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tWe study utility maximization for power utility random �elds withand without intermediate 
onsumption in a general semimartingalemodel with 
losed portfolio 
onstraints. We show that any optimalstrategy leads to a solution of the 
orresponding Bellman equation.The optimal strategies are des
ribed pointwise in terms of the oppor-tunity pro
ess, whi
h is 
hara
terized as the minimal solution of theBellman equation. We also give veri�
ation theorems for this equation.Keywords power utility, Bellman equation, opportunity pro
ess, semimartingale
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teristi
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omments on the draft.1 Introdu
tionA 
lassi
al problem of mathemati
al �nan
e is the maximization of expe
tedutility obtained from 
onsumption or from terminal wealth. This paper fo-
uses on power utility fun
tions and presents the 
orresponding dynami
programming in a general 
onstrained semimartingale framework. The ho-mogeneity of these utility fun
tions leads to a fa
torization of the valuepro
ess into a part depending on the 
urrent wealth and the so-
alled oppor-tunity pro
ess L. In our setting, the Bellman equation des
ribes the driftrate of L and 
lari�es the lo
al stru
ture of our problem. Finding an optimalstrategy boils down to maximizing a random fun
tion y 7→ g(ω, t, y) on R
dfor every state ω and date t. This fun
tion is given in terms of the semi-martingale 
hara
teristi
s of L as well as the asset returns, and its maximum1
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yields the drift rate of L. The role of the opportunity pro
ess is to augmentthe information 
ontained in the return 
hara
teristi
s in order to have alo
al su�
ient statisti
 for the global optimization problem.We present three main results. First, we show that if there exists anoptimal strategy for the utility maximization problem, the opportunity pro-
ess L solves the Bellman equation and we provide a lo
al des
ription of theoptimal strategies. We state the Bellman equation in two forms, as an iden-tity for the drift rate of L and as a ba
kward sto
hasti
 di�erential equation(BSDE) for L. Se
ond, we 
hara
terize the opportunity pro
ess as the mini-mal solution of this equation. Finally, given some solution and an asso
iatedstrategy, one 
an ask whether the strategy is optimal and the solution isthe opportunity pro
ess. We present two di�erent approa
hes whi
h lead toveri�
ation theorems not 
omparable in strength unless the 
onstraints are
onvex.The present dynami
 programming approa
h should be seen as 
omple-mentary to 
onvex duality, whi
h remains the only method to obtain exis-ten
e of optimal strategies in general models; see Kramkov and S
ha
her-mayer [18℄, Karatzas and �itkovi¢ [17℄, Karatzas and Kardaras [16℄. In some
ases the Bellman equation 
an be solved dire
tly, e.g., in the setting ofExample 5.8 with 
ontinuous asset pri
es or in the Lévy pro
ess setting ofNutz [23℄. In addition to the existen
e, one then typi
ally obtains additionalproperties of the optimal strategies.This paper is organized as follows. The next se
tion spe
i�es the opti-mization problem in detail, re
alls the opportunity pro
ess and the martin-gale optimality prin
iple, and �xes the notation for the 
hara
teristi
s. Wealso introdu
e set-valued pro
esses des
ribing the budget 
ondition and statethe assumptions on the portfolio 
onstraints. Se
tion 3 derives the Bellmanequation, �rst as a drift 
ondition and then as a BSDE. It be
omes more ex-pli
it as we spe
ialize to the 
ase of 
ontinuous asset pri
es. The de�nition ofa solution of the Bellman equation is given in Se
tion 4, where we show theminimality of the opportunity pro
ess. Se
tion 5 deals with the veri�
ationproblem, whi
h is 
onverse to the derivation of the Bellman equation sin
eit requires the passage from the lo
al maximization to the global optimiza-tion problem. We present an approa
h via the value pro
ess and a se
ondapproa
h via a de�ator, whi
h 
orresponds to the dual problem in a suit-able setting. Appendix A belongs to Se
tion 3 and 
ontains the measurablesele
tions for the 
onstru
tion of the Bellman equation. It is 
omplementedby Appendix B, where we 
onstru
t an alternative parametrization of themarket model by representative portfolios.
2



2 PreliminariesThe following notation is used. If x, y ∈ R are reals, x+ = max{x, 0}and x ∧ y = min{x, y}. We set 1/0 := ∞ where ne
essary. If z ∈ R
dis a d-dimensional ve
tor, zi is its ith 
oordinate, z⊤ its transpose, and

|z| = (z⊤z)1/2 the Eu
lidean norm. If X is an R
d-valued semimartingaleand π is an R

d-valued predi
table integrand, the ve
tor sto
hasti
 integralis a s
alar semimartingale with initial value zero and denoted by ∫
π dX orby π • X. The quadrati
 variation is the d × d-matrix [X] := [X,X] and if

Y is a s
alar semimartingale, [X,Y ] is the d-ve
tor with [X,Y ]i := [Xi, Y ].Relations between measurable fun
tions hold almost everywhere unless oth-erwise mentioned. Our referen
e for any unexplained notion from sto
hasti

al
ulus is Ja
od and Shiryaev [13℄.2.1 The Optimization ProblemWe �x the time horizon T ∈ (0,∞) and a sto
hasti
 basis (Ω,F ,F, P ),where the �ltration F = (Ft)t∈[0,T ] satis�es the usual assumptions of right
ontinuity and 
ompleteness as well as F0 = {∅,Ω} P -a.s. We 
onsider an
R

d-valued 
àdlàg semimartingale R with R0 = 0 representing the returns of drisky assets. Their dis
ounted pri
es are given by the sto
hasti
 exponential
S = E(R) = (E(R1), . . . , E(Rd)). Our agent also has a bank a

ount at hisdisposal; it does not pay interest.The agent is endowed with a deterministi
 initial 
apital x0 > 0. Atrading strategy is a predi
table R-integrable R

d-valued pro
ess π, where
πi indi
ates the fra
tion of wealth (or the portfolio proportion) investedin the ith risky asset. A 
onsumption strategy is a nonnegative optionalpro
ess c su
h that ∫ T

0 ct dt < ∞ P -a.s. We want to 
onsider two 
ases.Either 
onsumption o

urs only at the terminal time T (utility from �terminalwealth� only); or there is intermediate 
onsumption plus a bulk 
onsumptionat the time horizon. To unify the notation, we introdu
e the measure µ on
[0, T ] by

µ(dt) :=

{
0 in the 
ase without intermediate 
onsumption,
dt in the 
ase with intermediate 
onsumption.Let also µ◦ := µ+δ{T}, where δ{T} is the unit Dira
 measure at T . The wealthpro
ess X(π, c) 
orresponding to a pair (π, c) is de�ned by the equation

Xt(π, c) = x0 +

∫ t

0
Xs−(π, c)πs dRs −

∫ t

0
cs µ(ds), 0 ≤ t ≤ T.We de�ne the set of trading and 
onsumption pairs

A0(x0) :=
{
(π, c) : X(π, c) > 0, X−(π, c) > 0 and cT = XT (π, c)

}
.3



These are the strategies that satisfy the budget 
onstraint. The 
onvention
cT = XT (π, c) means that all the remaining wealth is 
onsumed at time
T . We 
onsider also exogenous 
onstraints imposed on the agent. For ea
h
(ω, t) ∈ Ω × [0, T ] we are given a set Ct(ω) ⊆ R

d whi
h 
ontains the origin.The set of (
onstrained) admissible strategies is
A(x0) :=

{
(π, c) ∈ A0(x0) : πt(ω) ∈ Ct(ω) for all (ω, t)

}
;it is nonempty as 0 ∈ Ct(ω). Further assumptions on the set-valued mapping

C will be introdu
ed in Se
tion 2.4. We �x the initial 
apital x0 and usuallywrite A for A(x0). We write c ∈ A and 
all c admissible if there exists πsu
h that (π, c) ∈ A; an analogous 
onvention is used for similar expressions.We will often parametrize the 
onsumption strategies as a fra
tion ofwealth. Let (π, c) ∈ A and X = X(π, c). Then
κ :=

c

Xis 
alled the propensity to 
onsume 
orresponding to (π, c). This yields a one-to-one 
orresponden
e between the pairs (π, c) ∈ A and the pairs (π, κ) su
hthat π ∈ A and κ is a nonnegative optional pro
ess satisfying ∫ T
0 κs ds <∞

P -a.s. and κT = 1 (see Nutz [22, Remark 2.1℄ for details). We shall abusethe notation and identify a 
onsumption strategy with the 
orrespondingpropensity to 
onsume, e.g., we write (π, κ) ∈ A. Note that
X(π, κ) = x0E

(
π • R− κ • µ

)
.This simpli�es verifying that some pair (π, κ) is admissible as X(π, κ) > 0implies X−(π, κ) > 0 (
f. [13, II.8a℄).The preferen
es of the agent are modeled by a time-additive randomutility fun
tion as follows. Let D be a 
àdlàg, adapted, stri
tly positivepro
ess su
h that E[ ∫ T

0 Ds µ
◦(ds)

]
< ∞ and �x p ∈ (−∞, 0) ∪ (0, 1). Wede�ne the power utility random �eld

Ut(x) := Dt
1
px

p, x ∈ (0,∞), t ∈ [0, T ].This is the general form of a p-homogeneous utility random �eld su
h thata 
onstant 
onsumption yields �nite expe
ted utility. Interpretations andappli
ations for the pro
ess D are dis
ussed in [22℄. We denote by U∗ the
onvex 
onjugate of x 7→ Ut(x),
U∗

t (y) = sup
x>0

{
Ut(x) − xy

}
= −1

qy
qDβ

t ; (2.1)here q := p
p−1 ∈ (−∞, 0) ∪ (0, 1) is the exponent 
onjugate to p and the
onstant β := 1

1−p > 0 is the relative risk toleran
e of U . Note that weex
lude the well-studied logarithmi
 utility (e.g., Goll and Kallsen [10℄) whi
h
orresponds to p = 0. 4



The expe
ted utility 
orresponding to a 
onsumption strategy c ∈ A is
E

[ ∫ T
0 Ut(ct)µ

◦(dt)
], i.e., either E[UT (cT )] or E[

∫ T
0 Ut(ct) dt+UT (cT )]. Theutility maximization problem is said to be �nite if

u(x0) := sup
c∈A(x0)

E
[ ∫ T

0
Ut(ct)µ

◦(dt)
]
<∞. (2.2)Note that this 
ondition is void if p < 0 as then U < 0. If (2.2) holds, astrategy (π, c) ∈ A(x0) is 
alled optimal if E[ ∫ T

0 Ut(ct)µ
◦(dt)

]
= u(x0).Finally, we introdu
e the following sets; they are of minor importan
eand used only in the 
ase p < 0:

Af :=
{
(π, c) ∈ A :

∫ T
0 Ut(ct)µ

◦(dt) > −∞
}
,

AfE :=
{
(π, c) ∈ A : E

[∫ T
0 Ut(ct)µ

◦(dt)
]
> −∞

}
.Anti
ipating that (2.2) will be in for
e, the indi
es stand for ��nite� and��nite expe
tation�. Clearly AfE ⊆ Af ⊆ A, and equality holds if p ∈ (0, 1).2.2 Opportunity Pro
essWe re
all the opportunity pro
ess, a redu
ed form of the value pro
ess in thelanguage of 
ontrol theory. We assume (2.2) in this se
tion, whi
h ensuresthat the following pro
ess is �nite. By [22, Proposition 3.1, Remark 3.7℄there exists a unique 
àdlàg semimartingale L, 
alled opportunity pro
ess,su
h that

Lt
1
p

(
Xt(π, c)

)p
= ess sup

c̃∈A(π,c,t)
E

[ ∫ T

t
Us(c̃s)µ

◦(ds)
∣∣∣Ft

] (2.3)for any (π, c) ∈ A, where A(π, c, t) :=
{
(π̃, c̃) ∈ A : (π̃, c̃) = (π, c) on [0, t]

}.We note that LT = DT and that u(x0) = L0
1
px

p
0 is the value fun
tionfrom (2.2). The following is 
ontained in [22, Lemma 3.5℄.Lemma 2.1. L is a spe
ial semimartingale for all p. If p ∈ (0, 1), then

L,L− > 0. If p < 0, the same holds provided that an optimal strategy exists.Proposition 2.2 ([22, Proposition 3.4℄). Let (π, c) ∈ AfE. Then the pro
ess
Lt

1
p

(
Xt(π, c)

)p
+

∫ t

0
Us(cs)µ(ds), t ∈ [0, T ]is a supermartingale; it is a martingale if and only if (π, c) is optimal.This is the �martingale optimality prin
iple�. The expe
ted terminalvalue of this pro
ess equals E[

∫ T
0 Ut(ct)µ

◦(dt)], hen
e the assertion fails for
(π, c) ∈ A \ AfE. 5



2.3 Semimartingale Chara
teristi
sIn the remainder of this se
tion we introdu
e tools whi
h are ne
essary todes
ribe the optimization problem lo
ally. The use of semimartingale 
har-a
teristi
s and set-valued pro
esses follows [10℄ and [16℄, whi
h 
onsider log-arithmi
 utility and 
onvex 
onstraints. That problem di�ers from ours inthat it is �myopi
�, i.e., the 
hara
teristi
s of R are su�
ient to des
ribe thelo
al problem and so there is no opportunity pro
ess.We refer to [13℄ for ba
kground regarding semimartingale 
hara
teristi
sand random measures. Let µR be the integer-valued random measure asso
i-ated with the jumps of R and let h : R
d → R

d be a 
ut-o� fun
tion, i.e., h isbounded and h(x) = x in a neighborhood of x = 0. Let (BR, CR, νR) be thepredi
table 
hara
teristi
s of R relative to h. The 
anoni
al representationof R (
f. [13, II.2.35℄) is
R = BR +Rc + h(x) ∗ (µR − νR) + (x− h(x)) ∗ µR. (2.4)The �nite variation pro
ess (x − h(x)) ∗ µR 
ontains essentially the �large�jumps of R. The rest is the 
anoni
al de
omposition of the semimartingale

R̄ = R − (x − h(x)) ∗ µR, whi
h has bounded jumps: BR = BR(h) ispredi
table of �nite variation, Rc is a 
ontinuous lo
al martingale, and h(x)∗
(µR − νR) is a totally dis
ontinuous lo
al martingale.As L is a spe
ial semimartingale (Lemma 2.1), it has a 
anoni
al de-
omposition L = L0 + AL + ML. Here L0 is 
onstant, AL is predi
tableof �nite variation and also 
alled the drift of L, ML is a lo
al martingale,and AL

0 = ML
0 = 0. Analogous notation will be used for other spe
ial semi-martingales. It is then possible to 
onsider the 
hara
teristi
s (AL, CL, νL)of L with respe
t to the identity instead of a 
ut-o� fun
tion. Writing x′ forthe identity on R, the 
anoni
al representation is

L = L0 +AL + Lc + x′ ∗ (µL − νL);see [13, II.2.38℄. It will be 
onvenient to use the joint 
hara
teristi
s of the
R

d×R-valued pro
ess (R,L). We denote a generi
 point in R
d×R by (x, x′)and let (BR,L, CR,L, νR,L) be the 
hara
teristi
s of (R,L) with respe
t to thefun
tion (x, x′) 7→ (h(x), x′). More pre
isely, we 
hoose �good� versions ofthe 
hara
teristi
s so that they satisfy the properties given in [13, II.2.9℄. Forthe (d+ 1)-dimensional pro
ess (R,L) we have the 
anoni
al representation

(
R
L

)
=

(
0
L0

)
+

(
BR

AL

)
+

(
Rc

Lc

)
+

(
h(x)
x′

)
∗(µR,L−νR,L)+

(
x− h(x)

0

)
∗µR,L.We denote by (bR,L, cR,L, FR,L;A) the di�erential 
hara
teristi
s withrespe
t to a predi
table lo
ally integrable in
reasing pro
ess A, e.g.,

At := t+
∑

i

Var(BRL,i)t +
∑

i,j

Var(CRL,ij)t +
(
|(x, x′)|2 ∧ 1

)
∗ νR,L

t .6



Then bR,L • A = BR,L, cR,L • A = CR,L, and FR,L • A = νR,L. We write
bR,L = (bR, aL)⊤ and cR,L =

(
cR cRL

(cRL)⊤ cL

)
, i.e., cRL is a d-ve
tor satisfying

(cRL) • A = 〈Rc, Lc〉. We will often use that
∫

Rd×R

(|x|2 + |x′|2) ∧ (1 + |x′|) FR,L(d(x, x′)) <∞ (2.5)be
ause L is a spe
ial semimartingale (
f. [13, II.2.29℄). Let Y be any s
alarsemimartingale with di�erential 
hara
teristi
s (bY , cY , F Y ) relative to Aand a 
ut-o� fun
tion h̄. We 
all
aY := bY +

∫ (
x− h̄(x)

)
F Y (dx)the drift rate of Y whenever the integral is well de�ned with values in

[−∞,∞], even if it is not �nite. Note that aY does not depend on the
hoi
e of h̄. If Y is spe
ial, the drift rate is �nite and even A-integrable (andvi
e versa). As an example, aL is the drift rate of L and aL • A = AL yieldsthe drift.Remark 2.3. Assume Y is a nonpositive s
alar semimartingale. Then itsdrift rate aY is well de�ned with values in [−∞,∞). Indeed, Y = Y−+∆Y ≤
0 shows that x ≤ −Y− F Y (dx)-a.e.If Y is a s
alar semimartingale with drift rate aY ∈ [−∞, 0], we 
all Y asemimartingale with nonpositive drift rate. Here aY need not be �nite, as inthe 
ase of a 
ompound Poisson pro
ess with negative, non-integrable jumps.We refer to Kallsen [14℄ for the 
on
ept of σ-lo
alization. Re
alling that F0is trivial, we 
on
lude the following, e.g., from [16, Appendix 3℄.Lemma 2.4. Let Y be a semimartingale with nonpositive drift rate.(i) Y is a σ-supermartingale ⇔ aY is �nite ⇔ Y is σ-lo
ally of 
lass (D).(ii) Y is a lo
al supermartingale ⇔ aY ∈ L(A) ⇔ Y is lo
ally of 
lass (D).(iii) If Y is uniformly bounded from below, it is a supermartingale.2.4 Constraints and Degenera
iesWe introdu
e some set-valued pro
esses that will be used in the sequel, thatis, for ea
h (ω, t) they des
ribe a subset of R

d. We refer to Ro
kafellar [24℄and Aliprantis and Border [1, �18℄ for ba
kground.We start by expressing the budget 
onstraint in this fashion. The pro
ess
C

0
t (ω) :=

{
y ∈ R

d : FR
t (ω)

{
x ∈ R

d : y⊤x < −1
}

= 0
}was 
alled the natural 
onstraints in [16℄. Clearly C 0 is 
losed, 
onvex,and 
ontains the origin. Moreover, one 
an 
he
k (see [16, �3.3℄) that it is7



predi
table in the sense that for ea
h 
losed G ⊆ R
d, the lower inverse image

(C 0)−1(G) = {(ω, t) : Ct(ω) ∩G 6= ∅} is predi
table. (Here one 
an repla
e
losed by 
ompa
t or by open; see [24, 1A℄.) A statement su
h as �C 0 is
losed� means that C 0
t (ω) is 
losed for all (ω, t); moreover, we will oftenomit the arguments (ω, t). We also 
onsider the slightly smaller set-valuedpro
ess

C
0,∗ :=

{
y ∈ R

d : FR
{
x ∈ R

d : y⊤x ≤ −1
}

= 0
}
.These pro
esses relate to the budget 
onstraint as follows.Lemma 2.5. A pro
ess π ∈ L(R) satis�es E(π • R) ≥ 0 (> 0) up to evanes-
en
e if and only if π ∈ C 0 (C 0,∗) P ⊗A-a.e.Proof. Re
all that E(π • R) > 0 if and only if 1 + π⊤∆R > 0 ([13, II.8a℄).Writing V (x) = 1{x: 1+π⊤x≤0}(x), we have that (P ⊗ A){π /∈ C 0,∗} =

E[V (x) ∗ νR
T ] = E[V (x) ∗ µR

T ] = E
[∑

s≤T 1{x: 1+π⊤
s ∆Rs≤0}

]. For the equiva-len
e with C 0, inter
hange stri
t and non-stri
t inequality signs.The pro
ess C 0,∗ is not 
losed in general (nor relatively open). Clearly
C 0,∗ ⊆ C 0, and in fa
t C 0 is the 
losure of C 0,∗: for y ∈ C 0

t (ω), the sequen
e
{(1 + n−1)y}n≥1 is in C

0,∗
t (ω) and 
onverges to y. This implies that C 0,∗is predi
table; 
f. [1, 18.3℄. We will not be able to work dire
tly with C 0,∗be
ause 
losedness is essential for the measurable sele
tion arguments thatwill be used.We turn to the exogenous portfolio 
onstraints, i.e., the set-valued pro
ess

C 
ontaining the origin. We 
onsider the following 
onditions:(C1) C is predi
table.(C2) C is 
losed.(C3) If p ∈ (0, 1): There exists a (0, 1)-valued pro
ess η su
h that
y ∈ (C ∩ C 0) \ C 0,∗ =⇒ ηy ∈ C for all η ∈ (η, 1), P ⊗A-a.e.Condition (C3) is 
learly satis�ed if C ∩ C 0 ⊆ C 0,∗, whi
h in
ludes the
ase of a 
ontinuous pro
ess R, and it is always satis�ed if C is star-shapedwith respe
t to the origin or even 
onvex. If p < 0, (C3) should be read asalways being satis�ed. We motivate (C3) byExample 2.6. We assume that there is no intermediate 
onsumption and

x0 = 1. Consider the one-period binomial model of a �nan
ial market, i.e.,
S = E(R) is a s
alar pro
ess whi
h is 
onstant up to time T , where it hasa single jump, say, P [∆RT = −1] = p0 and P [∆RT = K] = 1 − p0, where
K > 0 is a 
onstant and p0 ∈ (0, 1). The �ltration is generated by R andwe 
onsider C ≡ {0} ∪ {1}. Then E[U(XT (π))] = U(1) if πT = 0 and
E[U(XT (π))] = p0U(0) + (1− p0)U(1 +K) if πT = 1. If U(0) > −∞, and if
K is large enough, πT = 1 performs better and its terminal wealth vanisheswith probability p0 > 0. Of 
ourse, this 
annot happen if U(0) = −∞,8



i.e., p < 0. The 
onstants 
an also be 
hosen su
h that both strategies areoptimal, so there is no uniqueness.We have in
luded only positive wealth pro
esses in our de�nition of A;only these mat
h our multipli
ative setting. Under (C3), the Inada 
ondition
U ′(0) = ∞ ensures that vanishing wealth is not optimal.The �nal set-valued pro
ess is related to linear dependen
ies of the assets.As in [16℄, the predi
table pro
ess of null-investments is

N :=
{
y ∈ R

d : y⊤bR = 0, y⊤cR = 0, FR{x : y⊤x 6= 0} = 0
}
.Its values are linear subspa
es of R

d, hen
e 
losed, and provide the pointwisedes
ription of the null-spa
e of H 7→ H • R. That is, H ∈ L(R) satis�es
H • R ≡ 0 if and only if H ∈ N P ⊗ A-a.e. An investment with values in
N has no e�e
t on the wealth pro
ess.3 The Bellman EquationWe have now introdu
ed the ne
essary notation to formulate our �rst mainresult. Two spe
ial 
ases of our Bellman equation 
an be found in the workof Mania and Tevzadze [20℄ and Hu et al. [12℄. These arti
les 
onsider mod-els with 
ontinuous asset pri
es and we shall indi
ate the 
onne
tions as wespe
ialize to that 
ase in Se
tion 3.3. A related equation also arises in thestudy of mean-varian
e hedging by �erný and Kallsen [5℄ in the 
ontext oflo
ally square-integrable semimartingales, although they do not use dynami
programming expli
itly. Due to the quadrati
 setting, that equation is moreexpli
it than ours and the mathemati
al treatment is quite di�erent. Czi-
howsky and S
hweizer [6℄ study a 
one-
onstrained version of the relatedMarkowitz problem and there the equation is no longer expli
it.The Bellman equation highlights the lo
al stru
ture of our utility max-imization problem. In addition, it has two main bene�ts. First, it 
an beused as an abstra
t tool to derive properties of the optimal strategies and theopportunity pro
ess. Se
ond, one 
an try to solve the equation dire
tly in agiven model and to dedu
e the optimal strategies. This is the point of viewtaken in Se
tion 5 and obviously requires the pre
ise form of the equation.The following assumptions are in for
e for the entire Se
tion 3.Assumptions 3.1. The utility maximization problem is �nite, there existsan optimal strategy (π̂, ĉ) ∈ A, and C satis�es (C1)-(C3).3.1 Bellman Equation in Joint Chara
teristi
sOur �rst main result is the Bellman equation stated as a des
ription ofthe drift rate of the opportunity pro
ess. Re
all the 
onjugate fun
tion U∗from (2.1). 9



Theorem 3.2. The drift rate aL of the opportunity pro
ess satis�es
− p−1aL = U∗(L−) dµ

dA + max
y∈C∩C 0

g(y), (3.1)where g is the predi
table random fun
tion
g(y) := L−y

⊤
(
bR + cRL

L−
+ (p−1)

2 cRy
)

+

∫

Rd×R

x′y⊤h(x)FR,L(d(x, x′))

+

∫

Rd×R

(L− + x′)
{
p−1(1 + y⊤x)p − p−1 − y⊤h(x)

}
FR,L(d(x, x′)).(3.2)The unique (P ⊗ µ◦-a.e.) optimal propensity to 
onsume is

κ̂ =
(D
L

) 1

1−p
. (3.3)Any optimal trading strategy π∗ satis�es

π∗ ∈ arg max
C∩C 0

g (3.4)and the 
orresponding optimal wealth pro
ess and 
onsumption are given by
X∗ = x0E

(
π∗ • R− κ̂ • µ

)
; c∗ = X∗κ̂.Note that the maximization in (3.1) 
an be understood as a lo
al versionof the optimization problem. Indeed, re
alling (2.1), the right hand sideof (3.1) is the maximum of a single fun
tion over 
ertain points (k, y) ∈ R×R

dthat 
orrespond to the admissible 
ontrols (κ, π). Moreover, optimal 
ontrolsare related to maximizers of this fun
tion, a 
hara
teristi
 feature of anydynami
 programming equation. The maximum of g is not expli
it due tothe jumps of R; this simpli�es in the 
ontinuous 
ase 
onsidered in Se
tion 3.3below. Some mathemati
al 
omments are also in order.Remark 3.3. (i) The random fun
tion g is well de�ned on C 0 in theextended sense (see Lemma A.2) and it does not depend on the 
hoi
eof the 
ut-o� fun
tion h by [13, II.2.25℄.(ii) For p < 0 we have a more pre
ise statement: Given π∗ ∈ L(R) and κ̂as in (3.3), (π∗, κ̂) is optimal if and only if π∗ takes values in C ∩ C 0and maximizes g. This will follow from Corollary 5.4 applied to thetriplet (L, π∗, κ̂).(iii) For p ∈ (0, 1), partial results in this dire
tion follow from Se
tion 5.The question is trivial for 
onvex C by the next item.(iv) If C is 
onvex, arg maxC∩C 0 g is unique in the sense that the di�eren
eof any two elements lies in N (see Lemma A.3).10



We split the proof of Theorem 3.2 into several steps; the plan is as follows.Let (π, κ) ∈ AfE and denote X = X(π, κ). We re
all from Proposition 2.2that
Z(π, κ) := L1

pX
p +

∫
Us(κsXs)µ(ds)is a supermartingale, and a martingale if and only if (π, κ) is optimal. Hen
ewe shall 
al
ulate its drift rate and then maximize over (π, κ); the maximumwill be attained at any optimal strategy. This is fairly straightforward andessentially the 
ontent of Lemma 3.7 below. In the Bellman equation, wemaximize over a subset of R

d for ea
h (ω, t) and not over a set of strategies.This �nal step is a measurable sele
tion problem and its solution will be these
ond part of the proof.Lemma 3.4. Let (π, κ) ∈ Af . The drift rate of Z(π, κ) is
aZ(π,κ) = X(π, κ)p−

(
p−1aL + f(κ) dµ

dA + g(π)
)
∈ [−∞,∞),where ft(k) := Ut(k) −Lt−k and g is given by (3.2). Moreover, aZ(π̂,κ̂) = 0,and aZ(π,κ) ∈ (−∞, 0] for (π, κ) ∈ AfE.Proof. We 
an assume that the initial 
apital is x0 = 1. Let (π, κ) ∈ Af ,then in parti
ular Z := Z(π, κ) is �nite. We also set X := X(π, κ). By It�'sformula, we have Xp = E(π • R− κ • µ)p = E(Y ) with

Y = p(π • R− κ • µ) + p(p−1)
2 π⊤cRπ • A+

{
(1 + π⊤x)p − 1 − pπ⊤x

}
∗ µR.Integrating by parts in the de�nition of Z and using Xs = Xs− µ(ds)-a.e.(path-by-path), we have X−p

−
• Z = p−1(L−L0+L− • Y +[L, Y ])+U(κ) • µ.Here

[L, Y ] = [Lc, Y c] +
∑

∆L∆Y

= pπ⊤cRL
• A+ px′π⊤x ∗ µR,L + x′

{
(1 + π⊤x)p − 1 − pπ⊤x

}
∗ µR,L.Thus X−p

−
• Z equals

p−1(L− L0) + L−π • R+ f(κ) • µ+ L−
(p−1)

2 π⊤cRπ • A+ π⊤cRL
• A

+ x′π⊤x ∗ µR,L + (L− + x′)
{
p−1(1 + π⊤x)p − p−1 − π⊤x

}
∗ µR,L.Writing x = h(x) + x− h(x) and R̄ = R− (x− h(x)) ∗ µR as in (2.4),

X−p
−

• Z = (3.5)
p−1(L− L0) + L−π • R̄+ f(κ) • µ+ L−π

⊤
(

cRL

L−
+ (p−1)

2 cRπ
)

• A

+ x′π⊤h(x) ∗ µR,L + (L− + x′)
{
p−1(1 + π⊤x)p − p−1 − π⊤h(x)

}
∗ µR,L.11



Sin
e π need not be lo
ally bounded, we use from now on a predi
table 
ut-o� fun
tion h su
h that π⊤h(x) is bounded, e.g., h(x) = x1{|x|≤1}∩{|π⊤x|≤1}.Then the 
ompensator of x′π⊤h(x) ∗ µR,L exists, sin
e L is spe
ial.Let (π, κ) ∈ AfE. Then the 
ompensator of the last integral in theright hand side of (3.5) also exists; indeed, all other terms in that equalityare spe
ial, sin
e Z is a supermartingale. The drift rate 
an now be readfrom (3.5) and (2.4), and it is nonpositive by the supermartingale property.The drift rate vanishes for the optimal (π̂, κ̂) by the martingale 
onditionfrom Proposition 2.2.Now 
onsider (π, κ) ∈ Af \ AfE. Note that ne
essarily p < 0 (otherwise
Af = AfE). Thus Z ≤ 0, so by Remark 2.3 the drift rate aZ is wellde�ned with values in [−∞,∞)�alternatively, this 
an also be read fromthe integrals in (3.5) via (2.5). Using dire
tly the de�nition of aZ , we �ndthe same formula for aZ is as above.We do not have the supermartingale property for (π, κ) ∈ Af \AfE , so itis not evident that aZ(π,κ) ≤ 0 in that 
ase. However, we have the followingLemma 3.5. Let (π, κ) ∈ Af . Then aZ(π, κ) ∈ [0,∞] implies aZ(π, κ) = 0.Proof. Denote Z = Z(π, κ). For p > 0 we have Af = AfE and the
laim is immediate from Lemma 3.4. Let p < 0. Then Z ≤ 0 and byLemma 2.4(iii), aZ ∈ [0,∞] implies that Z is a submartingale . Hen
e
E[ZT ] = E

[ ∫ T
0 Ut(κtXt(π, κ))µ

◦(dt)
]
> −∞, that is, (π, κ) ∈ AfE . NowLemma 3.4 yields aZ(π, κ) ≤ 0.We observe in Lemma 3.4 that the drift rate splits into separate fun
tionsinvolving κ and π, respe
tively. For this reason, we 
an single out theProof of the 
onsumption formula (3.3). Let (π, κ) ∈ A. Note the follow-ing feature of our parametrization: we have (π, κ∗) ∈ A for any nonnega-tive optional pro
ess κ∗ su
h that ∫ T

0 κ∗s µ(ds) < ∞ and κ∗T = 1. Indeed,
X(π, κ) = x0E(π • R− κ • µ) is positive by assumption. As µ is 
ontinuous,
X(π, κ∗) = x0E(π • R− κ∗ • µ) is also positive.In parti
ular, let (π̂, κ̂) be optimal, β = (1−p)−1 and κ∗ = (D/L)β ; then
(π̂, κ∗) ∈ A. In fa
t the paths of U(κ∗X(π̂, κ∗)) = p−1Dβp+1X(π̂, κ∗)pL−βpare bounded P -a.s. (be
ause the pro
esses are 
àdlàg; L,L− > 0 and βp+1 =
β > 0) so that (π̂, κ∗) ∈ Af .Note that P ⊗ µ-a.e., we have κ∗ = (D/L−)β = arg maxk≥0 f(k), hen
e
f(κ∗) ≥ f(κ̂). Suppose (P ⊗ µ){f(κ∗) > f(κ̂)} > 0, then the formula fromLemma 3.4 and aZ(π̂,κ̂) = 0 imply aZ(π̂,κ∗) ≥ 0 and (P⊗A){aZ(π̂,κ∗) > 0} > 0,a 
ontradi
tion to Lemma 3.5. It follows that κ̂ = κ∗ P ⊗ µ-a.e. sin
e f hasa unique maximum.Remark 3.6. The previous proof does not use the assumptions (C1)-(C3).12



Lemma 3.7. Let π be a predi
table pro
ess with values in C ∩ C 0,∗. Then
(P ⊗A)

{
g(π̂) < g(π)

}
= 0.Proof. We argue by 
ontradi
tion and assume (P ⊗ A){g(π̂) < g(π)} > 0.By rede�ning π, we may assume that π = π̂ on the 
omplement of thispredi
table set. Then

g(π̂) ≤ g(π) and (P ⊗A){g(π̂) < g(π)} > 0. (3.6)As π is σ-bounded, we 
an �nd a 
onstant C > 0 su
h that π̃ := π1|π|≤C +
π̂1|π|>C again satis�es (3.6); that is, we may assume that π is R-integrable.Sin
e π ∈ C ∩ C 0,∗, this implies (π, κ̂) ∈ A (as observed above, the 
on-sumption κ̂ plays no role here). The 
ontradi
tion follows as in the previousproof.In view of Lemma 3.7, the main task will be to 
onstru
t a measurablemaximizing sequen
e for g.Lemma 3.8. Under Assumptions 3.1, there exists a sequen
e (πn) of pre-di
table C ∩ C 0,∗-valued pro
esses su
h that

lim sup
n

g(πn) = sup
C∩C 0

g P ⊗A-a.e.We defer the proof of this lemma to Appendix A, together with the studyof the properties of g. The theorem 
an then be proved as follows.Proof of Theorem 3.2. Let πn be as in Lemma 3.8. Then Lemma 3.7 with
π = πn yields g(π̂) = supC∩C 0 g, whi
h is (3.4). By Lemma 3.4 we have
0 = aZ(π̂,κ̂) = p−1aL + f(κ̂) dµ

dA + g(π̂). This is (3.1) as f(κ̂) = U∗(L−)
P ⊗ µ-a.e. due to (3.3).3.2 Bellman Equation as BSDEIn this se
tion we express the Bellman equation as a BSDE. The uniqueorthogonal de
omposition of the lo
al martingale ML with respe
t to R(
f. [13, III.4.24℄) leads to the representation

L = L0 +AL + ϕL
• Rc +WL ∗ (µR − νR) +NL. (3.7)Where, using the notation of [13℄, ϕL ∈ L2

loc(R
c), WL ∈ Gloc(µ

R), and NLis a lo
al martingale su
h that 〈(NL)c, Rc〉 = 0 and MP
µR(∆NL|P̃) = 0. Thelast statement means that E[(V∆NL)∗µR

T ] = 0 for any su�
iently integrablepredi
table fun
tion V = V (ω, t, x). We also introdu
e
ŴL

t :=

∫

Rd

WL(t, x) νR({t} × dx),13



then ∆
(
WL ∗ (µR − νR)

)
= WL(∆R)1{∆R6=0} − ŴL by de�nition of thetotally dis
ontinuous lo
al martingale WL ∗ (µR − νR) and we 
an write

∆L = ∆AL +WL(∆R)1{∆R6=0} − ŴL + ∆NL.We re
all that Assumptions 3.1 are in for
e. Now (3.1) 
an be restated asfollows, the random fun
tion g being the same as before but in new notation.Corollary 3.9. The opportunity pro
ess L and the pro
esses de�ned by (3.7)satisfy the BSDE
L = L0 − pU∗(L−) • µ− p max

y∈C∩C 0

g(y) • A+ϕL
• Rc +WL ∗ (µR − νR)+NL(3.8)with terminal 
ondition LT = DT , where g is given by

g(y) :=

L−y
⊤
(
bR + cR

( ϕL

L−
+ (p−1)

2 y
))

+

∫

Rd

(
∆AL +WL(x) − ŴL

)
y⊤h(x)FR(dx)

+

∫

Rd

(
L− + ∆AL +WL(x) − ŴL

){
p−1(1 + y⊤x)p − p−1 − y⊤h(x)

}
FR(dx).We observe that the orthogonal part NL plays a minor role here. In asuitable setting, it is linked to the �dual problem�; see Remark 5.18.It is possible (but notationally more 
umbersome) to prove a version ofLemma 3.4 using g as in Corollary 3.9 and the de
omposition (3.7), thusinvolving only the 
hara
teristi
s of R instead of the joint 
hara
teristi
sof (R,L). Using this approa
h, we see that the in
reasing pro
ess A in theBSDE 
an be 
hosen based on R and without referen
e to L. This is desirableif we want to 
onsider other solutions of the equation, as in Se
tion 4. One
onsequen
e is that A 
an be 
hosen to be 
ontinuous if and only if R isquasi left 
ontinuous (
f. [13, II.2.9℄). Sin
e p−1AL = −f(κ̂) • µ− g(π̂) • A,

Var(AL) is absolutely 
ontinuous with respe
t to A+ µ, and we 
on
lude:Remark 3.10. If R is quasi left 
ontinuous, AL is 
ontinuous.If R is quasi left 
ontinuous, νR({t} × R
d) = 0 for all t by [13, II.1.19℄,hen
e ŴL = 0 and we have the simpler formula

g(y) = L−y
⊤
(
bR + cR

( ϕL

L−
+ (p−1)

2 y
))

+

∫

Rd

WL(x)y⊤h(x)FR(dx)

+

∫

Rd

(
L− +WL(x)

){
p−1(1 + y⊤x)p − p−1 − y⊤h(x)

}
FR(dx).

14



3.3 The Case of Continuous Pri
esIn this se
tion we spe
ialize the previous results to the 
ase where R is a
ontinuous semimartingale and mild additional 
onditions are satis�ed. Asusual in this setting, the martingale part of R will be denoted by M ratherthan Rc. In addition to Assumptions 3.1, the following 
onditions are infor
e for the present Se
tion 3.3.Assumptions 3.11.(i) R is 
ontinuous,(ii) R = M +
∫
d〈M〉λ for some λ ∈ L2

loc(M) (stru
ture 
ondition),(iii) the orthogonal proje
tion of C onto N ⊥ is 
losed.Note that C 0,∗ = R
d due to (i), in parti
ular (C3) is void. When R is
ontinuous, it ne
essarily satis�es (ii) when a no-arbitrage property holds;see S
hweizer [25℄. By (i) and (ii) we 
an write the di�erential 
hara
teristi
sof R with respe
t to, e.g., At := t +

∑d
i=1〈M

i〉t. It will be 
onvenient tofa
torize cR = σσ⊤, where σ is a predi
table matrix-valued pro
ess; hen
e
σσ⊤ dA = d〈M〉. Then (ii) implies N = ker σ⊤ be
ause σσ⊤y = 0 implies
(σ⊤y)⊤(σ⊤y) = 0. Sin
e σ⊤ : ker(σ⊤)⊥ → σ⊤R

d is a homeomorphism, wesee that (iii) is equivalent to
σ⊤C is 
losed.This 
ondition depends on the semimartingale R. It is equivalent to the
losedness of C itself if σ has full rank. For 
ertain 
onstraint sets (e.g.,
losed polyhedral or 
ompa
t) the 
ondition is satis�ed for all matri
es σ, butnot so, e.g., for non-polyhedral 
one 
onstraints. We mention that violationof (iii) leads to nonexisten
e of optimal strategies in simple examples (
f. [23,Example 3.5℄) and we refer to Czi
howsky and S
hweizer [7℄ for ba
kground.Under (i), (3.7) is the more usual Kunita-Watanabe de
omposition

L = L0 +AL + ϕL
• M +NL,where ϕL ∈ L2

loc(M) and NL is a lo
al martingale su
h that [M,NL] = 0;see Ansel and Stri
ker [2, 
as 3℄. If ∅ 6= K ⊆ R
d is a 
losed set, we denotethe Eu
lidean distan
e to K by dK(x) = min{|x − y| : y ∈ K}, and d2

K isthe squared distan
e. We also de�ne the (set-valued) proje
tion ΠK whi
hmaps x ∈ R
d to the points in K with minimal distan
e to x,

ΠK(x) =
{
y ∈ K : |x− y| = dK(x)

}
6= ∅.If K is 
onvex, ΠK is the usual (single-valued) Eu
lidean proje
tion. In thepresent 
ontinuous setting, the random fun
tion g simpli�es 
onsiderably:

g(y) = L−y
⊤ σσ⊤

(
λ+

ϕL

L−
+ p−1

2 y
) (3.9)and so the Bellman BSDE be
omes more expli
it.15



Corollary 3.12. Any optimal trading strategy π∗ satis�es
σ⊤π∗ ∈ Πσ⊤C

{
σ⊤(1 − p)−1

(
λ+

ϕL

L−

)}
.The opportunity pro
ess satis�es the BSDE

L = L0 − pU∗(L−) • µ+ F (L−, ϕ
L) • A+ ϕL

• M +NL; LT = DT ,where
F (L−, ϕ

L) =

1

2
L−

{
p(1 − p)d2

σ⊤C

(
σ⊤(1 − p)−1

(
λ+

ϕL

L−

))
+ p

p−1

∣∣∣σ⊤
(
λ+

ϕL

L−

)∣∣∣
2
}
.If C is a 
onvex 
one, F (L−, ϕ

L) = p
2(p−1)L−

∣∣Πσ⊤C
{
σ⊤

(
λ + ϕL

L−

)}∣∣2. If
C = R

d, then F (L−, ϕ
L) • A = p

2(p−1)

∫
L−

(
λ + ϕL

L−

)⊤
d〈M〉

(
λ + ϕL

L−

) andthe unique (mod. N ) optimal trading strategy is π∗ = (1 − p)−1
(
λ+ ϕL

L−

).Proof. Let β = (1−p)−1. We obtain σ⊤(arg maxC g) = Πσ⊤C
{
σ⊤β

(
λ+ ϕL

L−

)}by 
ompleting the square in (3.9), moreover, for any π∗ ∈ arg maxC g,
g(π∗) = 1

2L−

{
β
(
λ+

ϕL

L−

)⊤
σσ⊤

(
λ+

ϕL

L−

)
− β−1d2

σ⊤C

(
σ⊤β

(
λ+

ϕL

L−

))}
.In the 
ase where C , and hen
e σ⊤C , is a 
onvex 
one, Π := Πσ⊤C is single-valued, positively homogeneous, and Πx is orthogonal to x − Πx for any

x ∈ R
d. Writing Ψ := σ⊤

(
λ+ ϕL

L−

) we get g(π∗) = L−β(ΠΨ)⊤(Ψ− 1
2ΠΨ) =

L−
1
2β

(
ΠΨ)⊤

(
ΠΨ). Finally, ΠΨ = Ψ if C = R

d. The result follows fromCorollary 3.9.Of 
ourse the 
onsumption formula (3.3) and Remark 3.3 still apply.The BSDE for the un
onstrained 
ase C = R
d (and µ = 0, D = 1) waspreviously obtained in [20℄ in a similar spirit. A variant of the 
onstrainedBSDE for an It� pro
ess model (and µ = 0, D = 1) appears in [12℄, wherea 
onverse approa
h is taken: the equation is derived only formally andthen existen
e results for BSDEs are employed together with a veri�
ationargument. We shall extend that result in Se
tion 5 (Example 5.8) when westudy veri�
ation.If L is 
ontinuous, the BSDE of Corollary 3.12 simpli�es if it is statedfor log(L) rather than L, but in general the given form is more 
onvenientas the jumps are �hidden� in NL. 16



Remark 3.13. (i) Continuity of R does not imply that L is 
ontinuous. Forinstan
e, in the It� pro
ess model of Barndor�-Nielsen and Shephard [3℄ withLévy driven 
oe�
ients, the opportunity pro
ess is not 
ontinuous. See, e.g.,Theorem 3.3 and the subsequent remark in Kallsen and Muhle-Karbe [15℄. If
R satis�es the stru
ture 
ondition and the �ltration F is 
ontinuous, it 
learlyfollows that L is 
ontinuous. Here F is 
alled 
ontinuous if all F-martingalesare 
ontinuous, as, e.g., for the Brownian �ltration. In general, L is relatedto the predi
table 
hara
teristi
s of the asset returns rather than their levels.As an example, Lévy models have jumps but 
onstant 
hara
teristi
s; here
L turns out to be a smooth fun
tion (see [23℄).(ii) In the present setting we see that F has quadrati
 growth in ϕL,so that the Bellman equation is a �quadrati
 BSDE� (see also Example 5.8).In general, F does not satisfy the bounds whi
h are usually assumed inthe theory of su
h BSDEs. Together with existen
e results for the utilitymaximization problem (see the 
itations from the introdu
tion), the Bellmanequation yields various examples of BSDEs with the opportunity pro
ess asa solution. This in
ludes terminal 
onditions DT whi
h are integrable andunbounded (see also [22, Remark 2.4℄).4 Minimality of the Opportunity Pro
essThis se
tion 
onsiders the Bellman equation as su
h, having possibly manysolutions, and we 
hara
terize the opportunity pro
ess as the minimal solu-tion. As mentioned above, it seems more natural to use the BSDE formula-tion for this purpose (but see Remark 4.4). We �rst have to 
larify what wemean by a solution of the BSDE. We 
onsider R and A as given. Sin
e the�nite variation part in the BSDE is predi
table, a solution will 
ertainly bea spe
ial semimartingale. If ℓ is any spe
ial semimartingale, there exists aunique orthogonal de
omposition [13, III.4.24℄

ℓ = ℓ0 +Aℓ + ϕℓ
• Rc +W ℓ ∗ (µR − νR) +N ℓ, (4.1)using the same notation as in (3.7). These pro
esses are essentially unique,and so it su�
es to 
onsider the left hand side of the BSDE for the notionof a solution. (In BSDE theory, a solution would be, at least, a quadruple.)We de�ne the random fun
tion gℓ as in Corollary 3.9, with L repla
ed by ℓ.Sin
e ℓ is spe
ial, we have

∫

Rd×R

(|x|2 + |x′|2) ∧ (1 + |x′|) FR,ℓ(d(x, x′)) <∞ (4.2)and the arguments from Lemma A.2 show that gℓ is well de�ned on C 0 withvalues in R ∪ {sign(p)∞}. Hen
e we 
an 
onsider (formally at �rst) theBSDE (3.8) with L repla
ed by ℓ, i.e.,
ℓ = ℓ0−pU

∗(ℓ−) • µ−p max
y∈C∩C 0

gℓ(y) • A+ϕℓ
• Rc+W ℓ∗(µR−νR)+N ℓ (4.3)17



with terminal 
ondition ℓT = DT .De�nition 4.1. A 
àdlàg spe
ial semimartingale ℓ is 
alled a solution of theBellman equation (4.3) if
• ℓ, ℓ− > 0,
• there exists a C ∩ C 0,∗-valued pro
ess π̌ ∈ L(R) su
h that gℓ(π̌) =

supC∩C 0 gℓ <∞,
• ℓ and the pro
esses from (4.1) satisfy (4.3) with ℓT = DT .Moreover, we de�ne κ̌ := (D/ℓ)β , where β = (1 − p)−1. We 
all (π̌, κ̌) thestrategy asso
iated with ℓ, and for brevity, we also 
all (ℓ, π̌, κ̌) a solution.If the pro
ess π̌ is not unique, we 
hoose and �x one. The assumption

ℓ > 0 ex
ludes pathologi
al 
ases where ℓ jumps to zero and be
omes posi-tive immediately afterwards and thereby ensures that κ̌ is admissible. Morepre
isely, the following holds.Remark 4.2. Let (ℓ, π̌, κ̌) be a solution of the Bellman equation.(i) (π̌, κ̌) ∈ AfE.(ii) supC∩C 0 gℓ is a predi
table, A-integrable pro
ess.(iii) If p ∈ (0, 1), gℓ is �nite on C ∩ C 0.(iv) The 
ondition ℓ > 0 is automati
ally satis�ed if (a) p ∈ (0, 1) or if (b)
p < 0 and there is no intermediate 
onsumption and Assumptions 3.1are satis�ed.Proof. (i) We have ∫ T

0 κ̌s µ(ds) <∞ P -a.s. sin
e the paths of ℓ are boundedaway from zero. Moreover, ∫ T
0 Ut(κ̌tXt(π̌, κ̌))µ(dt) < ∞ as in the proofof (3.3) (stated after Lemma 3.5). This shows (π̌, κ̌) ∈ Af . The fa
t that

(π̌, κ̌) ∈ AfE is 
ontained in the proof of Lemma 4.9 below.(ii) We have 0 = gℓ(0) ≤ supC∩C 0 gℓ = gℓ(π̌). Hen
e supC∩C 0 gℓ • A iswell de�ned, and it is �nite be
ause otherwise (4.3) 
ould not hold.(iii) Note that p > 0 implies gℓ > −∞ by its de�nition and (4.2), while
gℓ <∞ by assumption.(iv) If p > 0, (4.3) states that Aℓ is de
reasing. As ℓ− > 0 implies ℓ ≥ 0,
ℓ is a supermartingale by Lemma 2.4. Sin
e ℓT = DT > 0, the minimumprin
iple for nonnegative supermartingales shows ℓ > 0. Under (b) theassertion is a 
onsequen
e of Theorem 4.5 below (whi
h shows ℓ ≥ L > 0)upon noting that the 
ondition ℓ > 0 is not used in its proof when there isno intermediate 
onsumption.It may seem debatable to make existen
e of the maximizer π̌ part of thede�nition of a solution. However, asso
iating a 
ontrol with the solution is
ru
ial for the following theory. Some justi�
ation is given by the followingresult for the 
ontinuous 
ase (where C 0,∗ = R

d).18



Proposition 4.3. Let ℓ be any 
àdlàg spe
ial semimartingale su
h that
ℓ, ℓ− > 0. Under Assumptions 3.11, (C1) and (C2), there exists a C ∩C 0,∗-valued predi
table pro
ess π̌ su
h that gℓ(π̌) = supC∩C 0 gℓ <∞ and any su
hpro
ess is R-integrable.Proof. As gℓ is analogous to (3.9), it is 
ontinuous and its supremum over
R

d is �nite. By 
ontinuity of R and the stru
ture 
ondition, π ∈ L(R) if andonly if ∫ T
0 π⊤ d〈M〉π =

∫ T
0 |σ⊤π|2 dA <∞ P -a.s.Assume �rst that C is 
ompa
t, then Lemma A.4 yields a measurablesele
tor π for arg maxC g. As in the proof of Corollary 3.12, σ⊤π ∈ Πσ⊤C σ⊤ψfor ψ := β

(
λ+ ϕℓ

ℓ−

), whi
h satis�es ∫ T
0 |σ⊤ψ|2 dA <∞ by de�nition of λ and

ϕL. We note that |σ⊤π| ≤ |σ⊤ψ| + |σ⊤π − σ⊤ψ| ≤ 2|σ⊤ψ| due to thede�nition of the proje
tion and 0 ∈ C .In the general 
ase we approximate C by a sequen
e of 
ompa
t 
on-straints C n := C ∩ {x ∈ R
d : |x| ≤ n}, ea
h of whi
h yields a sele
tor πnfor arg maxC n g. By the above, |σ⊤πn| ≤ 2|σ⊤ψ|, so the sequen
e (σ⊤πn)nis bounded for �xed (ω, t). A random index argument as in the proof ofLemma A.4 yields a sele
tor ϑ for a 
luster point of this sequen
e. We have

ϑ ∈ σ⊤C by 
losedness of this set and we �nd a sele
tor π̌ for the preim-age ((σ⊤)−1ϑ) ∩ C using [24, 1Q℄. We have π̌ ∈ arg maxC g as the sets C nin
rease to C and ∫ T
0 |σ⊤π̌|2 dA ≤ 2

∫ T
0 |σ⊤ψ|2 dA <∞ shows π̌ ∈ L(R).Another example for the 
onstru
tion of π̌ is given in [23, �5℄. In general,two ingredients are needed: Existen
e of a maximizer for �xed (ω, t) willtypi
ally require a 
ompa
tness 
ondition in the form of a no-arbitrage as-sumption (in the previous proof, this is the stru
ture 
ondition). Moreover,a measurable sele
tion is required; here the te
hniques from the appendi
esmay be useful.Remark 4.4. The BSDE formulation of the Bellman equation has the ad-vantage that we 
an 
hoose A based on R and speak about the 
lass ofall solutions. However, we do not want to write proofs in this 
umber-some notation. On
e we �x a solution ℓ (and maybe L, and �nitely manyother semimartingales), we 
an 
hoose a new referen
e pro
ess Ã = A + A′(where A′ is in
reasing), with respe
t to whi
h our semimartingales admitdi�erential 
hara
teristi
s; in parti
ular we 
an use the joint 
hara
teristi
s

(bR,ℓ, cR,ℓ, FR,ℓ; Ã). As we 
hange A, all drift rates 
hange in that theyare multiplied by dÃ/dA, so any (in)equalities between them are preserved.With this in mind, we shall use the joint 
hara
teristi
s of (R, ℓ) in the se-quel without further 
omment and treat the two formulations of the Bellmanequation as equivalent.Our de�nition of a solution of the Bellman equation is loose in terms ofintegrability assumptions. Even in the 
ontinuous 
ase, it is un
lear �how19



many� solutions exist. The next result shows that we 
an always identify Lby taking the smallest one, i.e., L ≤ ℓ for any solution ℓ.Theorem 4.5. Under Assumptions 3.1, the opportunity pro
ess L is 
har-a
terized as the minimal solution of the Bellman equation.Remark 4.6. As a 
onsequen
e, the Bellman equation has a bounded solu-tion if and only if the opportunity pro
ess is bounded (and similarly for otherintegrability properties). In 
onjun
tion with [22, �4.2℄ this yields examplesof quadrati
 BSDEs whi
h have bounded terminal value (for DT bounded),but no bounded solution.The proof of Theorem 4.5 is based on the following result; it is the fun-damental property of any Bellman equation.Proposition 4.7. Let (ℓ, π̌, κ̌) be a solution of the Bellman equation. Forany (π, κ) ∈ Af ,
Z(π, κ) := ℓ1

p

(
X(π, κ)

)p
+

∫
Us

(
κsXs(π, κ)

)
µ(ds) (4.4)is a semimartingale with nonpositive drift rate. Moreover, Z(π̌, κ̌) is a lo
almartingale.Proof. Let (π, κ) ∈ Af . Note that Z := Z(π, κ) satis�es sign(p)Z ≥ 0,hen
e has a well de�ned drift rate aZ by Remark 2.3. The drift rate 
an be
al
ulated as in Lemma 3.4: If f ℓ is de�ned similarly to the fun
tion f inthat lemma but with L repla
ed by ℓ, then

aZ = X(π, κ)p−
{
p−1aℓ + f ℓ(κ) dµ

dA + gℓ(π)
}

= X(π, κ)p−
{(
f ℓ(κ) − f ℓ(κ̌)

) dµ
dA + gℓ(π) − gℓ(π̌)

}
.This is nonpositive be
ause κ̌ and π̌ maximize f ℓ and gℓ. For (π, κ) :=

(π̌, κ̌) we have aZ = 0 and Z is a σ-martingale, thus a lo
al martingale as
sign(p)Z ≥ 0.Remark 4.8. In Proposition 4.7, �semimartingale with nonpositive driftrate� 
an be repla
ed by �σ-supermartingale� if gℓ is �nite on C ∩ C 0.Theorem 4.5 follows from the next lemma (whi
h is a
tually stronger).We re
all that for p < 0 the opportunity pro
ess L 
an be de�ned withoutfurther assumptions.Lemma 4.9. Let ℓ be a solution of the Bellman equation. If p < 0, then
L ≤ ℓ. For p ∈ (0, 1), the same holds if (2.2) is satis�ed and there exists anoptimal strategy. 20



Proof. Let (ℓ, π̌, κ̌) be a solution and de�ne Z(π, κ) as in (4.4).Case p < 0: We 
hoose (π, κ) := (π̌, κ̌). As Z(π̌, κ̌) is a negative lo-
al martingale by Proposition 4.7, it is a submartingale. In parti
ular,
E[ZT (π̌, κ̌)] > −∞, and using LT = DT , this is the statement that theexpe
ted utility is �nite, i.e., (π̌, κ̌) ∈ AfE�this 
ompletes the proof of Re-mark 4.2(i). Re
all that µ◦ = µ + δ{T}. With X̌ := X(π̌, κ̌) and č := κ̌X̌ ,and using ℓT = DT = LT , we dedu
e
ℓt

1
pX̌

p
t +

∫ t

0
Us(čs)µ(ds) = Zt(π̌, κ̌) ≤ E

[
ZT (π̌, κ̌)

∣∣Ft

]

≤ ess supc̃∈A(π̌,č,t)E
[ ∫ T

t
Us(c̃s)µ

◦(ds)
∣∣∣Ft

]
+

∫ t

0
Us(čs)µ(ds)

= Lt
1
pX̌

p
t +

∫ t

0
Us(čs)µ(ds),where the last equality holds by (2.3). As 1

pX̌
p
t < 0, we have ℓt ≥ Lt.Case p ∈ (0, 1): We 
hoose (π, κ) := (π̂, κ̂) to be an optimal strategy.Then Z(π̂, κ̂) ≥ 0 is a supermartingale by Proposition 4.7 and Lemma 2.4(iii),and we obtain

ℓt
1
pX̂

p
t +

∫ t

0
Us(ĉs)µ(ds) = Zt(π̂, κ̂) ≥ E

[
ZT (π̂, κ̂)

∣∣Ft

]

= E
[ ∫ T

0
Us(ĉs)µ

◦(ds)
∣∣∣Ft

]
= Lt

1
pX̂

p
t +

∫ t

0
Us(ĉs)µ(ds)by the optimality of (π̂, κ̂) and (2.3). More pre
isely, we have used the fa
tthat (π̂, κ̂) is also 
onditionally optimal (see [22, Remark 3.3℄). As 1

pX̂
p
t > 0,we 
on
lude ℓt ≥ Lt.5 Veri�
ationSuppose that we have found a solution of the Bellman equation; then we wantto know whether it is the opportunity pro
ess and whether the asso
iatedstrategy is optimal. In appli
ations, it might not be 
lear a priori thatan optimal strategy exists or even that the utility maximization problemis �nite. Therefore, we stress that in this se
tion these properties are notassumed. Also, we do not need the assumptions on C made in Se
tion 2.4�they are not ne
essary be
ause we start with a given solution.Generally speaking, veri�
ation involves the 
andidate for an optimal
ontrol, (π̌, κ̌) in our 
ase, and all the 
ompeting ones. It is often verydi�
ult to 
he
k a 
ondition involving all these 
ontrols, so it is desirable tohave a veri�
ation theorem whose assumptions involve only (π̌, κ̌).We present two veri�
ation approa
hes. The �rst one is via the value pro-
ess and is 
lassi
al for general dynami
 programming: it uses little stru
ture21



of the given problem. For p ∈ (0, 1), it yields the desirable result. However,in a general setting, this is not the 
ase for p < 0. The se
ond approa
huses the 
on
avity of the utility fun
tion. To fully exploit this and make theveri�
ation 
onditions ne
essary, we will assume that C is 
onvex. In this
ase, we shall obtain the desired veri�
ation theorem for all values of p.5.1 Veri�
ation via the Value Pro
essThe basis of this approa
h is the following simple result; we state it separatelyfor better 
omparison with Lemma 5.10 below. In the entire se
tion, Z(π, κ)is de�ned by (4.4) whenever ℓ is given.Lemma 5.1. Let ℓ be any positive 
àdlàg semimartingale with ℓT = DT andlet (π̌, κ̌) ∈ A. Assume that for all (π, κ) ∈ AfE, the pro
ess Z(π, κ) is asupermartingale. Then Z(π̌, κ̌) is a martingale if and only if (2.2) holds and
(π̌, κ̌) is optimal and ℓ = L.Proof. �⇒�: Re
all that Z0(π, κ) = ℓ0

1
px

p
0 does not depend on (π, κ) andthat E[ZT (π, κ)] = E[

∫ T
0 Ut(κt(Xt(π, κ)))µ

◦(dt)] is the expe
ted utility 
or-responding to (π, κ). With X̌ := X(π̌, κ̌), the (super)martingale 
ondi-tion implies that E[
∫ T
0 Ut(κ̌tX̌t)µ

◦(dt)] ≥ E[
∫ T
0 Ut(κtXt(π, κ))µ

◦(dt)] forall (π, κ) ∈ AfE. Sin
e for (π, κ) ∈ A\AfE the expe
ted utility is −∞, thisshows that (π̌, κ̌) is optimal with E[ZT (π̌, κ̌)] = Z0(π̌, κ̌) = ℓ0
1
px

p
0 < ∞. Inparti
ular, the opportunity pro
ess L is well de�ned. By Proposition 2.2,

L1
pX̌

p +
∫
Us(čs)µ(ds) is a martingale, and as its terminal value equals

ZT (π̌, κ̌), we dedu
e ℓ = L by 
omparison with (4.4), using X̌ > 0. The
onverse is 
ontained in Proposition 2.2.We 
an now state our �rst veri�
ation theorem.Theorem 5.2. Let (ℓ, π̌, κ̌) be a solution of the Bellman equation.(i) If p ∈ (0, 1), the following are equivalent:(a) Z(π̌, κ̌) is of 
lass (D),(b) Z(π̌, κ̌) is a martingale,(
) (2.2) holds and (π̌, κ̌) is optimal and ℓ = L.(ii) If p < 0, the following are equivalent:(a) Z(π, κ) is of 
lass (D) for all (π, κ) ∈ AfE,(b) Z(π, κ) is a supermartingale for all (π, κ) ∈ AfE,(
) (π̌, κ̌) is optimal and ℓ = L.Proof. When p > 0 and (π, κ) ∈ Af , Z(π, κ) is positive and aZ(π,κ) ≤ 0 byProposition 4.7, hen
e Z(π, κ) is a supermartingale a

ording to Lemma 2.4.By Proposition 4.7, Z(π̌, κ̌) is a lo
al martingale, so it is a martingale if andonly if it is of 
lass (D). Lemma 5.1 implies the result.22



If p < 0, Z(π, κ) is negative. Thus the lo
al martingale Z(π̌, κ̌) is asubmartingale, and a martingale if and only if it is also a supermartingale.Note that a 
lass (D) semimartingale with nonpositive drift rate is a super-martingale. Conversely, any negative supermartingale Z is of 
lass (D) dueto the bounds 0 ≥ Z ≥ E[ZT |F]. Again, Lemma 5.1 implies the result.Theorem 5.2 is �as good as it gets� for p > 0, but as announ
ed, the resultfor p < 0 is not satisfa
tory. In parti
ular settings, this 
an be improved.Remark 5.3 (p < 0). (i) Assume we know a priori that if there is anoptimal strategy (π̂, κ̂) ∈ A, then
(π̂, κ̂) ∈ A(D) :=

{
(π, κ) ∈ A : X(π, κ)p is of 
lass (D)}.In this 
ase we 
an redu
e our optimization problem to the 
lass A(D). Iffurthermore ℓ is bounded (whi
h is not a strong assumption when p < 0), the
lass (D) 
ondition in Theorem 5.2(ii) is automati
ally satis�ed for (π, κ) ∈

A(D). The veri�
ation then redu
es to 
he
king that (π̌, κ̌) ∈ A(D).(ii) How 
an we establish the 
ondition needed for (i)? One possibilityis to show that L is uniformly bounded away from zero; then the 
onditionfollows (see the argument in the next proof). Of 
ourse, L is not knownwhen we try to apply this. However, [22, �4.2℄ gives veri�able 
onditionsfor L to be (bounded and) bounded away from zero. They are stated forthe un
onstrained 
ase C = R
d, but 
an be used nevertheless: if LR

d is theopportunity pro
ess 
orresponding to C = R
d, the a
tual L satis�es L ≥ LR

dbe
ause the supremum in (2.3) is taken over a smaller set in the 
onstrained
ase.In the situation where ℓ and L−1 are bounded, we 
an also use the fol-lowing result. Note also its use in Remark 3.3(ii) and re
all that 1/0 := ∞.Corollary 5.4. Let p < 0 and let (ℓ, π̌, κ̌) be a solution of the Bellmanequation. Let L be the opportunity pro
ess and assume that ℓ/L is uniformlybounded. Then (π̌, κ̌) is optimal and ℓ = L.Proof. Fix arbitrary (π, κ) ∈ AfE and let X = X(π, κ). The pro
ess
L1

p

(
X(π, κ)

)p
+

∫
Us(κsXs)µ(ds) is a negative supermartingale by Propo-sition 2.2, hen
e of 
lass (D). Sin
e ∫

Us(κsXs)µ(ds) is de
reasing and itsterminal value is integrable (de�nition of AfE), L1
pX

p is also of 
lass (D).The assumption yields that ℓ1
pX

p is of 
lass (D), and then so is Z(π, κ).As bounded solutions are of spe
ial interest in BSDE theory, let us notethe following 
onsequen
e.Corollary 5.5. Let p < 0. Under Assumptions 3.1 the following are equiv-alent: 23



(i) L is bounded and bounded away from zero,(ii) there exists a unique bounded solution of the Bellman equation, andthis solution is bounded away from zero.One 
an note that in the setting of [22, �4.2℄, these 
onditions are furtherequivalent to a reverse Hölder inequality for the market model.We give an illustration of Theorem 5.2 also for the 
ase p ∈ (0, 1). Thusfar, we have 
onsidered only the given exponent p and assumed (2.2). Inmany situations, there will exist some p0 ∈ (p, 1) su
h that, if we 
onsiderthe exponent p0 instead of p, the utility maximization problem is still �nite.Note that by Jensen's inequality this is a stronger assumption. We de�nefor q0 ≥ 1 the 
lass of semimartingales ℓ bounded in Lq0(P ),
B(q0) := {ℓ : supτ‖ℓτ‖Lq0 (P ) <∞},where the supremum ranges over all stopping times τ .Corollary 5.6. Let p ∈ (0, 1) and let there be a 
onstant k1 > 0 su
h that

D ≥ k1. Assume that the utility maximization problem is �nite for some
p0 ∈ (p, 1) and let q0 ≥ 1 be su
h that q0 > p0/(p0 − p). If (ℓ, π̌, κ̌) is asolution of the Bellman equation with ℓ ∈ B(q0), then ℓ = L and (π̌, κ̌) isoptimal.Proof. Let ℓ ∈ B(q0) be a solution, (π̌, κ̌) the asso
iated strategy, and X̌ =
X(π̌, κ̌). By Theorem 5.2 and an argument as in the previous proof, it su�
esto show that ℓX̌p is of 
lass (D). Let δ > 1 be su
h that δ/q0 + δp/p0 = 1.For every stopping time τ , Hölder's inequality yields

E[(ℓτ X̌
p
τ )δ ] = E[(ℓq0

τ )δ/q0(X̌p0

τ )δp/p0 ] ≤ E[ℓq0

τ ]δ/q0E[X̌p0

τ ]δp/p0 .We show that this is bounded uniformly in τ ; then {ℓτ X̌
p
τ : τ stopping time}is bounded in Lδ(P ) and hen
e uniformly integrable. Indeed, E[ℓq0

τ ] isbounded by assumption. The set of wealth pro
esses 
orresponding to admis-sible strategies is stable under stopping. Therefore E[DT
1
p0
X̌p0

τ ] ≤ u(p0)(x0),the value fun
tion for the utility maximization problem with exponent p0.The result follows as DT ≥ k1.Remark 5.7. In [22, Example 4.6℄ we give a 
ondition whi
h implies that theutility maximization problem is �nite for all p0 ∈ (0, 1). Conversely, givensu
h a p0 ∈ (p, 1), one 
an 
he
k with Jensen's inequality that L ∈ B(p0/p)if D is uniformly bounded from above.Example 5.8. We apply our results in an It� model with bounded meanvarian
e tradeo� pro
ess together with an existen
e result for BSDEs. Thefollowing generalizes [12, �3℄. Let W be an m-dimensional standard Brown-ian motion (m ≥ d) and assume that F is generated by W . We 
onsider
dRt = bt dt+ σt dWt,24



where b is predi
table R
d-valued and σ is predi
table R

d×m-valued witheverywhere full rank; moreover, we 
onsider 
onstraints C satisfying (C1)and (C2). We are in the situation of Assumptions 3.3 with dM = σ dW and
λ = (σσ⊤)−1b. The pro
ess θ := σ⊤λ is 
alled market pri
e of risk. Weassume that there are 
onstants ki > 0 su
h that

0 < k1 ≤ D ≤ k2 and ∫ T

0
|θs|

2 ds ≤ k3.The latter 
ondition is 
alled bounded mean-varian
e tradeo�. Note that
dQ/dP = E(−λ • M)T = E(−θ • W )T de�nes a lo
al martingale measurefor E(R). By [22, �4.2℄ the utility maximization problem is �nite for all pand the opportunity pro
ess L is bounded and bounded away from zero. Itis 
ontinuous due to Remark 3.13(i).As suggested above, we write the Bellman BSDE for Y := log(L) ratherthan L in this setting. If Y = AY + ϕY • M +NY is the Kunita-Watanabede
omposition, we write Z := σ⊤ϕY and 
hoose Z⊥ su
h that Z⊥ • W = NYby Brownian representation. The orthogonality of the de
omposition implies
σ⊤Z⊥ = 0 and that Z⊤Z⊥ = 0. We write δ = 1 if there is intermediate
onsumption and δ = 0 otherwise. Then It�'s formula and Corollary 3.12(with At := t) yield the BSDE

dY = f(Y,Z,Z⊥) dt + (Z + Z⊥) dW ; YT = log(DT ) (5.1)with
f(Y,Z,Z⊥) = 1

2p(1 − p) d2
σ⊤C

(
β(θ + Z)

)
+ q

2 |θ + Z|2

+ δ(p − 1)Dβ exp
(
(q − 1)Y

)
− 1

2(|Z|2 + |Z⊥|2).Here β = (1−p)−1 and q = p/(p−1); the dependen
e on (ω, t) is suppressedin the notation. Using the orthogonality relations and p(1− p)β2 = −q, one
an 
he
k that f(Y,Z,Z⊥) = f(Y,Z+Z⊥, 0) =: f(Y, Z̃), where Z̃ := Z+Z⊥.As 0 ∈ C , we have d2
σ⊤C

(x) ≤ |x|2. Hen
e there exist a 
onstant C > 0 andan in
reasing 
ontinuous fun
tion φ su
h that
|f(y, z̃)| ≤ C

(
|θ|2 + φ(y) + |z̃|2

)
.The following monotoni
ity property handles the exponential nonlinearity
aused by the 
onsumption: As p− 1 < 0 and q − 1 < 0,

−y
[
f(y, z̃) − f(0, z̃)

]
≤ 0.Thus we have Briand and Hu's [4, Condition (A.1)℄ after noting that they
all −f what we 
all f , and [4, Lemma 2℄ states the existen
e of a boundedsolution Y to the BSDE (5.1). Let us 
he
k that ℓ := exp(Y ) is the op-portunity pro
ess. We de�ne an asso
iated strategy (π̌, κ̌) by κ̌ := (D/ℓ)β25



and Proposition 4.3; then we have a solution (ℓ, π̌, κ̌) of the Bellman equa-tion in the sense of De�nition 4.1. For p < 0 (p ∈ (0, 1)), Corollary 5.4(Corollary 5.6) yields ℓ = L and the optimality of (π̌, κ̌). In fa
t, the sameveri�
ation argument applies if we repla
e π̌ by any other predi
table C -valued π∗ su
h that σ⊤π∗ ∈ Πσ⊤C {β(θ + Z)}; re
all from Proposition 4.3that π∗ ∈ L(R) automati
ally.Summing up, L = exp(Y ) is the opportunity pro
ess and the set ofoptimal strategies equals the set of all (π∗, κ̂) su
h that κ̂ = (D/L)β µ◦-a.e.and π∗ is predi
table, C -valued and σ⊤π∗ ∈ Πσ⊤C {β(θ + Z)} P ⊗ dt-a.e.One 
an remark that the previous arguments show Y ′ = log(L) whenever
Y ′ is a solution of the BSDE (5.1) whi
h is uniformly bounded from above.Hen
e we have proved uniqueness for (5.1) in this 
lass of solutions, whi
his not immediate from BSDE theory.We 
lose this se
tion with a formula intended for future appli
ations.Remark 5.9. Let (ℓ, π̌, κ̌) be a solution of the Bellman equation. Sometimesexponential formulas 
an be used to verify that Z(π̌, κ̌) is of 
lass (D).Let h be a predi
table 
ut-o� fun
tion su
h that π̌⊤h(x) is bounded, e.g.,
h(x) = x1{|x|≤1}∩{|π̌⊤x|≤1}, and de�ne Ψ to be the lo
al martingale
ℓ−1
−

• M ℓ + pπ̌ • Rc + pπ̌⊤h(x) ∗ (µR − νR) + p(x′/ℓ−)π̌⊤h(x) ∗ (µR,ℓ − νR,ℓ)

+ (1 + x′/ℓ−)
{
(1 + π̌⊤x)p − 1 − pπ̌⊤h(x)

}
∗ (µR,ℓ − νR,ℓ).Then E(Ψ) > 0, and if E(Ψ) is of 
lass (D), then Z(π̌, κ̌) is also of 
lass (D).Proof. Let Z = Z(π̌, κ̌). By a 
al
ulation as in the proof of Lemma 3.4 andthe lo
al martingale 
ondition from Proposition 4.7, (1

pX̌
p
−)−1 • Z = ℓ− • Ψ.Hen
e Z = Z0E(Ψ) in the 
ase without intermediate 
onsumption. Forthe general 
ase, we have seen in the proof of Corollary 5.4 that Z is of
lass (D) whenever ℓ1

pX̌
p is. Writing the de�nition of κ̌ as κ̌p−1 = ℓ−/D

µ-a.e., we have ℓ1
pX̌

p = Z −
∫
κ̌ℓ−

1
pX̌

p dµ = (ℓ−
1
pX̌

p
−) • (Ψ − κ̌ • µ), hen
e

ℓ1
pX̌

p = Z0E(Ψ − κ̌ • µ) = Z0E(Ψ) exp(−κ̌ • µ). It remains to note that
exp(−κ̌ • µ) ≤ 1.5.2 Veri�
ation via De�atorThe goal of this se
tion is a veri�
ation theorem whi
h involves only the 
an-didate for the optimal strategy and holds for general semimartingale models.Our plan is as follows. Let (ℓ, π̌, κ̌) be a solution of the Bellman equationand assume for the moment that C is 
onvex. As the 
on
ave fun
tion gℓhas a maximum at π̌, the dire
tional derivatives at π̌ in all dire
tions shouldbe nonpositive (if they 
an be de�ned). A 
al
ulation will show that, at thelevel of pro
esses, this yields a supermartingale property whi
h is well knownfrom duality theory and allows for veri�
ation. In the 
ase of non-
onvex26




onstraints, the dire
tional derivatives need not be de�ned in any sense. Nev-ertheless, the formally 
orresponding quantities yield the expe
ted result. Tomake the �rst order 
onditions ne
essary, we later spe
ialize to 
onvex C . Asin the previous se
tion, we �rst state a basi
 result; it is essentially 
lassi
al.Lemma 5.10. Let ℓ be any positive 
àdlàg semimartingale with ℓT = DT .Suppose there exists (π̌, κ̌) ∈ A with κ̌ = (D/ℓ)β and let X̌ := X(π̌, κ̌).Assume Y := ℓX̌p−1 has the property that for all (π, κ) ∈ A,
Γ(π, κ) := X(π, κ)Y +

∫
κsXs(π, κ)Ys µ(ds)is a supermartingale. Then Γ(π̌, κ̌) is a martingale if and only if (2.2) holdsand (π̌, κ̌) is optimal and ℓ = L.Proof. �⇒�: Let (π, κ) ∈ A and denote c = κX(π, κ) and č = κ̌X̌ . Notethe partial derivative ∂U(č) = Dκ̌p−1X̌p−1 = ℓX̌p−1 = Y . Con
avity of Uimplies U(c) − U(č) ≤ ∂U(č)(c− č) = Y (c− č), hen
e

E
[ ∫ T

0
Us(cs)µ

◦(ds)
]
− E

[ ∫ T

0
Us(čs)µ

◦(ds)
]
≤ E

[ ∫ T

0
Ys(cs − čs)µ

◦(ds)
]

= E[ΓT (π, κ)] − E[ΓT (π̌, κ̌)].Let Γ(π̌, κ̌) be a martingale; then Γ0(π, κ) = Γ0(π̌, κ̌) and the supermartin-gale property imply that the last line is nonpositive. As (π, κ) was arbitrary,
(π̌, κ̌) is optimal with expe
ted utility E[ ∫ T

0 Us(čs)µ
◦(ds)

]
= E[1pΓT (π̌, κ̌)] =

1
pΓ0(π̌, κ̌) = 1

px
p
0ℓ0 <∞. The rest is as in the proof of Lemma 5.1.The pro
ess Y is a supermartingale de�ator in the language of [16℄. Werefer to [22℄ for the 
onne
tion of the opportunity pro
ess with 
onvex du-ality, whi
h in fa
t suggests Lemma 5.10. Note that unlike Z(π, κ) from theprevious se
tion, Γ(π, κ) is positive for all values of p.Our next goal is to link the supermartingale property to lo
al �rst order
onditions. Let y, y̌ ∈ C ∩C 0 (we will plug in π̌ for y̌). The formal dire
tionalderivative of gℓ at y̌ in the dire
tion of y is (y− y̌)⊤∇gℓ(y̌) = Gℓ(y, y̌), where,by formal di�erentiation under the integral sign,

Gℓ(y, y̌) := (5.2)
ℓ−(y − y̌)⊤

(
bR + cRℓ

ℓ−
+ (p− 1)cRy̌

)
+

∫

Rd×R

(y − y̌)⊤x′h(x)FR,ℓ(d(x, x′))

+

∫

Rd×R

(ℓ− + x′)
{
(1 + y̌⊤x)p−1(y − y̌)⊤x− (y − y̌)⊤h(x)

}
FR,ℓ(d(x, x′)).We take this expression as the de�nition ofGℓ(y, y̌) whenever the last integralis well de�ned (the �rst one is �nite by (4.2)). The di�erentiation 
annot bejusti�ed in general, but see the subsequent se
tion.27



Lemma 5.11. Let y ∈ C 0 and y̌ ∈ C 0,∗∩{gℓ > −∞}. Then Gℓ(y, y̌) is wellde�ned with values in (−∞,∞] and G(·, y̌) is lower semi
ontinuous on C 0.Proof. Writing (y− y̌)⊤x = 1 + y⊤x− (1 + y̌⊤x), we 
an express Gℓ(y, y̌) as
ℓ−(y − y̌)⊤

(
bR + cRℓ

ℓ−
+ (p− 1)cRy̌

)
+

∫

Rd×R

(y − y̌)⊤x′h(x)FR,ℓ(d(x, x′))

+

∫

Rd×R

(ℓ− + x′)
{ 1 + y⊤x

(1 + y̌⊤x)1−p
− 1 − (y + (p− 1)y̌)⊤h(x)

}
FR,ℓ(d(x, x′))

−

∫

Rd×R

(ℓ− + x′)
{
(1 + y̌⊤x)p − 1 − py̌⊤h(x)

}
FR,ℓ(d(x, x′)).The �rst integral is �nite and 
ontinuous in y by (4.2). The last inte-gral above o

urs in the de�nition of gℓ(y̌); it is �nite if gℓ(y̌) > −∞and equals +∞ otherwise. Finally, 
onsider the se
ond integral above and
all its integrand ψ = ψ(y, y̌, x, x′). The Taylor expansion 1+y⊤x

(1+y̌⊤x)1−p =

1 + (y + (p − 1)y̌)⊤x + (p−1)
2

(
2y + (p − 2)y̌

)⊤
x x⊤y̌ + o(|x|3) shows that∫

{|x|+|x′|≤1} ψ dF
R,ℓ is well de�ned and �nite. It also shows that given a
ompa
t K ⊂ R
d, there is ε > 0 su
h that ∫

{|x|+|x′|≤ε}ψ dF
R,ℓ is 
ontinuousin y ∈ K (and also in y̌ ∈ K). The details are as in Lemma A.2. Moreover,for y ∈ C 0 we have the lower bound ψ ≥ (ℓ−+x′){−1−(y+(p−1)y̌)⊤h(x)},whi
h is FR,ℓ-integrable on {|x| + |x′| > ε} for any ε > 0, again by (4.2).The result now follows by Fatou's lemma.We 
an now 
onne
t the lo
al �rst order 
onditions for gℓ and the globalsupermartingale property: it turns out that the formal derivative Gℓ deter-mines the sign of the drift rate of Γ (
f. (5.3) below), whi
h leads to thefollowing proposition. Here and in the sequel, we denote X̌ = X(π̌, κ̌).Proposition 5.12. Let (ℓ, π̌, κ̌) be a solution of the Bellman equation and

(π, κ) ∈ A. Then Γ(π, κ) := ℓX̌p−1X(π, κ) +
∫
κsℓsX̌

p−1
s Xs(π, κ)µ(ds) is asupermartingale (lo
al martingale) if and only if Gℓ(π, π̌) ≤ 0 (= 0).Proof. De�ne R̄ = R − (x − h(x)) ∗ µR as in (2.4). We abbreviate π̄ :=

(p − 1)π̌ + π and similarly κ̄ := (p − 1)κ̌ + κ. We defer to Lemma C.1 a
al
ulation showing that (
X̌p−1

− X−(π, κ)
)−1

•

(
ℓX̌p−1X(π, κ)

) equals
ℓ− ℓ0 + ℓ−π̄ • R̄− ℓ−κ̄ • µ+ ℓ−(p− 1)

( p−2
2 π̌ + π

)⊤
cRπ̌ • A+ π̄⊤cRℓ

• A

+ π̄⊤x′h(x) ∗ µR,ℓ+ (ℓ− + x′)
{
(1 + π̌⊤x)p−1(1 + π⊤x) − 1 − π̄⊤h(x)

}
∗ µR,ℓ.Here we use a predi
table 
ut-o� fun
tion h su
h that π̄⊤h(x) is bounded,e.g., h(x) = x1{|x|≤1}∩{|π̄⊤x|≤1}. Sin
e (ℓ, π̌, κ̌) is a solution, the drift of ℓ is

Aℓ = −pU∗(ℓ−) • µ− pgℓ(π̌) • A = (p− 1)ℓ−κ̌ • µ− pgℓ(π̌) • A.28



By Remark 2.3, Γ := Γ(π, κ) has a well de�ned drift rate aΓ with values in
(−∞,∞]. From the two formulas above and (2.4) we dedu
e

aΓ = X̌p−1
− X(π, κ)−G

ℓ(π, π̌). (5.3)Here X̌p−1
− X(π, κ)− > 0 by admissibility. If Γ is a supermartingale, then

aΓ ≤ 0, and the 
onverse holds by Lemma 2.4 in view of Γ ≥ 0.We obtain our se
ond veri�
ation theorem from Proposition 5.12 andLemma 5.10.Theorem 5.13. Let (ℓ, π̌, κ̌) be a solution of the Bellman equation. Assumethat P ⊗A-a.e., Gℓ(y, π̌) ∈ [−∞, 0] for all y ∈ C ∩ C 0,∗. Then
Γ(π̌, κ̌) := ℓX̌p +

∫
κ̌sℓsX̌

p
s µ(ds)is a lo
al martingale. It is a martingale if and only if (2.2) holds and (π̌, κ̌)is optimal and ℓ = L is the opportunity pro
ess.If C is not 
onvex, one 
an think of situations where the dire
tionalderivative of gℓ at the maximum is positive�i.e., the assumption on Gℓ(y, π̌)is su�
ient but not ne
essary. This 
hanges in the subsequent se
tion.5.2.1 The Convex-Constrained CaseWe assume in this se
tion that C is 
onvex; then C ∩C 0 is also 
onvex. Ouraim is to show that the nonnegativity 
ondition on Gℓ in Theorem 5.13 isautomati
ally satis�ed in this 
ase. We start with an elementary but 
ru
ialobservation about �di�erentiation under the integral sign�.Lemma 5.14. Consider two distin
t points y0 and y̌ in R

d and let C =
{ηy0 + (1 − η)y̌ : 0 ≤ η ≤ 1}. Let ρ be a fun
tion on Σ × C, where Σ issome Borel spa
e with measure ν, su
h that x 7→ ρ(x, y) is ν-measurable,∫
ρ+(x, ·) ν(dx) < ∞ on C, and y 7→ ρ(x, y) is 
on
ave. In parti
ular, thedire
tional derivative

Dy̌,yρ(x, ·) := lim
ε→0+

ρ
(
x, y̌ + ε(y − y̌)

)
− ρ(x, y̌)

εexists in (−∞,∞] for all y ∈ C. Let α be another 
on
ave fun
tion on C.De�ne γ(y) := α(y)+
∫
ρ(x, y) ν(dx) and assume that γ(y0) and γ(y̌) are�nite and γ(y̌) = maxC γ. Then for all y ∈ C,

Dy̌,yγ = Dy̌,yα+

∫
Dy̌,yρ(x, ·) ν(dx) ∈ (−∞, 0] (5.4)and in parti
ular Dy̌,yρ(x, ·) <∞ ν(dx)-a.e.29



Proof. Note that γ is 
on
ave, hen
e we also have γ > −∞ on C. Let v =
(y− y̌) and ε > 0, then γ(y̌+εv)−γ(y̌)

ε = α(y̌+εv)−α(y̌)
ε +

∫ ρ(x,y̌+εv)−ρ(x,y̌)
ε ν(dx).By 
on
avity, these quotients in
rease monotoni
ally as ε ↓ 0, in parti
ulartheir limits exist. The left hand side is nonpositive as y̌ is a maximum andmonotone 
onvergen
e yields (5.4).For 
ompleteness, let us mention that if γ(y) = −∞, there are exampleswhere the left hand side of (5.4) is −∞ but the right hand side is �nite;we shall deal with this 
ase separately. We dedu
e the following version ofTheorem 5.13; as dis
ussed, it involves only the 
ontrol (π̌, κ̌).Theorem 5.15. Let (ℓ, π̌, κ̌) be a solution of the Bellman equation and as-sume that C is 
onvex. Then Γ(π̌, κ̌) := ℓX̌p +

∫
κ̌sℓsX̌

p
s µ(ds) is a lo
almartingale. It is a martingale if and only if (2.2) holds and (π̌, κ̌) is optimaland ℓ = L.Proof. To apply Theorem 5.13, we have to 
he
k that Gℓ(y, π̌) ∈ [−∞, 0] for

y ∈ C ∩ C 0,∗. Re
all that π̌ is a maximizer for gℓ and that Gℓ was de�nedby di�erentiation under the integral sign. Lemma 5.14 yields Gℓ(y, π̌) ≤ 0whenever y ∈ {gℓ > −∞}. This ends the proof for p ∈ (0, 1) as gℓ is then�nite. If p < 0, the de�nition of gℓ and Remark A.7 show that the set
{gℓ > −∞} 
ontains the set ⋃

η∈[0,1) η(C ∩ C 0) whi
h, in turn, is 
learlydense in C ∩ C 0,∗. Hen
e {gℓ > −∞} is dense in C ∩ C 0,∗ and we obtain
Gℓ(y, π̌) ∈ [−∞, 0] for all y ∈ C ∩ C 0,∗ using the lower semi
ontinuity fromLemma 5.11.Remark 5.16. (i) We note that Γ(π̌, κ̌) = pZ(π̌, κ̌) if Z is de�ned asin (4.4). In parti
ular, Remark 5.9 
an be used also for Γ(π̌, κ̌).(ii) Muhle-Karbe [21℄ 
onsiders 
ertain one-dimensional (un
onstrained)a�ne models and introdu
es a su�
ient optimality 
ondition in the form ofan algebrai
 inequality (see [21, Theorem 4.20(3)℄). This 
ondition 
an beseen as a spe
ial 
ase of the statement that GL(y, π̌) ∈ [−∞, 0] for y ∈ C 0,∗;in parti
ular, we have shown its ne
essity.Of 
ourse, all our veri�
ation results 
an be seen as a uniqueness resultfor the Bellman equation. As an example, Theorem 5.15 yields:Corollary 5.17. If C is 
onvex, there is at most one solution of the Bellmanequation in the 
lass of solutions (ℓ, π̌, κ̌) su
h that Γ(π̌, κ̌) is of 
lass (D).Similarly, one 
an give 
orollaries for the other results. We 
lose with a
omment 
on
erning 
onvex duality.Remark 5.18. (i) A major insight in [18℄ was that the �dual domain� forutility maximization (here with C = R

d) should be a set of supermartin-gales rather than (lo
al) martingales when the pri
e pro
ess has jumps. A30



one-period example for log-utility [18, Example 5.1'℄ showed that the su-permartingale solving the dual problem 
an indeed have nonvanishing drift.In that example it is 
lear that this arises when the budget 
onstraint be-
omes binding. For general models and log-utility, [10℄ 
omments on thisphenomenon. The 
al
ulations of this se
tion yield an instru
tive �lo
al�pi
ture also for power utility.Under Assumptions 3.1, the opportunity pro
ess L and the optimal strat-egy (π̂, κ̂) solve the Bellman equation. Assume that C is 
onvex and let
X̂ = X(π̂, κ̂). Consider Ŷ = LX̂p−1, whi
h was the solution to the dualproblem in [22℄. We have shown that Ŷ E(π • R) is a supermartingale forevery π ∈ A, i.e., Ŷ is a supermartingale de�ator. Choosing π = 0, we seethat Ŷ is itself a supermartingale, and by (5.3) its drift rate satis�es

a
bY = X̂p−1

− GL(0, π̂) = −X̂p−1
− π̂⊤∇g(π̂).Hen
e Ŷ is a lo
al martingale if and only if π̂⊤∇g(π̂) = 0. One 
an saythat −π̂⊤∇g(π̂) < 0 means that the 
onstraints are binding, whereas in an�un
onstrained� 
ase the gradient of g would vanish; i.e., Ŷ has nonvanish-ing drift rate at a given (ω, t) whenever the 
onstraints are binding. Evenif C = R

d, we still have the budget 
onstraint C 0 in the maximization of
g. If in addition R is 
ontinuous, C 0 = R

d and we are truly in an un
on-strained situation. Then Ŷ is a lo
al martingale; indeed, in the setting ofCorollary 3.12 we 
al
ulate
Ŷ = y0E

(
− λ • M +

1

L−

• NL
)
, y0 := L0x

p−1
0 .Note how NL, the martingale part of L orthogonal to R, yields the solutionto the dual problem.(ii) From the proof of Proposition 5.12 we have that the general formulafor the lo
al martingale part of Ŷ is

M
bY = X̂p−1

−
•

(
ML + L−(p− 1)π̂ • M R̄ + (p − 1)π̂⊤x′h(x) ∗ (µR,L − νR,L)

+ (L− + x′)
{
(1 + π̂⊤x)p−1 − 1 − (p− 1)π̂⊤h(x)

}
∗ (µR,L − νR,L)

)
.This is relevant in the problem of q-optimal equivalent martingale measures;
f. Goll and Rüs
hendorf [11℄ for a general perspe
tive. Let u(x0) <∞, D ≡

1, µ = 0, C = R
d, and assume that the set M of equivalent lo
al martingalemeasures for S = E(R) is nonempty. Given q = p/(p− 1) ∈ (−∞, 0) ∪ (0, 1)
onjugate to p, Q ∈ M is 
alled q-optimal if E[−q−1(dQ/dP )q ] is �nite andminimal over M . If q < 0, i.e., p ∈ (0, 1), then u(x0) < ∞ is equivalent tothe existen
e of some Q ∈ M su
h that E[−q−1(dQ/dP )q ] < ∞; moreover,Assumptions 3.1 are satis�ed (see Kramkov and S
ha
hermayer [18, 19℄).Using [18, Theorem 2.2(iv)℄ we 
on
lude that31



(a) the q-optimal martingale measure exists if and only if abY ≡ 0 and M bYis a true martingale;(b) in that 
ase, 1 + y−1
0 M

bY is its P -density pro
ess.A Proof of Lemma 3.8: A Measurable MaximizingSequen
eThis main goal of this appendix is to 
onstru
t of a measurable maximizingsequen
e for the random fun
tion g (
f. Lemma 3.8). The entire se
tion isunder Assumptions 3.1. Before beginning the proof, we dis
uss the propertiesof g; re
all that
g(y) := L−y

⊤
(
bR + cRL

L−
+ (p−1)

2 cRy
)

+

∫

Rd×R

x′y⊤h(x)FR,L(d(x, x′))

+

∫

Rd×R

(L− + x′)
{
p−1(1 + y⊤x)p − p−1 − y⊤h(x)

}
FR,L(d(x, x′)).(A.1)Lemma A.1. L− + x′ is stri
tly positive FL(dx′)-a.e.Proof. (P ⊗ νL){L− +x′ ≤ 0} = E[1{L−+x′≤0} ∗ ν

L
T ] = E[1{L−+x′≤0} ∗µ

L
T ] =

E
[∑

s≤T 1{Ls≤0}1{∆Ls 6=0}

]
= 0 as L > 0 by Lemma 2.1.Fix (ω, t) and let l := Lt−(ω). Furthermore, let F be any Lévy measureon R

d+1 whi
h is equivalent to FR,L
t (ω) and satis�es (2.5). Equivalen
eimplies that C 0

t (ω),C 0,∗
t (ω), and Nt(ω) are the same if de�ned with respe
tto F instead of FR. Given ε > 0, let

IF
ε (y) :=

∫

{|x|+|x′|≤ε}
(l + x′)

{
p−1(1 + y⊤x)p − p−1 − y⊤h(x)

}
F (d(x, x′)),

IF
>ε(y) :=

∫

{|x|+|x′|>ε}
(l + x′)

{
p−1(1 + y⊤x)p − p−1 − y⊤h(x)

}
F (d(x, x′)),so that

IF (y) := IF
ε (y) + IF

>ε(y)is the last integral in (A.1) when F = FR,L
t (ω). We know from the proofof Lemma 3.4 that IF R,L

(π) is well de�ned and �nite for any π ∈ AfE (of
ourse, when p > 0, this is essentially due to the assumption (2.2)). Forgeneral F , IF has the following properties.Lemma A.2. Consider a sequen
e yn → y∞ in C 0.(i) For any y ∈ C 0, the integral IF (y) is well de�ned in R ∪ {sign(p)∞}.(ii) For ε ≤ (2 supn |yn|)
−1 we have IF

ε (yn) → IF
ε (y∞).32



(iii) If p ∈ (0, 1), IF is l.s.
., that is, lim infn I
F (yn) ≥ IF (y∞).(iv) If p < 0, IF is u.s.
., that is, lim supn I

F (yn) ≤ IF (y∞). Moreover,
y ∈ C 0 \ C 0,∗ implies IF (y) = −∞.Proof. The �rst item follows from the subsequent 
onsiderations.(ii) We may assume that h is the identity on {|x| ≤ ε}; then on this set

p−1(1+y⊤x)p−p−1−y⊤h(x) =: ψ(z)|z=y⊤x, where the fun
tion ψ is smoothon {|z| ≤ 1/2} ⊆ R satisfying
ψ(z) = p−1(1 + z)p − p−1 − z = p−1

2 z2 + o(|z|3)be
ause 1 + z is bounded away from 0. Thus ψ(z) = z2ψ̃(z) with a fun
tion
ψ̃ that is 
ontinuous and in parti
ular bounded on {|z| ≤ 1/2}.As a Lévy measure, F integrates (|x′|2 + |x|2) on 
ompa
ts; in parti
ular,
G(d(x, x′)) := |x|2 F (d(x, x′)) de�nes a �nite measure on {|x| + |x′| ≤ ε}.Hen
e IF

ε (y) is well de�ned and �nite for |y| ≤ (2ε)−1, and dominated 
onver-gen
e shows that IF
ε (y) =

∫
{|x|+|x′|≤ε}(l+x

′)ψ̃(y⊤x)G(d(x, x′)) is 
ontinuousin y on {|y| ≤ (2ε)−1}.(iii) For |y| bounded by a 
onstant C, the integrand in IF is boundedfrom below by C ′ + |x′| for some 
onstant C ′ depending on y only through
C. We 
hoose ε as before. As C ′ + |x′| is F -integrable on {|x| + |x′| > ε}by (2.5), IF (y) is well de�ned in R ∪ {∞} and l.s.
. by Fatou's lemma.(iv) The �rst part follows as in (iii), now the integrand is bounded fromabove by C ′ + |x′|. If y ∈ C 0 \ C 0,∗, Lemma A.1 shows that the integrandequals −∞ on a set of positive F -measure.Lemma A.3. The fun
tion g is 
on
ave. If C is 
onvex, g has at most onemaximum on C ∩ C 0, modulo N .Proof. We �rst remark that the assertion is not trivial be
ause g need notbe stri
tly 
on
ave on N ⊥, for example, the pro
ess Rt = t(1, . . . , 1)⊤ wasnot ex
luded.Note that g is of the form g(y) = Hy + J(y), where Hy = L−y

⊤bR +

y⊤cRL +
∫
x′y⊤h(x)FR,L is linear and J(y) = (p−1)

2 L−y
⊤cRy + IF R,L

(y) is
on
ave. We may assume that h(x) = x1{|x|≤1}.Let y1, y2 ∈ C ∩ C 0 be su
h that g(y1) = g(y2) = sup g =: g∗ < ∞,our aim is to show y1 − y2 ∈ N . By 
on
avity, g∗ = g((y1 + y2)/2)) =
[g(y1) + g(y2)]/2, whi
h implies J((y1 + y2)/2)) = [J(y1) + J(y2)]/2 due tothe linearity of H. Using the de�nition of J , this shows that J is 
onstanton the line segment 
onne
ting y1 and y2. A �rst 
onsequen
e is that y1−y2lies in the set {y : y⊤cR = 0, FR{x : y⊤x 6= 0} = 0

} and a se
ond is that
Hy1 = Hy2. It remains to show (y1 − y2)

⊤bR = 0 to have y1 − y2 ∈ N .Note that FR{x : y⊤x 6= 0} = 0 implies FR,L{x : y⊤h(x) 6= 0} = 0.Moreover, y⊤cR = 0 implies y⊤cRL = 0 due to the absolute 
ontinuity
〈Rc,i, Lc〉 << 〈Rc,i〉 whi
h follows from the Kunita-Watanabe inequality.33



Thus the �rst 
onsequen
e above implies ∫
x′(y1 − y2)

⊤h(x)FR,L = 0 and
(y1 − y2)

⊤cRL = 0, and now the se
ond 
onsequen
e and the de�nition of Hyield 0 = H(y1 − y2) = L−(y1 − y2)
⊤bR. Thus (y1 − y2)

⊤bR = 0 as L− > 0and this ends the proof.We 
an now move toward the main goal of this se
tion. Clearly we needsome variant of the �Measurable Maximum Theorem� (see, e.g., [1, 18.19℄,[16, Theorem 9.5℄, [24, 2K℄). We state a version that is tailored to our needsand has a simple proof; the te
hnique is used also in Proposition 4.3.Lemma A.4. Let D be a predi
table set-valued pro
ess with nonempty 
om-pa
t values in 2R
d. Let f(y) = f(ω, t, y) be a proper fun
tion on D withvalues in R ∪ {−∞} su
h that(i) f(ϕ) is predi
table whenever ϕ is a D-valued predi
table pro
ess,(ii) y 7→ f(y) is upper semi
ontinuous on D for �xed (ω, t).Then there exists a D-valued predi
table pro
ess π su
h that f(π) = maxD f .Proof. We start with the Castaing representation [24, 1B℄ of D : there exist

D-valued predi
table pro
esses (ϕn)n≥1 su
h that {ϕn : n ≥ 1} = D for ea
h
(ω, t). By (i), f∗ := maxn f(ϕn) is predi
table, and f∗ = maxD f by (ii).Fix k ≥ 1 and let Λn := {f∗ − f(ϕn) ≤ 1/k}, Λn := Λn \ (Λ1 ∪ · · · ∪ Λn−1).De�ne πk :=

∑
n ϕn1Λn , then f∗ − f(πk) ≤ 1/k and πk ∈ D .It remains to sele
t a 
luster point: By 
ompa
tness, (πk)k≥1 is boundedfor ea
h (ω, t), so there is a 
onvergent subsequen
e along �random indi
es�

τk. More pre
isely, there exists a stri
tly in
reasing sequen
e of integer-valued predi
table pro
esses τk = {τk(ω, t)} and a predi
table pro
ess π∗su
h that limk π
τk(ω,t)
t (ω) = π∗t (ω) for all (ω, t). See, e.g., the proof of Föllmerand S
hied [9, Lemma 1.63℄. We have f∗ = f(π∗) by (ii).Our random fun
tion g satis�es property (i) of Lemma A.4 be
ause the
hara
teristi
s are predi
table (re
all the de�nition [13, II.1.6℄). We also notethat the interse
tion of 
losed predi
table pro
esses is predi
table [24, 1M℄.The sign of p is important as it swit
hes the semi
ontinuity of g; we startwith the immediate 
ase p < 0 and denote Br(R

d) = {x ∈ R
d : |x| ≤ r}.Proof of Lemma 3.8 for p < 0. In this 
ase g is u.s.
. on C∩C 0 (Lemma A.2).Let D(n) := C ∩ C 0 ∩ Bn(Rd). Lemma A.4 yields a predi
table pro
ess

πn ∈ arg maxD(n) g for ea
h n ≥ 1, and 
learly limn g(π
n) = supC∩C 0 g. As

g(πn) ≥ g(0) = 0, we have πn ∈ C 0,∗ by Lemma A.2.A.1 Measurable Maximizing Sequen
e for p ∈ (0, 1)Fix p ∈ (0, 1). Sin
e the 
ontinuity properties of g are not 
lear, we will usean approximating sequen
e of 
ontinuous fun
tions. (See also Appendix B,where an alternative approa
h is dis
ussed and the 
ontinuity is 
lari�ed34



under an additional assumption on C .) We will approximate g using Lévymeasures with enhan
ed integrability, a method suggested by [16℄ in a similarproblem. This preserves monotoni
ity properties that will be useful to passto the limit.All this is not ne
essary if R is lo
ally bounded, or more generally if FR,Lsatis�es the following 
ondition. We start with �xed (ω, t).De�nition A.5. Let F be a Lévy measure on R
d+1 whi
h is equivalent to

FR,L and satis�es (2.5). (i) We say that F is p-suitable if
∫

(1 + |x′|)(1 + |x|)p1{|x|>1} F (d(x, x′)) <∞.(ii) The p-suitable approximating sequen
e for F is the sequen
e (Fn)n≥1 ofLévy measures de�ned by dFn/dF = fn, where
fn(x) = 1{|x|≤1} + e−|x|/n1{|x|>1}.It is easy the see that ea
h Fn in (ii) shares the properties of F , whilein addition being p-suitable be
ause (1 + |x|)pe−|x|/n is bounded. As the se-quen
e fn is in
reasing, monotone 
onvergen
e shows that ∫

V dFn ↑
∫
V dFfor any measurable fun
tion V ≥ 0 on R

d+1. We denote by gF the fun
tionwhi
h is de�ned as in (A.1) but with FR,L repla
ed by F .Lemma A.6. If F is p-suitable, gF is real-valued and 
ontinuous on C 0.Proof. Pi
k yn → y in C 0. The only term in (A.1) for whi
h 
ontinuityis not evident, is the integral IF = IF
ε + IF

>ε, where we 
hoose ε as inLemma A.2. We have IF
ε (yn) → IF

ε (y) by that lemma. When F is p-suitable,the 
ontinuity of IF
>ε follows from the dominated 
onvergen
e theorem.Remark A.7. De�ne the set

(C ∩ C
0)⋄ :=

⋃

η∈[0,1)

η(C ∩ C
0).Its elements y have the property that 1 + y⊤x is FR(dx)-essentially boundedaway from zero. Indeed, y = ηy0 with η ∈ [0, 1) and FR{y⊤0 x ≥ −1} = 0,hen
e 1 + y⊤x ≥ 1 − η, FR-a.e. In parti
ular, (C ∩ C 0)⋄ ⊆ C 0,∗. If C isstar-shaped with respe
t to the origin, we also have (C ∩ C 0)⋄ ⊆ C .We introdu
e the 
ompa
t-valued pro
ess D(r) := C ∩ C 0 ∩Br(R

d).Lemma A.8. Let F be p-suitable. Under (C3), arg maxD(r) g
F ⊆ C 0,∗.More generally, this holds whenever F is a Lévy measure equivalent to

FR,L satisfying (2.5) and gF is �nite-valued.35



Proof. Assume that y̌ ∈ C 0 \ C 0,∗ is a maximum of gF . Let η ∈ (η, 1) beas in the de�nition of (C3) and y0 := ηy̌. By Lemma 5.14, the dire
tionalderivative Dy̌,y0
g 
an be 
al
ulated by di�erentiating under the integral sign.For the integrand of IF we have

Dy̌,y0

{
p−1(1+y⊤x)p−p−1−y⊤h(x)

}
= (1−η)

{
(1+ y̌⊤x)p−1y̌⊤x− y̌⊤h(x)

}
.But this is in�nite on a set of positive measure as y̌ ∈ C 0 \ C 0,∗ means that

F{y̌⊤x = −1} > 0, 
ontradi
ting the last assertion of Lemma 5.14.Let F be a Lévy measure on R
d+1 whi
h is equivalent to FR,L and sat-is�es (2.5). The 
ru
ial step isLemma A.9. Let (Fn) be the p-suitable approximating sequen
e for F and�x r > 0. For ea
h n, arg maxD(r) g
Fn 6= ∅, and for any y∗n ∈ arg maxD(r) g

Fnit holds that lim supn g
F (y∗n) = supD(r) g

F .Proof. We �rst show that
IFn(y) → IF (y) for any y ∈ C

0. (A.2)Re
all that IFn(y) =
∫

(l+x′)
{
p−1(1+y⊤x)p−p−1−y⊤h(x)

}
fn(x)F (d(x, x′)),where fn is nonnegative and in
reasing in n. As fn = 1 in a neighbor-hood of the origin, we need to 
onsider only IFn

>ε (for ε = 1, say). Itsintegrand is bounded below, simultaneously for all n, by a negative 
on-stant times (1 + |x′|), whi
h is F -integrable on the relevant domain. As
(fn) is in
reasing, we 
an apply monotone 
onvergen
e on the set {

(x, x′) :
p−1(1 + y⊤x)p − p−1 − y⊤h(x) ≥ 0

} and dominated 
onvergen
e on the
omplement to dedu
e (A.2).Existen
e of y∗n ∈ arg maxD(r) g
Fn is 
lear by 
ompa
tness of D(r) and
ontinuity of gFn (Lemma A.6). Let y ∈ D(r) be arbitrary. By de�nition of

y∗n and (A.2),
lim sup

n
gFn(y∗n) ≥ lim sup

n
gFn(y) = gF (y).We show lim supn g

F (y∗n) ≥ lim supn g
Fn(y∗n). We 
an split the integral

IFn(y) into a sum of three terms: The integral over {|x| ≤ 1} is the same asfor IF , sin
e fn = 1 on this set. We 
an assume that the 
ut-o� h vanishesoutside {|x| ≤ 1}. The se
ond term is then
∫

{|x|>1}
(l + x′)p−1(1 + y⊤x)pfn dF,here the integrand is nonnegative and hen
e in
reasing in n, for all y; andthe third term is ∫

{|x|>1}
(l + x′)(−p−1)fn dF,36



whi
h is de
reasing in n but 
onverges to ∫
{|x|>1}(l + x′)(−p−1) dF . Thus

gF (y∗n) ≥ gFn(y∗n) − εnwith the sequen
e εn :=
∫
{|x|>1}(l+ x′)(−p−1)(fn − 1) dF ↓ 0. Together, we
on
lude supD(r) g

F ≥ lim supn g
F (y∗n) ≥ lim supn g

Fn(y∗n) ≥ supD(r) g
F .Proof of Lemma 3.8 for p ∈ (0, 1). Fix r > 0. By Lemma A.4 we 
an �ndmeasurable sele
tors πn,r for arg maxD(r) g

Fn , i.e., πn,r
t (ω) plays the roleof y∗n in Lemma A.9. Taking πn := πn,n and noting D(n) ↑ C ∩ C 0,Lemma A.9 shows that πn are C ∩ C 0-valued predi
table pro
esses su
hthat lim supn g(π

n) = supC∩C 0 g P ⊗A-a.e. Lemma A.8 shows that πn takesvalues in C 0,∗.B Parametrization by Representative PortfoliosThis appendix introdu
es an equivalent transformation of the model (R,C )with spe
i�
 properties (Theorem B.3); the main idea is to substitute thegiven assets by wealth pro
esses that represent the investment opportunitiesof the model. While the result is of independent interest, in our 
ontext, themain 
on
lusion is that the approximation te
hnique from Appendix A.1 forthe 
ase p ∈ (0, 1) 
an be avoided, at least under slightly stronger assump-tions on C : If the utility maximization problem is �nite, the 
orrespondingLévy measure in the transformed model is p-suitable (
f. De�nition A.5) andhen
e the 
orresponding fun
tion g is 
ontinuous. This is not only an al-ternative argument to prove Lemma 3.8. In appli
ations, 
ontinuity 
an beuseful to 
onstru
t a maximizer for g (rather than a maximizing sequen
e)if one does not know a priori that there exists an optimal strategy. A stati
version of our 
onstru
tion was 
arried out for the 
ase of Lévy pro
essesin [23, �4℄.In this appendix we use the following assumptions on the set-valuedpro
ess C of 
onstraints:(C1) C is predi
table.(C2) C is 
losed.(C4) C is star-shaped with respe
t to the origin: ηC ⊆ C for all η ∈ [0, 1].Sin
e we already obtained a proof of Lemma 3.8, we do not strive for min-imal 
onditions here. Clearly (C4) implies 
ondition (C3) from Se
tion 2.4,but its main impli
ation is that we 
an sele
t a bounded (hen
e R-integrable)pro
ess in the subsequent lemma. The following result is the 
onstru
tion ofthe jth representative portfolio, a portfolio with the property that it investsin the jth asset whenever this is feasible.37



Lemma B.1. Fix 1 ≤ j ≤ d and let Hj = {x ∈ R
d : xj 6= 0}. There existsa bounded predi
table C ∩ C 0,∗-valued pro
ess φ satisfying

{φj = 0} =
{
C ∩ C

0,∗ ∩Hj = ∅
}
.Proof. Let B1 = B1(R

d) be the 
losed unit ball and H := Hj . Condition(C4) implies {
C ∩C 0,∗ ∩H = ∅

}
=

{
C ∩B1 ∩C 0,∗ ∩H = ∅

}, hen
e we maysubstitute C by C ∩B1. De�ne the 
losed sets Hk = {x ∈ R
d : |xj | ≥ k−1}for k ≥ 1, then ⋃

k Hk = H. Moreover, let Dk = C ∩ C 0 ∩ Hk. This is a
ompa
t-valued predi
table pro
ess, so there exists a predi
table pro
ess φksu
h that φk ∈ Dk (hen
e φj
k 6= 0) on the set Λk := {Dk 6= ∅} and φk = 0 onthe 
omplement. De�ne Λk := Λk \ (Λ1 ∪ · · · ∪ Λk−1) and φ′ :=

∑
k φk1Λk .Then |φ′| ≤ 1 and {φ′j = 0} =

{
C ∩C 0∩H = ∅

}
=

{
C ∩C 0,∗∩H = ∅

}; these
ond equality uses (C4) and Remark A.7. These two fa
ts also show that
φ := 1

2φ
′ has the same property while in addition being C ∩C 0,∗-valued.Remark B.2. The previous proof also applies if instead of (C4), e.g., thediameter of C is uniformly bounded and C 0 = C 0,∗.If Φ is a d×d-matrix with 
olumns φ1, . . . , φd ∈ L(R), the matrix sto
has-ti
 integral R̃ = Φ • R is the R

d-valued pro
ess given by R̃j = φj • R. If
ψ ∈ L(Φ • R) is R

d-valued, then Φψ ∈ L(R) and
ψ • (Φ • R) = (Φψ) • R. (B.1)If D is a set-valued pro
ess whi
h is predi
table, 
losed and 
ontains the ori-gin, then the preimage Φ−1D shares these properties (
f. [24, 1Q℄). Convexityand star-shape are also preserved.We obtain the following model if we sequentially repla
e the given assetsby representative portfolios; here ej denotes the jth unit ve
tor in R

d for
1 ≤ j ≤ d (i.e., eij = δij).Theorem B.3. There exists a predi
table R

d×d-valued uniformly boundedpro
ess Φ su
h that the �nan
ial market model with returns
R̃ := Φ • Rand 
onstraints C̃ := Φ−1C has the following properties: for all 1 ≤ j ≤ d,(i) ∆R̃j > −1 (positive pri
es),(ii) ej ∈ C̃ ∩ C̃ 0,∗, where C̃ 0,∗ = Φ−1C 0,∗ (entire wealth 
an be invested inea
h asset),(iii) the model (R̃, C̃ ) admits the same wealth pro
esses as (R,C ).Proof. We treat the 
omponents one by one. Let j = 1 and let φ = φ(1)be as in Lemma B.1. We repla
e the �rst asset R1 by the pro
ess φ • R, or38



equivalently, we repla
e R by Φ • R, where Φ = Φ(1) is the d× d-matrix
Φ =




φ1

φ2 1... . . .
φd 1


 .The new natural 
onstraints are Φ−1C 0 and we repla
e C by Φ−1C . Notethat e1 ∈ Φ−1(C ∩ C 0,∗) be
ause Φe1 = φ ∈ C ∩ C 0,∗ by 
onstru
tion.We show that for every C ∩ C 0,∗-valued pro
ess π ∈ L(R) there exists

ψ predi
table su
h that Φψ = π. In view of (B.1), this will imply that thenew model admits the same wealth pro
esses as the old one. On the set
{φ1 6= 0} = {Φ is invertible} we take ψ = Φ−1π and on the 
omplement we
hoose ψ1 ≡ 0 and ψj = πj for j ≥ 2; this is the same as inverting Φ on itsimage. Note that {φ1 = 0} ⊆ {π1 = 0} by the 
hoi
e of φ.We pro
eed with the se
ond 
omponent of the new model in the sameway, and then 
ontinue until the last one. We obtain matri
es Φ(j) for
1 ≤ j ≤ d and set Φ̂ = Φ(1) · · ·Φ(d). Then Φ̂ has the required properties.Indeed, the 
onstru
tion and Φ(i)ej = ej for i 6= j imply ej ∈ Φ̂−1(C ∩C 0,∗).This is (ii), and (i) is a 
onsequen
e of (ii).Coming ba
k to the utility maximization problem, note that property(iii) implies that the value fun
tions and the opportunity pro
esses for themodels (R,C ) and (R̃, C̃ ) 
oin
ide up to evanes
en
e; we identify them inthe sequel. Furthermore, if g̃ denotes the analogue of g in the model (R̃, C̃ ),
f. (A.1), we have the relation

g̃(y) = g(Φy), y ∈ C̃
0.Finding a maximizer for g̃ is equivalent to �nding one for g and if (π̃, κ) isan optimal strategy for (R̃, C̃ ) then (Φπ̃, κ) is optimal for (R,C ). In fa
t,most properties of interest 
arry over from (R,C ) to (R̃, C̃ ), in parti
ularany no-arbitrage property that is de�ned via the set of admissible (positive)wealth pro
esses.Remark B.4. A 
lassi
al no-arbitrage 
ondition de�ned in a slightly di�er-ent way is that there exist a probability measure Q ≈ P under whi
h E(R) isa σ-martingale; 
f. Delbaen and S
ha
hermayer [8℄. In this 
ase, E(R̃) is evena lo
al martingale under Q, as it is a σ-martingale with positive 
omponents.Property (ii) from Theorem B.3 is useful to apply the following result.Lemma B.5. Let p ∈ (0, 1) and assume ej ∈ C ∩ C 0,∗ for 1 ≤ j ≤ d. Then

u(x0) < ∞ implies that FR,L is p-suitable. If, in addition, there exists a
onstant k1 su
h that D ≥ k1 > 0, it follows that ∫
{|x|>1} |x|

p FR(dx) <∞.39



Proof. As p > 0 and u(x0) < ∞, L is well de�ned and L,L− > 0 bySe
tion 2.2. No further properties were used to establish Lemma 3.4, whoseformula shows that g(π) is �nite P ⊗ A-a.e. for all π ∈ A = AfE . Inparti
ular, from the de�nition of g, it follows that ∫
(L−+x′)

{
p−1(1+π⊤x)p−

p−1 − π⊤h(x)
}
FR,L(d(x, x′)) is �nite. If D ≥ k1, [22, Lemma 3.5℄ showsthat L ≥ k1, hen
e L− +x′ ≥ k1 F

L(dx′)-a.e. and ∫ {
p−1(1+π⊤x)p − p−1 −

π⊤h(x)
}
FR(dx) <∞. We 
hoose π = ej (and κ arbitrary) for 1 ≤ j ≤ d todedu
e the result.In general, the 
ondition u(x0) <∞ does not imply any properties of R;for instan
e, in the trivial 
ases C = {0} or C 0,∗ = {0}. The transformation
hanges the geometry of C and C 0,∗ su
h that Theorem B.3(ii) holds, andthen the situation is di�erent.Corollary B.6. Let p ∈ (0, 1) and u(x0) < ∞. In the model (R̃, C̃ ) ofTheorem B.3, F eR,L is p-suitable and hen
e g̃ is 
ontinuous.Therefore, to prove Lemma 3.8 under (C4), we may substitute (R,C )by (R̃, C̃ ) and avoid the use of p-suitable approximating sequen
es. In some
ases, Lemma B.5 applies dire
tly in (R,C ). In parti
ular, if the asset pri
esare stri
tly positive (∆Rj > −1 for 1 ≤ j ≤ d), then the positive orthant of

R
d is 
ontained in C 0,∗ and the 
ondition of Lemma B.5 is satis�ed as soonas ej ∈ C for 1 ≤ j ≤ d.C Omitted Cal
ulationThis appendix 
ontains a 
al
ulation whi
h was omitted in the proof ofProposition 5.12.Lemma C.1. Let (ℓ, π̌, κ̌) be a solution of the Bellman equation, (π, κ) ∈ A,

X := X(π, κ) and X̌ := X(π̌, κ̌). De�ne R̄ = R− (x− h(x)) ∗ µR as well as
π̄ := (p − 1)π̌ + π and κ̄ := (p− 1)κ̌ + κ. Then ξ := ℓX̌p−1X satis�es
(
X̌p−1

− X−

)−1
• ξ =

ℓ− ℓ0 + ℓ−π̄ • R̄− ℓ−κ̄ • µ+ ℓ−(p− 1)
( p−2

2 π̌ + π
)⊤
cRπ̌ • A+ π̄⊤cRℓ

• A

+ π̄⊤x′h(x) ∗ µR,ℓ+ (ℓ− + x′)
{
(1 + π̌⊤x)p−1(1 + π⊤x) − 1 − π̄⊤h(x)

}
∗ µR,ℓ.Proof. We may assume x0 = 1. This 
al
ulation is similar to the one in theproof of Lemma 3.4 and therefore we shall be brief. By It�'s formula we have

X̌p−1 = E(ζ) for
ζ = (p− 1)(π̌ • R− κ̌ • µ) + (p−1)(p−2)

2 π̌⊤cRπ̌ • A

+
{
(1 + π̌⊤x)p−1 − 1 − (p − 1)π̌⊤x

}
∗ µR.40



Thus X̌p−1X = E
(
ζ + π • R− κ • µ+ [ζ, π • R]

)
=: E(Ψ) with

[R, ζ] = [Rc, ζc] +
∑

∆R∆ζ

= (p − 1)cRπ̌ • A+ (p− 1)π̌⊤xx ∗ µR

+ x
{
(1 + π̌⊤x)p−1 − 1 − π̌⊤x

}
∗ µRand re
ombining the terms yields

Ψ = π̄ • R− κ̄ • µ+ (p − 1)
( p−2

2 π̌ + π
)⊤
cRπ̌ • A

+
{
(1 + π̌⊤x)p−1(1 + π⊤x) − 1 − π̄⊤x

}
∗ µR.Then (

X̌p−1
− X−

)−1
• ξ = ℓ− ℓ0 + ℓ− • Ψ + [ℓ,Ψ], where

[ℓ,Ψ] = [ℓc,Ψc] +
∑

∆ℓ∆Ψ

= π̄⊤cRℓ
• A+ π̄⊤x′x ∗ µR,ℓ

+ x′
{
(1 + π̌⊤x)p−1(1 + π⊤x) − 1 − π̄⊤x

}
∗ µR,ℓ.We arrive at

(
X̌p−1

− X−

)−1
• ξ =

ℓ− ℓ0 + ℓ−π̄ • R− ℓ−κ̄ • µ+ ℓ−(p − 1)
(p−2

2 π̌ + π
)⊤
cRπ̌ • A+ π̄⊤cRℓ

• A

+ π̄⊤x′x ∗ µR,ℓ + (ℓ− + x′)
{
(1 + π̌⊤x)p−1(1 + π⊤x) − 1 − π̄⊤x

}
∗ µR,ℓ.The result follows by writing x = h(x) + x− h(x).Referen
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