gene shows that IF
ε (y) =

∫
{|x|+|x′|≤ε}(l+x

′)ψ̃(y⊤x)G(d(x, x′)) is ontinuousin y on {|y| ≤ (2ε)−1}.(iii) For |y| bounded by a onstant C, the integrand in IF is boundedfrom below by C ′ + |x′| for some onstant C ′ depending on y only through
C. We hoose ε as before. As C ′ + |x′| is F -integrable on {|x| + |x′| > ε}by (2.5), IF (y) is well de�ned in R ∪ {∞} and l.s.. by Fatou's lemma.(iv) The �rst part follows as in (iii), now the integrand is bounded fromabove by C ′ + |x′|. If y ∈ C 0 \ C 0,∗, Lemma A.1 shows that the integrandequals −∞ on a set of positive F -measure.Lemma A.3. The funtion g is onave. If C is onvex, g has at most onemaximum on C ∩ C 0, modulo N .Proof. We �rst remark that the assertion is not trivial beause g need notbe stritly onave on N ⊥, for example, the proess Rt = t(1, . . . , 1)⊤ wasnot exluded.Note that g is of the form g(y) = Hy + J(y), where Hy = L−y

⊤bR +

y⊤cRL +
∫
x′y⊤h(x)FR,L is linear and J(y) = (p−1)

2 L−y
⊤cRy + IF R,L

(y) isonave. We may assume that h(x) = x1{|x|≤1}.Let y1, y2 ∈ C ∩ C 0 be suh that g(y1) = g(y2) = sup g =: g∗ < ∞,our aim is to show y1 − y2 ∈ N . By onavity, g∗ = g((y1 + y2)/2)) =
[g(y1) + g(y2)]/2, whih implies J((y1 + y2)/2)) = [J(y1) + J(y2)]/2 due tothe linearity of H. Using the de�nition of J , this shows that J is onstanton the line segment onneting y1 and y2. A �rst onsequene is that y1−y2lies in the set {y : y⊤cR = 0, FR{x : y⊤x 6= 0} = 0

} and a seond is that
Hy1 = Hy2. It remains to show (y1 − y2)

⊤bR = 0 to have y1 − y2 ∈ N .Note that FR{x : y⊤x 6= 0} = 0 implies FR,L{x : y⊤h(x) 6= 0} = 0.Moreover, y⊤cR = 0 implies y⊤cRL = 0 due to the absolute ontinuity
〈Rc,i, Lc〉 << 〈Rc,i〉 whih follows from the Kunita-Watanabe inequality.33



Thus the �rst onsequene above implies ∫
x′(y1 − y2)

⊤h(x)FR,L = 0 and
(y1 − y2)

⊤cRL = 0, and now the seond onsequene and the de�nition of Hyield 0 = H(y1 − y2) = L−(y1 − y2)
⊤bR. Thus (y1 − y2)

⊤bR = 0 as L− > 0and this ends the proof.We an now move toward the main goal of this setion. Clearly we needsome variant of the �Measurable Maximum Theorem� (see, e.g., [1, 18.19℄,[16, Theorem 9.5℄, [24, 2K℄). We state a version that is tailored to our needsand has a simple proof; the tehnique is used also in Proposition 4.3.Lemma A.4. Let D be a preditable set-valued proess with nonempty om-pat values in 2R
d. Let f(y) = f(ω, t, y) be a proper funtion on D withvalues in R ∪ {−∞} suh that(i) f(ϕ) is preditable whenever ϕ is a D-valued preditable proess,(ii) y 7→ f(y) is upper semiontinuous on D for �xed (ω, t).Then there exists a D-valued preditable proess π suh that f(π) = maxD f .Proof. We start with the Castaing representation [24, 1B℄ of D : there exist

D-valued preditable proesses (ϕn)n≥1 suh that {ϕn : n ≥ 1} = D for eah
(ω, t). By (i), f∗ := maxn f(ϕn) is preditable, and f∗ = maxD f by (ii).Fix k ≥ 1 and let Λn := {f∗ − f(ϕn) ≤ 1/k}, Λn := Λn \ (Λ1 ∪ · · · ∪ Λn−1).De�ne πk :=

∑
n ϕn1Λn , then f∗ − f(πk) ≤ 1/k and πk ∈ D .It remains to selet a luster point: By ompatness, (πk)k≥1 is boundedfor eah (ω, t), so there is a onvergent subsequene along �random indies�

τk. More preisely, there exists a stritly inreasing sequene of integer-valued preditable proesses τk = {τk(ω, t)} and a preditable proess π∗suh that limk π
τk(ω,t)
t (ω) = π∗t (ω) for all (ω, t). See, e.g., the proof of Föllmerand Shied [9, Lemma 1.63℄. We have f∗ = f(π∗) by (ii).Our random funtion g satis�es property (i) of Lemma A.4 beause theharateristis are preditable (reall the de�nition [13, II.1.6℄). We also notethat the intersetion of losed preditable proesses is preditable [24, 1M℄.The sign of p is important as it swithes the semiontinuity of g; we startwith the immediate ase p < 0 and denote Br(R

d) = {x ∈ R
d : |x| ≤ r}.Proof of Lemma 3.8 for p < 0. In this ase g is u.s.. on C∩C 0 (Lemma A.2).Let D(n) := C ∩ C 0 ∩ Bn(Rd). Lemma A.4 yields a preditable proess

πn ∈ arg maxD(n) g for eah n ≥ 1, and learly limn g(π
n) = supC∩C 0 g. As

g(πn) ≥ g(0) = 0, we have πn ∈ C 0,∗ by Lemma A.2.A.1 Measurable Maximizing Sequene for p ∈ (0, 1)Fix p ∈ (0, 1). Sine the ontinuity properties of g are not lear, we will usean approximating sequene of ontinuous funtions. (See also Appendix B,where an alternative approah is disussed and the ontinuity is lari�ed34



under an additional assumption on C .) We will approximate g using Lévymeasures with enhaned integrability, a method suggested by [16℄ in a similarproblem. This preserves monotoniity properties that will be useful to passto the limit.All this is not neessary if R is loally bounded, or more generally if FR,Lsatis�es the following ondition. We start with �xed (ω, t).De�nition A.5. Let F be a Lévy measure on R
d+1 whih is equivalent to

FR,L and satis�es (2.5). (i) We say that F is p-suitable if
∫

(1 + |x′|)(1 + |x|)p1{|x|>1} F (d(x, x′)) <∞.(ii) The p-suitable approximating sequene for F is the sequene (Fn)n≥1 ofLévy measures de�ned by dFn/dF = fn, where
fn(x) = 1{|x|≤1} + e−|x|/n1{|x|>1}.It is easy the see that eah Fn in (ii) shares the properties of F , whilein addition being p-suitable beause (1 + |x|)pe−|x|/n is bounded. As the se-quene fn is inreasing, monotone onvergene shows that ∫

V dFn ↑
∫
V dFfor any measurable funtion V ≥ 0 on R

d+1. We denote by gF the funtionwhih is de�ned as in (A.1) but with FR,L replaed by F .Lemma A.6. If F is p-suitable, gF is real-valued and ontinuous on C 0.Proof. Pik yn → y in C 0. The only term in (A.1) for whih ontinuityis not evident, is the integral IF = IF
ε + IF

>ε, where we hoose ε as inLemma A.2. We have IF
ε (yn) → IF

ε (y) by that lemma. When F is p-suitable,the ontinuity of IF
>ε follows from the dominated onvergene theorem.Remark A.7. De�ne the set

(C ∩ C
0)⋄ :=

⋃

η∈[0,1)

η(C ∩ C
0).Its elements y have the property that 1 + y⊤x is FR(dx)-essentially boundedaway from zero. Indeed, y = ηy0 with η ∈ [0, 1) and FR{y⊤0 x ≥ −1} = 0,hene 1 + y⊤x ≥ 1 − η, FR-a.e. In partiular, (C ∩ C 0)⋄ ⊆ C 0,∗. If C isstar-shaped with respet to the origin, we also have (C ∩ C 0)⋄ ⊆ C .We introdue the ompat-valued proess D(r) := C ∩ C 0 ∩Br(R

d).Lemma A.8. Let F be p-suitable. Under (C3), arg maxD(r) g
F ⊆ C 0,∗.More generally, this holds whenever F is a Lévy measure equivalent to

FR,L satisfying (2.5) and gF is �nite-valued.35



Proof. Assume that y̌ ∈ C 0 \ C 0,∗ is a maximum of gF . Let η ∈ (η, 1) beas in the de�nition of (C3) and y0 := ηy̌. By Lemma 5.14, the diretionalderivative Dy̌,y0
g an be alulated by di�erentiating under the integral sign.For the integrand of IF we have

Dy̌,y0

{
p−1(1+y⊤x)p−p−1−y⊤h(x)

}
= (1−η)

{
(1+ y̌⊤x)p−1y̌⊤x− y̌⊤h(x)

}
.But this is in�nite on a set of positive measure as y̌ ∈ C 0 \ C 0,∗ means that

F{y̌⊤x = −1} > 0, ontraditing the last assertion of Lemma 5.14.Let F be a Lévy measure on R
d+1 whih is equivalent to FR,L and sat-is�es (2.5). The ruial step isLemma A.9. Let (Fn) be the p-suitable approximating sequene for F and�x r > 0. For eah n, arg maxD(r) g
Fn 6= ∅, and for any y∗n ∈ arg maxD(r) g

Fnit holds that lim supn g
F (y∗n) = supD(r) g

F .Proof. We �rst show that
IFn(y) → IF (y) for any y ∈ C

0. (A.2)Reall that IFn(y) =
∫

(l+x′)
{
p−1(1+y⊤x)p−p−1−y⊤h(x)

}
fn(x)F (d(x, x′)),where fn is nonnegative and inreasing in n. As fn = 1 in a neighbor-hood of the origin, we need to onsider only IFn

>ε (for ε = 1, say). Itsintegrand is bounded below, simultaneously for all n, by a negative on-stant times (1 + |x′|), whih is F -integrable on the relevant domain. As
(fn) is inreasing, we an apply monotone onvergene on the set {

(x, x′) :
p−1(1 + y⊤x)p − p−1 − y⊤h(x) ≥ 0

} and dominated onvergene on theomplement to dedue (A.2).Existene of y∗n ∈ arg maxD(r) g
Fn is lear by ompatness of D(r) andontinuity of gFn (Lemma A.6). Let y ∈ D(r) be arbitrary. By de�nition of

y∗n and (A.2),
lim sup

n
gFn(y∗n) ≥ lim sup

n
gFn(y) = gF (y).We show lim supn g

F (y∗n) ≥ lim supn g
Fn(y∗n). We an split the integral

IFn(y) into a sum of three terms: The integral over {|x| ≤ 1} is the same asfor IF , sine fn = 1 on this set. We an assume that the ut-o� h vanishesoutside {|x| ≤ 1}. The seond term is then
∫

{|x|>1}
(l + x′)p−1(1 + y⊤x)pfn dF,here the integrand is nonnegative and hene inreasing in n, for all y; andthe third term is ∫

{|x|>1}
(l + x′)(−p−1)fn dF,36



whih is dereasing in n but onverges to ∫
{|x|>1}(l + x′)(−p−1) dF . Thus

gF (y∗n) ≥ gFn(y∗n) − εnwith the sequene εn :=
∫
{|x|>1}(l+ x′)(−p−1)(fn − 1) dF ↓ 0. Together, weonlude supD(r) g

F ≥ lim supn g
F (y∗n) ≥ lim supn g

Fn(y∗n) ≥ supD(r) g
F .Proof of Lemma 3.8 for p ∈ (0, 1). Fix r > 0. By Lemma A.4 we an �ndmeasurable seletors πn,r for arg maxD(r) g

Fn , i.e., πn,r
t (ω) plays the roleof y∗n in Lemma A.9. Taking πn := πn,n and noting D(n) ↑ C ∩ C 0,Lemma A.9 shows that πn are C ∩ C 0-valued preditable proesses suhthat lim supn g(π

n) = supC∩C 0 g P ⊗A-a.e. Lemma A.8 shows that πn takesvalues in C 0,∗.B Parametrization by Representative PortfoliosThis appendix introdues an equivalent transformation of the model (R,C )with spei� properties (Theorem B.3); the main idea is to substitute thegiven assets by wealth proesses that represent the investment opportunitiesof the model. While the result is of independent interest, in our ontext, themain onlusion is that the approximation tehnique from Appendix A.1 forthe ase p ∈ (0, 1) an be avoided, at least under slightly stronger assump-tions on C : If the utility maximization problem is �nite, the orrespondingLévy measure in the transformed model is p-suitable (f. De�nition A.5) andhene the orresponding funtion g is ontinuous. This is not only an al-ternative argument to prove Lemma 3.8. In appliations, ontinuity an beuseful to onstrut a maximizer for g (rather than a maximizing sequene)if one does not know a priori that there exists an optimal strategy. A stativersion of our onstrution was arried out for the ase of Lévy proessesin [23, �4℄.In this appendix we use the following assumptions on the set-valuedproess C of onstraints:(C1) C is preditable.(C2) C is losed.(C4) C is star-shaped with respet to the origin: ηC ⊆ C for all η ∈ [0, 1].Sine we already obtained a proof of Lemma 3.8, we do not strive for min-imal onditions here. Clearly (C4) implies ondition (C3) from Setion 2.4,but its main impliation is that we an selet a bounded (hene R-integrable)proess in the subsequent lemma. The following result is the onstrution ofthe jth representative portfolio, a portfolio with the property that it investsin the jth asset whenever this is feasible.37



Lemma B.1. Fix 1 ≤ j ≤ d and let Hj = {x ∈ R
d : xj 6= 0}. There existsa bounded preditable C ∩ C 0,∗-valued proess φ satisfying

{φj = 0} =
{
C ∩ C

0,∗ ∩Hj = ∅
}
.Proof. Let B1 = B1(R

d) be the losed unit ball and H := Hj . Condition(C4) implies {
C ∩C 0,∗ ∩H = ∅

}
=

{
C ∩B1 ∩C 0,∗ ∩H = ∅

}, hene we maysubstitute C by C ∩B1. De�ne the losed sets Hk = {x ∈ R
d : |xj | ≥ k−1}for k ≥ 1, then ⋃

k Hk = H. Moreover, let Dk = C ∩ C 0 ∩ Hk. This is aompat-valued preditable proess, so there exists a preditable proess φksuh that φk ∈ Dk (hene φj
k 6= 0) on the set Λk := {Dk 6= ∅} and φk = 0 onthe omplement. De�ne Λk := Λk \ (Λ1 ∪ · · · ∪ Λk−1) and φ′ :=

∑
k φk1Λk .Then |φ′| ≤ 1 and {φ′j = 0} =

{
C ∩C 0∩H = ∅

}
=

{
C ∩C 0,∗∩H = ∅

}; theseond equality uses (C4) and Remark A.7. These two fats also show that
φ := 1

2φ
′ has the same property while in addition being C ∩C 0,∗-valued.Remark B.2. The previous proof also applies if instead of (C4), e.g., thediameter of C is uniformly bounded and C 0 = C 0,∗.If Φ is a d×d-matrix with olumns φ1, . . . , φd ∈ L(R), the matrix stohas-ti integral R̃ = Φ • R is the R

d-valued proess given by R̃j = φj • R. If
ψ ∈ L(Φ • R) is R

d-valued, then Φψ ∈ L(R) and
ψ • (Φ • R) = (Φψ) • R. (B.1)If D is a set-valued proess whih is preditable, losed and ontains the ori-gin, then the preimage Φ−1D shares these properties (f. [24, 1Q℄). Convexityand star-shape are also preserved.We obtain the following model if we sequentially replae the given assetsby representative portfolios; here ej denotes the jth unit vetor in R

d for
1 ≤ j ≤ d (i.e., eij = δij).Theorem B.3. There exists a preditable R

d×d-valued uniformly boundedproess Φ suh that the �nanial market model with returns
R̃ := Φ • Rand onstraints C̃ := Φ−1C has the following properties: for all 1 ≤ j ≤ d,(i) ∆R̃j > −1 (positive pries),(ii) ej ∈ C̃ ∩ C̃ 0,∗, where C̃ 0,∗ = Φ−1C 0,∗ (entire wealth an be invested ineah asset),(iii) the model (R̃, C̃ ) admits the same wealth proesses as (R,C ).Proof. We treat the omponents one by one. Let j = 1 and let φ = φ(1)be as in Lemma B.1. We replae the �rst asset R1 by the proess φ • R, or38



equivalently, we replae R by Φ • R, where Φ = Φ(1) is the d× d-matrix
Φ =




φ1

φ2 1... . . .
φd 1


 .The new natural onstraints are Φ−1C 0 and we replae C by Φ−1C . Notethat e1 ∈ Φ−1(C ∩ C 0,∗) beause Φe1 = φ ∈ C ∩ C 0,∗ by onstrution.We show that for every C ∩ C 0,∗-valued proess π ∈ L(R) there exists

ψ preditable suh that Φψ = π. In view of (B.1), this will imply that thenew model admits the same wealth proesses as the old one. On the set
{φ1 6= 0} = {Φ is invertible} we take ψ = Φ−1π and on the omplement wehoose ψ1 ≡ 0 and ψj = πj for j ≥ 2; this is the same as inverting Φ on itsimage. Note that {φ1 = 0} ⊆ {π1 = 0} by the hoie of φ.We proeed with the seond omponent of the new model in the sameway, and then ontinue until the last one. We obtain matries Φ(j) for
1 ≤ j ≤ d and set Φ̂ = Φ(1) · · ·Φ(d). Then Φ̂ has the required properties.Indeed, the onstrution and Φ(i)ej = ej for i 6= j imply ej ∈ Φ̂−1(C ∩C 0,∗).This is (ii), and (i) is a onsequene of (ii).Coming bak to the utility maximization problem, note that property(iii) implies that the value funtions and the opportunity proesses for themodels (R,C ) and (R̃, C̃ ) oinide up to evanesene; we identify them inthe sequel. Furthermore, if g̃ denotes the analogue of g in the model (R̃, C̃ ),f. (A.1), we have the relation

g̃(y) = g(Φy), y ∈ C̃
0.Finding a maximizer for g̃ is equivalent to �nding one for g and if (π̃, κ) isan optimal strategy for (R̃, C̃ ) then (Φπ̃, κ) is optimal for (R,C ). In fat,most properties of interest arry over from (R,C ) to (R̃, C̃ ), in partiularany no-arbitrage property that is de�ned via the set of admissible (positive)wealth proesses.Remark B.4. A lassial no-arbitrage ondition de�ned in a slightly di�er-ent way is that there exist a probability measure Q ≈ P under whih E(R) isa σ-martingale; f. Delbaen and Shahermayer [8℄. In this ase, E(R̃) is evena loal martingale under Q, as it is a σ-martingale with positive omponents.Property (ii) from Theorem B.3 is useful to apply the following result.Lemma B.5. Let p ∈ (0, 1) and assume ej ∈ C ∩ C 0,∗ for 1 ≤ j ≤ d. Then

u(x0) < ∞ implies that FR,L is p-suitable. If, in addition, there exists aonstant k1 suh that D ≥ k1 > 0, it follows that ∫
{|x|>1} |x|

p FR(dx) <∞.39



Proof. As p > 0 and u(x0) < ∞, L is well de�ned and L,L− > 0 bySetion 2.2. No further properties were used to establish Lemma 3.4, whoseformula shows that g(π) is �nite P ⊗ A-a.e. for all π ∈ A = AfE . Inpartiular, from the de�nition of g, it follows that ∫
(L−+x′)

{
p−1(1+π⊤x)p−

p−1 − π⊤h(x)
}
FR,L(d(x, x′)) is �nite. If D ≥ k1, [22, Lemma 3.5℄ showsthat L ≥ k1, hene L− +x′ ≥ k1 F

L(dx′)-a.e. and ∫ {
p−1(1+π⊤x)p − p−1 −

π⊤h(x)
}
FR(dx) <∞. We hoose π = ej (and κ arbitrary) for 1 ≤ j ≤ d todedue the result.In general, the ondition u(x0) <∞ does not imply any properties of R;for instane, in the trivial ases C = {0} or C 0,∗ = {0}. The transformationhanges the geometry of C and C 0,∗ suh that Theorem B.3(ii) holds, andthen the situation is di�erent.Corollary B.6. Let p ∈ (0, 1) and u(x0) < ∞. In the model (R̃, C̃ ) ofTheorem B.3, F eR,L is p-suitable and hene g̃ is ontinuous.Therefore, to prove Lemma 3.8 under (C4), we may substitute (R,C )by (R̃, C̃ ) and avoid the use of p-suitable approximating sequenes. In someases, Lemma B.5 applies diretly in (R,C ). In partiular, if the asset priesare stritly positive (∆Rj > −1 for 1 ≤ j ≤ d), then the positive orthant of

R
d is ontained in C 0,∗ and the ondition of Lemma B.5 is satis�ed as soonas ej ∈ C for 1 ≤ j ≤ d.C Omitted CalulationThis appendix ontains a alulation whih was omitted in the proof ofProposition 5.12.Lemma C.1. Let (ℓ, π̌, κ̌) be a solution of the Bellman equation, (π, κ) ∈ A,

X := X(π, κ) and X̌ := X(π̌, κ̌). De�ne R̄ = R− (x− h(x)) ∗ µR as well as
π̄ := (p − 1)π̌ + π and κ̄ := (p− 1)κ̌ + κ. Then ξ := ℓX̌p−1X satis�es
(
X̌p−1

− X−

)−1
• ξ =

ℓ− ℓ0 + ℓ−π̄ • R̄− ℓ−κ̄ • µ+ ℓ−(p− 1)
( p−2

2 π̌ + π
)⊤
cRπ̌ • A+ π̄⊤cRℓ

• A

+ π̄⊤x′h(x) ∗ µR,ℓ+ (ℓ− + x′)
{
(1 + π̌⊤x)p−1(1 + π⊤x) − 1 − π̄⊤h(x)

}
∗ µR,ℓ.Proof. We may assume x0 = 1. This alulation is similar to the one in theproof of Lemma 3.4 and therefore we shall be brief. By It�'s formula we have

X̌p−1 = E(ζ) for
ζ = (p− 1)(π̌ • R− κ̌ • µ) + (p−1)(p−2)

2 π̌⊤cRπ̌ • A

+
{
(1 + π̌⊤x)p−1 − 1 − (p − 1)π̌⊤x

}
∗ µR.40



Thus X̌p−1X = E
(
ζ + π • R− κ • µ+ [ζ, π • R]

)
=: E(Ψ) with

[R, ζ] = [Rc, ζc] +
∑

∆R∆ζ

= (p − 1)cRπ̌ • A+ (p− 1)π̌⊤xx ∗ µR

+ x
{
(1 + π̌⊤x)p−1 − 1 − π̌⊤x

}
∗ µRand reombining the terms yields

Ψ = π̄ • R− κ̄ • µ+ (p − 1)
( p−2

2 π̌ + π
)⊤
cRπ̌ • A

+
{
(1 + π̌⊤x)p−1(1 + π⊤x) − 1 − π̄⊤x

}
∗ µR.Then (

X̌p−1
− X−

)−1
• ξ = ℓ− ℓ0 + ℓ− • Ψ + [ℓ,Ψ], where

[ℓ,Ψ] = [ℓc,Ψc] +
∑

∆ℓ∆Ψ

= π̄⊤cRℓ
• A+ π̄⊤x′x ∗ µR,ℓ

+ x′
{
(1 + π̌⊤x)p−1(1 + π⊤x) − 1 − π̄⊤x

}
∗ µR,ℓ.We arrive at

(
X̌p−1

− X−

)−1
• ξ =

ℓ− ℓ0 + ℓ−π̄ • R− ℓ−κ̄ • µ+ ℓ−(p − 1)
(p−2

2 π̌ + π
)⊤
cRπ̌ • A+ π̄⊤cRℓ

• A

+ π̄⊤x′x ∗ µR,ℓ + (ℓ− + x′)
{
(1 + π̌⊤x)p−1(1 + π⊤x) − 1 − π̄⊤x

}
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