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In this work we study drawdowns and drawups of general diffu-
sion processes. The drawdown process is defined as the current drop
of the process from its running maximum, while the drawup process is
defined as the current increase over its running minimum. The draw-
down and the drawup are the first hitting times of the drawdown and
the drawup processes respectively. In particular, we derive a closed-
form formula for the Laplace transform of the probability density of
the drawdown of a units when it precedes the drawup of b units. We
then separately consider the special case of drifted Brownian motion,
for which we derive a closed form formula for the above-mentioned
density by inverting the Laplace transform. Finally, we apply the re-
sults to a problem of interest in financial risk-management and to the
problem of transient signal detection and identification of two-sided
changes in the drift of general diffusion processes.

1. Introduction. In this paper we derive the Laplace transform of the
probability density of the drawdown of a units when it precedes the drawup
of b units for a general diffusion process. The drawdown process is defined
as the current drop of the process from its running maximum, while the
drawup process is defined as the current increase over its running mini-
mum. The drawdown and the drawup are then the first hitting times of the
drawdown and the drawup processes respectively. The derivation is first ac-
complished in the case that a = b, by drawing the connection of the relevant
event to the range process. We then consider the case a 6= b and derive the
Laplace transform through path decomposition. A key element in the above
derivation is a function related to the first hitting times of the underlying
diffusion process. We then consider the special case of drifted Brownian mo-
tion with drift µ and volatility σ. In this case we are able to invert the
Laplace transform and derive the density of the drawdown of a units when
it precedes the drawup of b units, which we denote by p(µ)(t; a, b). Finally,
we discuss the applications of the results to a problem of interest in finan-
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cial risk-management and to the problem of transient signal detection and
identification of two-sided changes in the drift of general diffusion processes.

Our results extend the work of Taylor [23] and Lehoczky [13]. Taylor
[23] derives the joint Laplace transform of the drawdown and the maximum
stopped at the drawdown in a drifted Brownian motion model. Lehoczky
[13] extends the above result in the case of a diffusion process. However,
none of these results relate the drawdown to the drawup. In a recent paper
of Salminen & Vallois [21], the joint distribution of the maximum drawdown
and the maximum drawup processes is studied in a drifted Brownian motion
model; yet it is not possible to extract information on the joint distribution
of the drawdown and the drawup from this paper. In Hadjiliadis & Vecer
[10], a closed-form formula is derived for the probability that the drawdown
precedes the drawup in a drifted Brownian motion model. This result is later
extended to diffusion processes in Pospisil, Vecer & Hadjiliadis [19]. In Zhang
& Hadjiliadis [27], the authors obtain the probability that the drawup of a
units precedes the drawdown of equal units in a drifted Brownian motion
model in a finite time-horizon. However, the approach used there only ap-
plies to a drifted Brownian motion model, cannot be extended to a general
diffusion process, and does not work in the general case a 6= b. In this paper,
we supersede these limitations through the Laplace transform method.

Drawdown processes have been extensively used in the financial risk-
management literature. Grossman & Zhou [7], Cvitanic & Karatzas [5],
Chekhlov, Uryasev & Zabarankin [4] studied portfolio optimization under
constraints on the drawdown process. Magdon-Ismail et. al. [14] determined
the distribution of the maximum drawdown process of Brownian motion,
based on which they described another time-adjusted measure of perfor-
mance known as the the Calmar ratio (see [15]). Meilijson [16] proved that
the drawdown can be viewed as the optimal exercise time of a certain type
of look-back American put option. Other works which describe drawdown
processes as dynamic measures of risk include Vecer [24, 25], Pospisil & Ve-
cer [18], Pospisil, Vecer & Xu [20], Zhang & Hadjiliadis [27]. An overview of
the existing techniques for analysis of market crashes as well as a collection
of empirical studies of the drawdown process and the maximum drawdown
process please refer to Sornette [22].

Drawdown processes do not only provide dynamic measures of risk, but
can also be viewed as measures of “relative regret”. Similarly drawup pro-
cesses can be viewed as measures of “relative satisfaction”. Thus the a draw-
down or a drawup of a certain number of units may signal the time in which
an investor may choose to change his/her investment position depending
on his/her perception of future moves of the market and his/her risk aver-
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sion. Using the results in our paper we are able to calculate the probability
that a relative drawdown of (100 × α)% occurs before a relative drawup of
(100 × β)% in a finite time-horizon. On the other hand, a digital option
on the event that the relative drawdown occurs before the relative drawup
could also be seen as a means of protection. Our paper provides a closed-
form formula for the risk-neutral price of this digital option at time 0 both
in the case of an infinite maturity and in the case of a finite maturity.

Drawdown and drawup processes have also been used in the problem of
quickest detection of abrupt changes in a stochastic process. More specifi-
cally, consider the situation in which a diffusion process is sequentially ob-
served. At some unknown point in time, possibly as a result of the onset of
a signal, the dynamics of the process change abruptly in one of two possi-
ble opposite directions in the drift. Drawdowns and drawups then provide
a detection mechanism of the change point for each of the possible changes.
They are known as CUSUM stopping times in the statistics literature, and
their properties have been extensively studied (see Barnard [1], Dobben [6],
Bissell [2], Woodall [26], Hadjiliadis & Moustakides [9], Khan [12], and Poor
& Hadjiliadis [17]). A challenging problem in engineering is the detection
and identification of such signals when they are only present for a finite pe-
riod of time. These signals are known as transient signals. Using the results
in this paper, it is possible to derive closed-form formulas for the probabil-
ity of misidentification of the direction of the change in the drift when the
signal has exponential life. Moreover, using our results for drifted Brownian
motion, we derive this probability when the transient signal is present for a
finite period of time T .

The paper is structured in the following way: definitions and a fundamen-
tal lemma are introduced in Section 2. In Section 3, we derive the Laplace
transform of the drawdown of a units when it precedes the drawup of b units,
in the cases a = b (Theorem 3.1), a > b (Theorem 3.2) and a < b (Theorem
3.3). A special case of a drifted Brownian motion model is discussed in Sec-
tion 4, where we also derive the closed-form density p(µ)(t; a, b) by analytical
inversion of the Laplace transform. We then present applications of our re-
sults in a problem of risk-management and the problem of transient signal
detection and identification of two-sided alternatives in Section 5. Finally,
we conclude with some closing remarks in Section 6.

2. Drawdown and Drawup processes. We begin with a mathemat-
ical definition of a drawdown and a drawup in a diffusion model and present
the fundamental lemma.

Consider an interval I = (l, r), where −∞ ≤ l < r ≤ ∞. Let (Ω,F , P )
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be a probability space, {Bt; t ≥ 0} a Brownian motion, and {Xt; t ≥ 0} the
unique strong solution of the following stochastic differential equation:

dXt = µ(Xt)dt + σ(Xt)dBt, X0 = x ∈ I,(2.1)

where Xt ∈ I for all t ≥ 0, and σ(u) > 0 for all u ∈ I. We will use Px(·) to
denote P (·|X0 = x).

The drawdown and drawup processes are defined respectively as

DDt = sup
0≤s≤t

Xs − Xt,(2.2)

DUt = Xt − inf
0≤s≤t

Xs.(2.3)

The drawdown of a units and the drawup of b units are then defined respec-
tively as

TD(a) = inf{t ≥ 0|DDt = a}, a > 0,(2.4)

TU (b) = inf{t ≥ 0|DUt = b}, b > 0,(2.5)

where, by convention, we assume that inf φ = ∞.
In the following section, we derive the main results in this paper. We need

the following fundamental lemma to finish the proofs.

Lemma 1. Let us denote by τu, u ∈ I, the first hitting time of the process

{Xt; t ≥ 0} to u. That is,

τu = inf{t > 0|Xt = u},

For y ≤ x ≤ z and λ ≥ 0, define

Ex

[

e−λτy · 1{τy<τz}

]

:= ℓX(y, z;x, λ).(2.6)

Then

ℓX(y, z;x, λ) =
g(x;λ)h(z;λ) − g(z;λ)h(x;λ)

g(y;λ)h(z;λ) − g(z;λ)h(y;λ)
(2.7)

with g(·;λ) and h(·;λ) being any two independent solutions of the ordinary

differential equation

1

2
σ2(u)

∂2f

∂u2
+ µ(u)

∂f

∂u
= λf.(2.8)

Proof. See [13], page 603.
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3. Mathematical Results. In this section we derive formulas for the
Laplace transform of the probability density of the drawdown of a units when
it precedes the drawup of b units, for any a, b > 0 satisfying x ± a, x ± b ∈
Ī = [l, r]. We have

Ex

[

e−λTD(a) · 1{TD(a)<TU (b)}

]

=

∫ ∞

0
e−λtPx(TD(a) ∈ dt, TU (b) > t).(3.1)

In the sequel we denote the Laplace transform (3.1) by LX
x (λ; a, b).

3.1. The case of a = b > 0. We determine LX
x (λ; a, a) for a > 0 in this

paragraph.

Theorem 3.1. For a > 0 and λ > 0, we have

LX
x (λ; a, a) =

∫ x

x−a

∂

∂a
ℓX(u, u + a;x, λ)du.(3.2)

Proof. First, it is easily seen that for t > 0 and a > 0,

{TD(a) ∈ dt, TU (a) > t} = {ρ(a) ∈ dt, x − a < Xt < x},(3.3)

where ρ(a) is the first hitting time of the range process

ρ(a) = inf{t > 0|Rt = a},(3.4)

with

Rt := sup
s≤t

Xs − inf
s≤t

Xs = DUt + DDt.(3.5)

So it suffices to determine

Ex

[

e−λt · 1{TD(a)∈dt,TU (a)>t,Xt=u}

]

,

for all x− a < u < x. For this purpose observe that for any t > 0, a > 0 and
x − a < u < x,

{TD(a) ∈ dt, TU (a) > t,Xt = u} = {τu ∈ dt, sup
s≤t

Xs = u + a},



6 H. ZHANG AND O.HADJILIADIS

which suggests that for any λ > 0,

Ex

[

e−λTD(a) · 1{TD(a)<TU (a),XTD (a)=u}

]

=

∫ ∞

0
e−λt · Ex

[

1{TD(a)∈dt,TU (a)>t,Xt=u}

]

=

∫ ∞

0
e−λt · Ex

[

1{τu∈dt,sups≤t Xs=u+a}

]

=

∫ ∞

0
e−λt · ∂

∂a
Ex

[

1{τu∈dt,sups≤t Xs<u+a}

]

=

∫ ∞

0
e−λt · ∂

∂a
Ex

[

1{τu=dt,τu+a>t}

]

=
∂

∂a
Ex

[

e−λτu · 1{τu<τu+a}

]

.

From Lemma 1 it follows that

Ex

[

e−λTD(a) · 1{TD(a)<TU (a),XTD (a)=u}

]

=
∂

∂a
ℓX(u, u + a;x, λ).(3.6)

Then integration of the above identity over the interval (x−a, a) in u yields
(3.2) and completes the proof of the theorem.

3.2. The case of a > b > 0. We determine LX
x (λ; a, b) for a > b > 0 in

this paragraph. To prove the main result we need following proposition.

Proposition 1. For b > 0, c < u satisfying c, u + b ∈ I, and λ > 0,
define

HX
u (λ; b, c) := Eu

[

e−λτc · 1{τc<TU (b)}

]

.(3.7)

Then

HX
u (λ; b, c) = exp

[∫ u

c

∂

∂w

∣
∣
∣
∣
w=v

ℓX(v, v + b;w, λ)dv

]

.(3.8)

Proof. We follow the idea of [8], [13], , and partition the interval [c, u]
into k subintervals {[vi, vi−1]; 1 ≤ i ≤ k} with u = v0 > v1 > . . . > vk = c.
Let ∆k = max1≤i≤k(vi−1 − vi) and assume ∆k → 0 as k → ∞. As a discrete
approximation to HX

u (λ; b, c) defined by (3.7), compute

Eu

[

e−λ
∑k

i=1
(τvi

−τvi−1 ) · 1{after τvi−1 ,Xt hits vi before increasing to vi+b,1≤i≤k}
]

=
k∏

i=1

Evi−1

[

e−λτvi · 1{τvi
<τvi+b}

]

,
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where the last equality follows from the strong Markov property.
It will be shown that as k → ∞ and ∆k → 0, the limit of above expression

exists and does not depend on the particular sequence of partition chosen
and hence is equal to HX

u (λ; b, c).
By Lemma 1,

k∏

i=1

Evi−1

[

e−λτvi · 1{τvi
<τvi+b}

]

=
k∏

i=1

ℓX(vi, vi + b; vi−1, λ).

Taking log gives us

k∑

i=1

log
[

ℓX(vi, vi + b; vi−1, λ)
]

=
k∑

i=1

log
[

ℓX(vi, vi + b; vi, λ) + ℓX(vi, vi + b; vi−1, λ) − ℓX(vi, vi + b; vi, λ)
]

=
k∑

i=1

log
[

1 + ℓX(vi, vi + b; vi−1, λ) − ℓX(vi, vi + b; vi, λ)
]

=
k∑

i=1

∂

∂w

∣
∣
∣
∣
w=vi

ℓX(vi, vi + b;w, λ) · (vi−1 − vi) + O(∆k)

→
∫ u

c

∂

∂w

∣
∣
∣
∣
w=v

ℓX(v, v + b;w, λ)dv, as ∆k → 0+,

from which we obtain

HX
u (λ; b, c) = exp

[∫ u

c

∂

∂w

∣
∣
∣
∣
w=v

ℓX(v, v + b;w, λ)dv

]

.

This completes the proof of Proposition 1.

Now let us state and prove the main result in this paragraph.

Theorem 3.2. For a > b > 0 and λ > 0, we have

LX
x (λ; a, b) =

∫ x

x−b

∂

∂b
ℓX(u, u + b;x, λ) · HX

u (λ; b, u − a + b)du.(3.9)

Proof. Any path in the event {TD(a) < TU (b)} has the decomposition

1. {Xt; 0 ≤ t ≤ TD(b)};
2. {Xt+TD(b); 0 ≤ t ≤ TD(a) − TD(b)}.
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Conditioning on XTD(b) = u, the process in 2. starts at u, and decreases to
u− a+ b before it incurs the drawup of b units occurs. This gives rise to the
representation

TD(a) = TD(b) + τu−a+b ◦ θ(TD(b)).(3.10)

Therefore, for x − b < u < x,

e−λTD(a) · 1{TD(a)<TU (b),XTD (b)=u}
= e−λ[TD(b)+τu−a+b·θ(TD(b))] · 1{TD(a)<TU (b),XTD(b)=u}
= e−λTD(b) · 1{TD(b)<TU (b),XTD (b)=u}

︸ ︷︷ ︸

before TD(b)

× e−λτu−a+b◦θ(TD(b)) · 1{τu−a+b◦θ(TD(b))<TU (b)◦θ(TD(b))}
︸ ︷︷ ︸

after TD(b)

.(3.11)

To get the expectation of the above expression under Ex[·], we first compute
its conditional expectation under Eu[·|FTD(b)]. By the strong Markov prop-
erty, the factor “before TD(b)” is deterministic under Eu[·|FTD(b)], and the
factor “after TD(b)” has conditional expectation

Eu

[

e−λτu−a+b◦θ(TD(b)) · 1{τu−a+b◦θ(TD(b))<TU (b)◦θ(TD(b))} | FTD(b)

]

= Eu

[

e−λτu−a+b · 1{τu−a+b<TU (b)}

]

,

which, by Proposition 1, is equal to HX
u (λ; b, u − a + b). Taking the expec-

tation of (3.11) under Ex[·], and using (3.6), we obtain

Ex

[

e−λTD(a) · 1{TD(a)<TU (b),XTD (b)=u}
]

= Ex

[

e−λTD(b) · 1{TD(b)<TU (b),XTD(b)=u}

]

· HX
u (λ; b, u − a + b)

=
∂

∂b
ℓX(u, u + b;x, λ) · HX

u (λ; b, u − a + b).(3.12)

The integration of the above identity over the interval (x − b, x) in u yields
(3.9) and completes the proof of Theorem 3.2.

3.3. The case of b > a > 0. We determine LX
x (λ; a, b) for b > a > 0 in

this paragraph. To prove the main result we need the following proposition.
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Proposition 2. For any a > 0 and x ∈ I satisfying x − a ∈ I, and

λ > 0, define

JX
x (λ; a) := Ex

[

e−λTD(a)
]

.(3.13)

Then

JX
x (λ; a)

= −
∫ ∞

x
1I(u) · ∂

∂w

∣
∣
∣
∣
w=u

ℓX(u − a, u;w, λ) · e−
∫ u

x

∂
∂w |w=v

ℓX(v,v−a;w,λ)dvdu.

Proof. See [13], page 602.

Now let us state and prove the main result in this paragraph.

Theorem 3.3. For b > a > 0 and λ > 0, we have

LX
x (λ; a, b) = JX

x (λ; a) −
∫ x+a

x
dv

∂

∂a
ℓ2x−X(2x − v, 2x − v + a;x, λ)

×H2x−X
2x−v (λ; a, 2x − v − b + a) · JX

v+b−a(λ; a).(3.14)

Proof. First, it is easily seen that for b ≥ a > 0,

LX
x (λ; a, b) = JX

x (λ; a) − Ex

[

e−λTD(a) · 1{
sups≤TD(a) DUs≥b

}

]

.

Therefore, to prove (3.14), it suffices to show that

Ex

[

e−λTD(a) · 1{
sups≤TD(a) DUs≥b

}

]

=

∫ x+a

x
dv

∂

∂a
ℓ2x−X(2x − v, 2x − v + a;x, λ)

×H2x−X
2x−v (λ; a, 2x − v − b + a) · JX

v+b−a(λ; a).(3.15)

To do so we observe that for b ≥ a,

Ex

[

e−λTD(a) · 1{supt≤TD(a) DUt≥b}

]

= Ex

[

e−λTD(a) · 1{TU (b)<TD(a)}

]

.(3.16)

And we are going to calculate the right hand side of (3.16) in the sequel.
Consider the path decomposition for any path in the event {TU (b) <

TD(a)}. We have

1. {Xt; 0 ≤ t ≤ TU (b)};
2. {Xt+TU (b); 0 ≤ t ≤ TD(a) − TU (b)}.
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Intuitively, before time TU (b), the process experiences no drawdown of a
units and the first drawup of b units occurs at TU (b), when the process also
reaches a new maximum; thereafter, the process has a drawdown of a units
at time TD(a). Thus for any path in the event {TU (b) < TD(a)} we have

TD(a) = TU (b) + TD(a) ◦ θ(TU (b)).(3.17)

Therefore, for b ≥ a and x < v < x + a,

Ex

[

e−λTD(a) · 1{supt≤TD(a) DUt≥b,XTU (a)=v}

]

(3.18)

= Ex

[

e−λTU (b)+TD(a)◦θ(TU (b)) · 1{supt≤TD(a) DUt≥b,XTU (a)=v}

]

= Ex







e−λTU (b) · 1{TU (b)<TD(a),XTU (a)=v}
︸ ︷︷ ︸

before TU (b)

× e−λTD(a)◦θ(TU (b))
︸ ︷︷ ︸

after TU (b)








= Ex

[

e−λTU (b) · 1{TU (b)<TD(a),XTU (a)=v}Ev+b−a

[

e−λTD(a)
]]

= Ex

[

e−λTU (b) · 1{TU (b)<TD(a),XTU (a)=v} · JX
v+b−a(λ; a)

]

= Ex

[

e−λTU (b) · 1{TU (b)<TD(a),XTU (a)=v}

]

· JX
v+b−a(λ; a),

where the third equality follows from the strong Markov property. The ex-
pectation in the last line can be determined as follows. Note that for the
process {Yt = 2x − Xt, t ≥ 0},

dYt = −µ(2x − Yt)dt + σ(2x − Yt)dB
′

t, Y0 = x

with B
′

t = −Bt, the vector of random variables
(

T Y
D (b), T Y

U (a), 2x − YT Y
D

(a)

)
1

has the same law as the vector of random variables
(

TD(a), TU (b),XTU (a)

)

for {Xt; t ≥ 0} under Ex[·]. So we know from (3.12) that

Ex

[

e−λTU (b) · 1{TU (b)<TD(a),XTU (a)=v}

]

for Xt(3.19)

= Ex

[

e−λT Y
D

(b) · 1{T Y
D

(b)<T Y
U

(a),Y
TY

D
(a)

=2x−v}

]

for Yt

=
∂

∂a
ℓ2x−X(2x − v, 2x − v + a;x, λ) · H2x−X

2x−v (λ; a, 2x − v − b + a).

The integration of (3.18) over the interval (x, x + a) in v yields (3.15) and
completes the proof of Theorem 3.3.

We now proceed to treat separately the case of a drifted Brownian motion
model.

1
T

Y
D (b) and T

Y
U (a) are the drawdown and drawup of the process {Yt; t ≥ 0} respectively.
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4. A study of Brownian motion. In this section, we apply the results
in Theorem 3.1, Theorem 3.2 and Theorem 3.3 to a drifted Brownian motion
model and calculate the probability density of the drawdown of a units when
it precedes the drawup of b units.

First it is easily seen that I = (−∞,∞) in a drifted Brownian motion
model. The function ℓX(y, z;x, λ) for Xt = x+µt+σWt can be found in [3]
page 295:

ℓX(y, z;x, λ) =
sinh[(z − x)Sµ,σ(λ)]

sinh[(z − y)Sµ,σ(λ)]
e

µ(y−x)

σ2 ,(4.1)

where Sµ,σ(λ) =
√

(2λ/σ2) + (µ2/σ4). Thus the Laplace transforms in The-
orem 3.1, Theorem 3.2 and Theorem 3.3 can be calculated explicitly as:
1. a = b > 0:

LX
0 (λ; a) =

Sµ,σ(λ)

(2λ/σ2)







e−
µa

σ2
[
Sµ,σ(λ) coth[aSµ,σ(λ)] + µ

σ

]

sinh[aSµ,σ(λ)]

− Sµ,σ(λ)

sinh2[aSµ,σ(λ)]

}

;(4.2)

2. a > b > 0:

LX
0 (λ; a, b) = LX

0 (λ; b) · exp [Tµ,σ(λ; b)(a − b)] ,(4.3)

where

Tµ,σ(λ; b) = − µ

σ2
− Sµ,σ(λ) coth[bSµ,σ(λ)];(4.4)

3. b > a > 0:

LX
0 (λ; a, b) =

[

1 − L−X
0 (λ; a) · eT−µ,σ(λ;a)(b−a)

]

· JX
0 (λ; a),(4.5)

where

JX
0 (λ; a) =

Sµ,σ(λ)e−
µa

σ2

Sµ,σ(λ) cosh[aSµ,σ(λ)] − (µ/σ2) sinh[aSµ,σ(λ)]

= − Sµ,σ(λ; a)e−
µa

σ2

sinh[aSµ,σ(λ; a)]
· 1

T−µ,σ(λ; a)
.(4.6)

One can easily obtain several known results from (4.2), (4.3) and (4.5).
First, by letting λ → 0+, the formulas coincide with the probability results
in Hadjiliadis & Vecer [10]. Second, by letting b → ∞ in (4.5), one obtains
the Laplace transform of TD(a), JX

0 (λ; a).
Moreover, we can invert (4.3) analytically to obtain the density P (TD(a) ∈

dt, TU (b) > t) for any a ≥ b > 0. In fact we have
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Theorem 4.1. Define p(µ)(t; a, b)dt = P (TD(a) ∈ dt, TU (b) > t) for

a ≥ b > 0, then

p(µ)(t; a, b) =
2

t
e−

µ2t

2σ2 −
µ(a−b)

σ2

∞∑

m,n=0

(m + n + 1)!

(m + 1)!m!n!

[
2(a − b)

σ
√

t

]m

×
[

2F (1)
m,n(t) − e−

µb

σ2 F (2)
m,n(t) − δne−

µb

σ2 F (3)
m (t)

]

+
2µ2

σ2
e−

µ(a−b)

σ2

∞∑

m,n=0

(m + n + 1)!

(m + 1)!m!n!

[
2µ(a − b)

σ2

]m

×
[

G
(µ)

m+n+ 1
2

(t) + (−1)mG
(−µ)

m+n+ 1
2

(t) − e−
µb

σ2 G
(µ)
m+n+1(t)

−(−1)me−
µb

σ2 G
(−µ)
m+n(t)

]

,(4.7)

where δn is the Kronecker delta and

F (1)
m,n(t) =

⌊m+1
2 ⌋

∑

k=0

[

µ
√

t

σ

]2k

φ(m+1−2k)
[
(2m + 2n + 1)b + a

σ
√

t

]

,

F (2)
m,n(t) =

m+1∑

k=0

[

µ
√

t

σ

]k [

1 + (−1)k
m + n + 2

n + 1

]

φ(m+1−k)
[
2(m + n + 1)b + a

σ
√

t

]

F (3)
m (t) =

m+1∑

k=0

[

−µ
√

t

σ

]k

φ(m+1−k)
[
2mb + a

σ
√

t

]

,

G(µ)
m (t) =e

µ(2mb+a)

σ2 Φ

[
2mb + a + µt

σ
√

t

]

,

with φ and Φ being the standard normal probability density and cumulative

distribution respectively. φ(k) is the k-th derivative of φ.

Proof. We start by rewriting (4.3) in a more tractable way,

∫ 0

−b
due

µu

σ2
Sµ,σ(λ) sinh[(−u)Sµ,σ(λ)]

sinh2[bSµ,σ(λ)]
· exp [Tµ,σ(λ; b)(a − b)] .(4.8)

By using the first formula on page 643 of [3], in their notation, we obtain
the inverse Laplace transform of the integrand in (4.8)

σ2

2
e−

µ2t

2σ2 +
µ(u+b−a)

σ2 [esσ2t(1, 2, b, u, a − b) − esσ2t(1, 2, b,−u, a − b)] .
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After some simple manipulation, the above expression becomes

2e−
µ2t

2σ2 +
µ(u+b−a)

σ2

σ
√

t3

∞∑

m,n=0

(m + n + 1)!

(m + 1)!m!n!

[
2(a − b)

σ
√

t

]m

×(4.9)

{

φ(m+2)
[
(2m + 2n + 1)b + a + u

σ
√

t

]

− φ(m+2)
[
(2m + 2n + 1)b + a − u

σ
√

t

]}

.

Formula (4.7) follows from integration of (4.9) over (−b, 0) in u.

One can let a = b in (4.9) to get a similar joint probability density as that
in Proposition 1 of [27].

Similarly, we can invert (4.5) analytically to get the joint density

P (TD(a) ∈ dt, sup
s≤t

DUs ∈ a + dz) =
∂

∂z
p(µ)(t; a, a + z)dtdz ∀a, z > 0.

In particular we have

Theorem 4.2. For a Brownian motion with constant drift µ and con-

stant volatility σ, any a, z > 0, we have

∂

∂z
p(µ)(t; a, a + z) = −4e−

µ2t

2σ2 +
µ(z−a)

σ2

σ
√

t3

∞∑

m,n=0

(m + n + 2)!

(m + 2)!m!n!

(
2z

σ
√

t

)m

×
[

2F (1)
m,n(t, z) − e

µa

σ2 F (2)
m,n(t, z) − δne

µa

σ2 F (3)
m (t, z)

]

−4µ3

σ4
e

µ(z−a)

σ2

∞∑

m,n=0

(m + n + 2)!

(m + 2)!m!n!

(
2µz

σ2

)m

×
[

G
(µ)

m+n+ 1
2

(t, z) − (−1)mG
(−µ)

m+n+ 1
2

(t, z) − e
µa

σ2 G
(µ)
m+n(t, z)

+(−1)me
µa

σ2 G
(−µ)
m+n+1(t, z)

]

(4.10)

where

F (1)
m,n(t, z) =

⌊m+2
2 ⌋

∑

k=0

[

µ
√

t

σ

]2k

φ(m+2−2k)
[
(2m + 2n + 3)a + z

σ
√

t

]

,

F (2)
m,n(t, z) =

m+2∑

k=0

[

µ
√

t

σ

]k [

(−1)k +
m + n + 3

n + 1

]

φ(m+2−k)
[
(2m + 2n + 4)a + z

σ
√

t

]

F (3)
m (t, z) =

m+2∑

k=0

[

µ
√

t

σ

]k

φ(m+2−k)
[
(2m + 2)a + z

σ
√

t

]

,

G(µ)
m (t, z) =e

µ[2(m+1)a+z]

σ2 Φ

[
2(m + 1)a + z + µt

σ
√

t

]

.



14 H. ZHANG AND O.HADJILIADIS

Proof. We start from the equality

LX
0 (λ; a, b)

=JX
0 (λ; a) − L−X

0 (λ; a)eT−µ,σ(λ;a)(b−a)JX
0 (λ; a)

=JX
0 (λ; a) − L−X

0 (λ; a)JX
0 (λ; a) +

Sµ,σ(λ; a)L−X
0 (λ; a)

sinh[aSµ,σ(λ; a)]e
µa

σ2

∫ b−a

0
eT−µ,σ(λ;a)zdz

=LX
0 (λ; a) +

∫ 0

−a
du

∫ b−a

0
dz

[Sµ,σ(λ; a)]2 sinh[(−u)Sµ,σ(λ; a)]

sinh3[aSµ,σ(λ; a)]e
µ(u+a)

σ2

eT−µ,σ(λ;a)z

By using the first formula on page 643 of [3], the integrand in the last line
has inverse Laplace transform

σ2

2
e−

µ2t

2σ2 −
µ(u−z+a)

σ2 [esσ2t(2, 3, a, u, z) − esσ2t(2, 3, a,−u, z)].

After some simple manipulation, the above expression becomes

4e−
µ2t

2σ2 −
µ(u−z+a)

σ2

σ2t2

∞∑

m,n=0

(m + n + 2)!

(m + 2)!m!n!

(
2z

σ
√

t

)m

×(4.11)

{

φ(m+3)
[
(2m + 2n + 3)a + z − u

σ
√

t

]

− φ(m+3)
[
(2m + 2n + 3)a + z + u

σ
√

t

]}

.

The integration of (4.11) over (−a, 0) in u yields (4.10) and completes the
proof.

5. Application.

5.1. Relative drawdowns and relative drawups of stock prices. Consider
the case of a stock with geometric Brownian motion dynamics under a prob-
ability measure P :

dSt = µStdt + σStdWt, S0 = 1.(5.1)

Using Theorem 4.1 and Theorem 4.2, we are in the position to address
the following question:

What is the probability that this stock would drop by (100×α)%
from its historical high before it incurs a rise of (100 × β)% from
its historical low in a pre-specified plan horizon T?

First observe that

d log St = νdt + σdWt, log S0 = 0,(5.2)
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where ν = µ − 1
2σ2 represents the logarithm of the return of the stock.

Now define the running maximum and the running minimum of the stock
process {St}

Mt = sup
s≤t

Ss, Nt = inf
s≤t

Ss.

We also let UD(α) be the first time the stock drops by (100 × α)% from its
historical high and UR(β) the first time that the stock rises by an amount
equal to (100 × β)% from its historical low. That is,

UD(α) = inf{t ≥ 0|St = (1 − α)Mt},(5.3)

UR(β) = inf{t ≥ 0|St = (1 + β)Nt}.(5.4)

Thus, it is possible to calculate the exact expression for the probability
that a percentage relative drop of (100 × α)% precedes a relative rise of
(100 × β)% by noticing that

{

UD(α) = TD(− log(1 − α))
UR(β) = TU (log(1 + β))

.(5.5)

And this probability can be calculated explicitly as

P (UD(α) ∧ T < UR(β) ∧ T ) =

∫ T

0
p(ν)(t;− log(1 − α), log(1 + β))dt.

Moreover, a digital option on the event that the relative drawdown pre-
cedes the relative drawup can also be perceived as a means of protection
against adverse movements in the market. In particular, the discounted pay-
off of this digital option can be written as

PO(α, β) = e−rt · 1{UD(α)∈dt,UR(β)>t} · 1{t≤T},(5.6)

where r > 0 is the risk-free interest rate and T is the maturity of the option.
Under a risk-neutral measure Q, the stock price and its logarithm have

the following dynamics respectively,

dSt = rStdt + σStdWt, S0 = 1,(5.7)

d log St = ν
′

dt + σdWt, log S0 = 0,(5.8)

where ν
′

= r − 1
2σ2.

Using (5.5) and our results we are able to derive the risk-neutral price at
time 0 of this digital option:
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In the case of a perpetual option (see [11]), the risk-neutral price of the
digital option is already given by the Laplace transform (4.2), (4.3) and
(4.5). In particular,

Q[PO(α, β)] = Llog S
0 (r;− log(1 − α), log(1 + β)).

In the case of a finite life option maturing at time T < ∞, we can apply the
densities (4.7) and (4.10) to calculate the risk-neutral price.

1. (1 − α)(1 + β) ≤ 1:

Q[PO(α, β)] =

∫ T

0
e−rtp(ν

′
)(t;− log(1 − α), log(1 + β))dt;(5.9)

2. δ = (1 − α)(1 + β) > 1:

Q[PO(α, β)] − Q[PO(α,α/(1 − α))](5.10)

=

∫ T

0
e−rt

[
∫ log δ

0

∂

∂z
p(ν

′
)(t;− log(1 − α),− log(1 − α) + z)dz

]

dt.

5.2. The problem of transient signal detection and identification of two

sided changes. In this example, we present the problem of transient signal
detection and identification of two-sided changes in the drift of a general
diffusion process. More specifically, we give the formulas for the probabilities
of misidentifying the direction of the signal both in the case of exponential
life transient signals and in the case of deterministic life transient signals.
In particular, let {Xt, t ≥ 0} be a diffusion process with the initial value
X0 = x and the following dynamics up to a deterministic time τ :

dXt = σ(Xt)dWt, t ≤ τ.(5.11)

For t > τ , the process evolves according to one of the following stochastic
differential equations:

dXt = µ(Xt)dt + σ(Xt)dWt t > τ,(5.12)

dXt = −µ(Xt)dt + σ(Xt)dWt t > τ,(5.13)

with initial condition y = Xτ .
The time of the regime change, τ , is deterministic but unknown. We

observe the process {Xt, t ≥ 0} sequentially and our goal is to detect the
time of onset of the signal, as well as possibly identity its direction, before
the signal disappears.
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Let us denote by P τ,+
x and P τ,−

x the probability measures generated on
the space of continuous functions C[0,∞) by the process {Xt, t ≥ 0}, if the
regime changes at time τ from (5.11) to (5.12) and from (5.11) to (5.13),
respectively.

In this context suppose that the drawdown of a units, TD(a), can be used
as a means of detecting the change in the dynamics of {Xt, t ≥ 0} from
(5.11) to (5.13). Then the drawup of b units, TU (b) may be used as a means
of detecting the change in the dynamics of {Xt, t ≥ 0} from (5.11) to (5.12).
For example, in the case that µ(·) = µ > 0, it is easy to see that the drawup
could be used as a means of detecting a change from (5.11) to (5.12), while
the drawdown would provide a means of detecting a change from (5.11) to
(5.13). In particular, T (a, b) = min{TD(a), TU (b)}, also known as the two-
sided CUSUM (see Khan [12]), has been extensively used as a means of
detecting two-sided alternatives in the drift (see Barnard [1], Dobben [6],
Bissell [2], Woodall [26], and Poor & Hadjiliadis [17]). In the special case in
which µ(·) = µ > 0 and there is no reason to believe that a change from
(5.11) to (5.13) is more or less likely than a change from (5.11) to (5.12),
it is natural to use thresholds a = b. However, in the general case different
thresholds a and b could be used.

In many applications in engineering, the life of the signal after its onset is
often limited. The lifetime of the signal is also random and may not depend
on the dynamics of the underlying process. In the case of exponential life
transient signals, the signals are present (after τ) for a period of time ζ,
where ζ is an independent exponentially distributed random variable with
parameter λ > 0. Theorems 3.1, 3.2 and 3.3 can be used to compute the
probability of sequential misidentification of the signal in the case that the
onset of the signal occurs at time 0. More specifically,

P 0,+
x (TD(a) ∧ ζ < TU (b) ∧ ζ) =

∫ ∞

0
P 0,+

x (TD(a) ∧ t < TU (b) ∧ t) · λe−λtdt

=

∫ ∞

0
e−λtP 0,+

x (TD(a) ∈ dt, TU (b) > t)dt

= LX0,+

x (λ; a, b),(5.14)

where X0,+ follows (5.12) with τ = 0, expresses the probability that an alarm
indicating that the regime switched to (5.13) will occur before ζ and an alarm
indicating that the regime switched to (5.13) while in fact (5.12) is the true
regime. Thus (5.14) can be seen as the probability of a misidentification.
Moreover, in the case that the density of the random variable Xτ admits a
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closed-form representation, we can also compute

∫

P τ,+
y (TD(a) ◦ θ(τ) ∧ ζ < TU (b) ◦ θ(τ) ∧ ζ)fXτ (y|x)dy(5.15)

=

∫

LX0,+

y (λ, a, b)fXτ (y|x)dy,

which can be interpreted as the aggregate probability (or unconditional
probability) of a misidentification for any given change-point τ .

In the case of deterministic life transient signals, the signals are present
(after τ) for a finite period of time T . Using Theorem 4.1 we are still able
to compute the probability of misidentification for Brownian motion (σ(·) =
σ > 0, µ(·) = µ). More specifically,

P τ,+
x (TD(a) ◦ θ(τ) ∧ T < TU (a) ◦ θ(τ) ∧ T ) =

∫ T

0
p(µ)(t; a, a)dt,(5.16)

expresses the probability of misidentification for any given change-point τ .

6. Conclusion. In this paper we derive a closed-form expression for the
Laplace transform of the drawdown of a units when it precedes the drawup
of b units for a general diffusion process. We then derive the probability den-
sity of a drawdown when it precedes a drawup in the special case of a drifted
Brownian motion model by inverting the Laplace transform. Although sev-
eral authors in the literature have studied drawdowns and drawups ([23],
[13], [10], [19], [21], [27]), this paper summarizes the probabilistic properties
of a drawdown on the event that it precedes a drawup for a general diffusion
process. These results are of practical interest in two main areas: financial
risk-management and transient signal detection and identification.
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