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Spaces of Type BLO on Non-homogeneous Metric Measure

Spaces

Haibo Lin and Dachun Yang ∗

Abstract. Let (X , d, µ) be a metric measure space and satisfy the so-called upper dou-
bling condition and the geometrically doubling condition. In this paper, the authors
introduce the space RBLO(µ) and prove that it is a subset of the known space RBMO(µ)
in this context. Moreover, the authors establish several useful characterizations for the
space RBLO(µ). As an application, the authors obtain the boundedness of the maximal
Calderón-Zygmund operators from L∞(µ) to RBLO(µ).

1 Introduction

Spaces of homogeneous type were introduced by Coifman and Weiss [3] as a general
framework in which many results from real and harmonic analysis on Euclidean spaces
have their natural extensions; see, for example, [4, 6, 5]. Recall that a metric space (X , d)
equipped with a Borel measure µ is called a space of homogeneous type if (X , d, µ) satisfies
the following measure doubling condition that there exists a positive constant Cµ such that
for all balls B ⊂ X ,

(1.1) 0 < µ(2B) ≤ Cµµ(B),

where and in what follows, a ball B ≡ B(cB , rB) ≡ {x ∈ X : d(x, cB) < rB}, and for
any ball B and ρ ∈ (1, ∞), ρB ≡ B(cB , ρrB). We point out that in [3] (see also [4]), the
metric d appeared in the definition of spaces of homogeneous type was assumed only to
be a quasi-metric. However, in this paper, for simplicity, we always assume that d is a
metric.

Meanwhile, many classical results concerning the theory of Calderón-Zygmund oper-
ators and function spaces have been proved still valid for non-doubling measures. In
particular, let µ be a non-negative Radon measure on R

n which only satisfies the polyno-
mial growth condition that there exist positive constants C and κ ∈ (0, n] such that for
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all x ∈ R
n and r ∈ (0, ∞), µ({y ∈ R

n : |x − y| < r}) ≤ Crκ. Such a measure does not
need to satisfy the doubling condition (1.1). The Lq(µ)-boundedness with q ∈ (1, ∞) of
Calderón-Zygmund operators modeled on the Cauchy integral operator with respect to
such a measure, as well as the endpoint spaces of Lq(µ) scale and the related mapping
properties of operators, have been successfully developed in this context. Some highlights
of this theory, are the introduction of the Hardy space H1 and its dual space, the regu-
larized BMO space, by Tolsa [17], the proof of Tb theorem by Nazarov, Treil and Volberg
[15], and the solution of the Painlevé problem by Tolsa [18].

However, as pointed out by Hytönen in [8], notwithstanding these impressive achieve-
ments, the Calderón -Zygmund theory with non-doubling measures is not in all respects
a generalization of the corresponding theory of spaces of homogeneous type. The mea-
sures satisfying the polynomial growth condition are different from, not general than, the
doubling measures.

To include the spaces of homogeneous type and Euclidean spaces with a non-negative
Radon measure satisfying a polynomial condition, Hytönen [8] introduced a new class of
metric measure spaces which satisfy the so-called upper doubling condition and the ge-
ometrically doubling condition (see, respectively, Definitions 1.1 and 1.2 below), and a
notion of spaces of regularized BMO. Later, Hytönen and Martikainen [10] further estab-
lished a version of Tb theorem in this setting.

Let (X , d, µ) be a metric space satisfying the upper doubling condition and geomet-
rically doubling condition. The main purpose of this paper is to introduce the space
RBLO(µ) and prove that it is a subset of the known space RBMO(µ) in this context.
Moreover, we establish several useful characterizations, including the one in terms of the
natural maximal operator, for the space RBLO(µ). As an application, we prove that if
the Calderón-Zygmund operator is bounded on L2(µ), then the corresponding maximal
operator is bounded from L∞(µ) to RBLO(µ).

Recently, an atomic Hardy space H1(µ) in this setting was introduced in [11] and it
was proved in [11] that (H1(µ))∗ = RBMO(µ). As an application, the boundedness of
Calderón-Zygmund operators from H1(µ) to L1(µ) was obtained in [11].

We now recall the upper doubling space in [8].

Definition 1.1. A metric measure space (X , d, µ) is called upper doubling if µ is a Borel
measure on X and there exists a dominating function λ : X × (0, ∞) → (0, ∞) and a
positive constant Cλ such that for each x ∈ X , r → λ(x, r) is non-decreasing, and for all
x ∈ X and r ∈ (0, ∞),

(1.2) µ(B(x, r)) ≤ λ(x, r) ≤ Cλλ(x, r/2).

In what follows, we write ν ≡ log2 Cλ which can be thought of as a dimension of the
measure in some sense.

Remark 1.1. (i) Obviously, a space of homogeneous type is a special case of the upper
doubling spaces, where one can take the dominating function λ(x, r) ≡ µ(B(x, r)).
Moreover, let µ be a non-negative Radon measure on R

n which only satisfies the
polynomial growth condition. By taking λ(x, r) ≡ Crκ, we see that (Rn, | · |, µ) is
also an upper doubling measure space.
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(ii) It was proved in [11] that there exists a dominating function λ̃ related to λ satisfying
the property that there exists a positive constant C such that for all x, y ∈ X with
d(x, y) ≤ r,

(1.3) λ̃(x, r) ≤ Cλ̃(y, r).

Based on this, in this paper, we always assume that the dominating function λ also
satisfies (1.3).

Throughout the whole paper, we also assume that the underlying metric space (X , d)
satisfies the following geometrically doubling condition.

Definition 1.2. A metric space (X , d) is called geometrically doubling if there exists some
N0 ∈ N ≡ {1, 2, · · · } such that for any ball B(x, r) ⊂ X , there exists a finite ball covering
{B(xi, r/2)}i of B(x, r) such that the cardinality of this covering is at most N0.

Remark 1.2. Let (X , d) be a metric space. In [8, Lemma 2.3], Hytönen showed that the
following statements are mutually equivalent:

(i) (X , d) is geometrically doubling.

(ii) For any ǫ ∈ (0, 1) and any ball B(x, r) ⊂ X , there exists a finite ball covering
{B(xi, ǫr)}i of B(x, r) such that the cardinality of this covering is at most N0ǫ

−n,
where and in what follows, N0 is as in Definition 1.2 and n ≡ log2 N0.

(iii) For every ǫ ∈ (0, 1), any ball B(x, r) ⊂ X can contain at most N0ǫ
−n centers {xi}i

of disjoint balls with radius ǫr.

(iv) There exists M ∈ N such that any ball B(x, r) ⊂ X can contain at most M centers
{xi}i of disjoint balls {B(xi, r/4)}Mi=1.

It is well known that spaces of homogeneous type are geometrically doubling spaces;
see [3, p. 67]. Conversely, if (X , d) is a complete geometrically doubling metric spaces,
then there exists a Borel measure µ on X such that (X , d, µ) is a space of homogeneous
type; see [14] and [20].

A metric measure space (X , d, µ) is called a non-homogeneous metric measure space in
this paper, if µ is upper doubling and (X , d) is geometrically doubling. The motivation
to develop a harmonic analysis on non-homogeneous metric measure spaces can be found
in [8] and also in [19, 4, 3].

The paper is organized as follows. Let (X , d, µ) be a non-homogeneous metric measure
space. In Section 2, we introduce the space RBLO(µ) and obtain some useful properties of
this space. In Section 3, a characterization of RBLO(µ) in terms of the natural maximal
operator is established. In Section 4, we obtain the boundedness of the maximal Calderón-
Zygmund operators from L∞(µ) to RBLO(µ).

Finally, we make some convention on symbols. Throughout the paper, we denote by C,
C̃, c and c̃ positive constants which are independent of the main parameters, but they may
vary from line to line. Constant with subscript, such as C1, does not change in different
occurrences. If f ≤ Cg, we then write f . g or g & f ; and if f . g . f , we then write
f ∼ g. Also, for any subset E ⊂ X , χE denotes the characteristic function of E.
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2 The spaces RBLO(µ)

In this section, we introduce the space RBLO(µ) and establish its several equivalent
characterizations.

We begin with the coefficients δ(B, S) for all balls B ⊂ S which were introduced by
Hytönen in [8] as analogues of Tolsa’s numbers KQ,R from [17]; see also [11].

Definition 2.1. For all balls B ⊂ S, let

δ(B, S) ≡

∫

(2S)\B

dµ(x)

λ(cB , d(x, cB))
.

The following useful properties of δ were proved in [11].

Lemma 2.1. (i) For all balls B ⊂ R ⊂ S, δ(B, R) ≤ δ(B, S).

(ii) For any ρ ∈ [1, ∞), there exists a positive constant C, depending on ρ, such that for
all balls B ⊂ S with rS ≤ ρrB, δ(B, S) ≤ C.

(iii) For any α ∈ (1, ∞), there exists a positive constant C̃, depending on α, such that
for all balls B, δ(B, B̃α) ≤ C̃.

(iv) There exists a positive constant c such that for all balls B ⊂ R ⊂ S, δ(B, S) ≤
δ(B, R) + cδ(R, S). In particular, if B and R are concentric, then c = 1.

(v) There exists a positive constant c̃ such that for all balls B ⊂ R ⊂ S, δ(R, S) ≤
c̃[1 + δ(B, S)]; moreover, if B and R are concentric, then δ(R, S) ≤ δ(B, S).

Though the measure condition (1.1) is not assumed uniformly for all balls in the non-
homogeneous metric measure space (X , d, µ), it was shown in [8] that there are still many
small and large balls that have the following (α, β)-doubling property.

Definition 2.2. Let α, β ∈ (1, ∞). A ball B(x, r) ⊂ X is called (α, β)-doubling if
µ(αB) ≤ βµ(B).

To be precise, it was proved in [8] that if a metric measure space (X , d, µ) is upper

doubling and β > C
log2 α
λ = αν , then for every ball B(x, r) ⊂ X , there exists some

j ∈ Z+ ≡ N∪{0} such that αjB is (α, β)-doubling. Moreover, let (X , d) be geometrically
doubling, β > αn with n ≡ logN0 and µ a Borel measure on X which is finite on bounded
sets. Hytönen [8] also showed that for µ-almost every x ∈ X , there exist arbitrarily small
(α, β)-doubling balls centered at x. Furthermore, the radius of these balls may be chosen
to be of the form α−jr for j ∈ N and any preassigned number r ∈ (0, ∞). Throughout
this paper, for any α ∈ (1, ∞) and ball B, B̃α denotes the smallest (α, βα)-doubling ball
of the form αjB with j ∈ Z+, where

(2.1) βα ≡ max {αn, αν} + 30n + 30ν = αmax{n, ν} + 30n + 30ν .

Inspired by the work of [12, 7, 8], we introduce the space RBLO(µ) as follows. In what
follows, L1

loc (µ) denotes the space of all µ-locally integrable functions.
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Definition 2.3. Let η, ρ ∈ (1, ∞), and βρ be as in (2.1). A real-valued function f ∈
L1

loc (µ) is said to be in the space RBLO(µ) if there exists a non-negative constant C such
that for all balls B,

(2.2)
1

µ(ηB)

∫

B

[
f(y) − essinf

B̃ρ

f

]
dµ(y) ≤ C,

and that for all (ρ, βρ)-doubling balls B ⊂ S,

(2.3) essinf
B

f − essinf
S

f ≤ C[1 + δ(B, S)].

Moreover, the RBLO(µ) norm of f is defined to be the minimal constant C as above and
denoted by ‖f‖RBLO(µ).

Remark 2.1. (i) It is obvious that L∞(µ) ⊂ RBLO(µ). Moreover, if f ∈ RBLO(µ),
then f + C with any fixed C ∈ R also belongs to RBLO(µ) and ‖f + C‖RBLO(µ) =
‖f‖RBLO(µ). Based on this, in this paper, we identify f with its equivalent class
{f + C : C ∈ R}, namely, we regard RBLO(µ) as the quotient space RBLO(µ)/R.

(ii) The classical space BLO(Rn) is defined by Coifman and Rochberg [2]. Let µ be
a non-negative Radon measure on R

n which only satisfies the polynomial growth
condition. In the setting of (Rn, | · |, µ), the space RBLO(µ) was first introduced
by Jiang [12] and improved by [7]. Moreover, in this setting, the space RBLO(µ)
defined as in Definition 2.3 is just the one introduced in [7].

(iii) The definition of RBLO(µ) is independent of the choice of the constants η, ρ ∈
(1, ∞); see Propositions 2.1 and 2.2 below.

Let η ∈ (1, ∞). Suppose that for any given f ∈ L1
loc (µ), there exist a non-negative

constant C̃ and a real number fB for any ball B such that for all balls B,

(2.4)
1

µ(ηB)

∫

B
[f(y) − fB] dµ(y) ≤ C̃,

that for all balls B ⊂ S,

(2.5) |fB − fS| ≤ C̃ [1 + δ(B, S)],

and that for all balls B,

(2.6) fB ≤ essinf
B

f.

We then define the norm ‖f‖∗∗, η ≡ inf{C̃}, where the infimum is taken over all the

non-negative constants C̃ as above.

Proposition 2.1. The norm ‖ · ‖∗∗, η is independent of the choice of the constant η ∈
(1, ∞).
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Proof. Let ρ > η > 1 be some fixed constants. Obviously, ‖f‖∗∗, ρ ≤ ‖f‖∗∗, η. So we only
have to show that ‖f‖∗∗, η . ‖f‖∗∗, ρ.

For the norm ‖f‖∗∗, ρ, there exists a fixed collection {fB}B of real numbers satisfying

(2.4) through (2.6) with the constant C̃ replace by ‖f‖∗∗, ρ. Fix ǫ ∈ (0, (η − 1)/ρ) and
consider a fixed ball B0 ≡ B(x0, r). Then, by Remark 1.2(ii), there exists a family
{Bi ≡ B(xi, ǫr) : xi ∈ B0}i∈I of balls, which cover B0, where ♯I ≤ N0ǫ

−n. Here and in
what follows, for any set I, we use ♯I to denote the cardinality of I. Moreover, ρBi =
B(xi, ǫρr) ⊂ B(x0, ηr) = ηB0, since r + ǫρr < ηr. By this, (2.5) and (ii) and (iv) of
Lemma 2.1, we have that

|fBi
− fB0 | ≤ |fBi

− fηB0 | + |fηB0 − fB0 | ≤ ‖f‖∗∗, ρ[2 + δ(Bi, ηB0) + δ(B0, ηB0)]

. ‖f‖∗∗, ρ[1 + δ(Bi, ρBi) + δ(ρBi, ηB0)] . ‖f‖∗∗, ρ.

Thus, by this estimate and ρBi ⊂ ηB0 again, we obtain

∫

B0

|f(y) − fB0 | dµ(y) ≤
∑

i∈I

∫

Bi

|f(y) − fB0 | dµ(y)

≤
∑

i∈I

{∫

Bi

|f(y) − fBi
| dµ(y) + µ(Bi)|fBi

− fB0 |

}

.
∑

i∈I

‖f‖∗∗, ρµ(ρBi) . ‖f‖∗∗, ρµ(ηB0),

which, together with (2.6) and the fact that (2.5) holds with the constant C̃ replaced by
‖f‖∗∗, ρ, yields that ‖f‖∗∗, η . ‖f‖∗∗, ρ. This finishes the proof of Proposition 2.1.

Based on Proposition 2.1, from now on, we write ‖ · ‖∗∗ instead of ‖ · ‖∗∗, η.

Proposition 2.2. Let η, ρ ∈ (1, ∞), and βρ be as in (2.1). Then the norms ‖ · ‖∗∗ and
‖ · ‖RBLO(µ) are equivalent.

Proof. Suppose that f ∈ L1
loc (µ). We first show that

(2.7) ‖f‖∗∗ . ‖f‖RBLO(µ).

For any ball B, let fB ≡ essinf B̃ρf . Then (2.4) and (2.6) hold with C̃ ≡ ‖f‖RBLO(µ). For
any two balls B ⊂ S, to show (2.5), we consider two cases.

Case (i) rS̃ρ ≥ rB̃ρ . In this case, B̃ρ ⊂ 2S̃ρ. Let S0 ≡ 2̃S̃ρ
ρ

. It follows from Lemma 2.1

that δ(S̃ρ, S0) . 1 and δ(B̃ρ, S0) . 1 + δ(B, S), which together with (2.3) shows that

|fB − fS| =

∣∣∣∣ essinf
B̃ρ

f − essinf
S̃ρ

f

∣∣∣∣ ≤
∣∣∣∣ essinf

B̃ρ

f − essinf
S0

f

∣∣∣∣ +

∣∣∣∣ essinf
S0

f − essinf
S̃ρ

f

∣∣∣∣

≤ [2 + δ(B̃ρ, S0) + δ(S̃ρ, S0)]‖f‖RBLO(µ)

. [1 + δ(B, S)]‖f‖RBLO(µ).
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Case (ii) rS̃ρ < rB̃ρ . In this case, S̃ρ ⊂ 2B̃ρ. Notice that rS̃ρ ≥ rB . Thus, there
exists a unique m ∈ N such that rρm−1B ≤ rS̃ρ < rρmB and rρmB ≤ rB̃ρ , since rS̃ρ < rB̃ρ .

Therefore, S̃ρ ⊂ 2ρmB ⊂ 2B̃ρ. Set B0 ≡ 2̃B̃ρ
ρ

. Then another application of Lemma 2.1
implies that δ(B̃ρ, B0) . 1 and

δ(S̃ρ, B0) . δ(S̃ρ, 2ρmB) + δ(2ρmB, B0) . 1.

An argument similar to Case (i) also establishes (2.5) in this case. Thus, (2.5) always
holds.

Now let us show the converse of (2.7). For f ∈ L1
loc (µ), assume that there exists

a sequence {fB}B of real numbers satisfying (2.4) through (2.6) with the non-negative
constant C̃ replaced by ‖f‖∗∗. For any ball B, by (2.5), (2.6) and Lemma 2.1,

fB − essinf
B̃ρ

f = fB − fB̃ρ + fB̃ρ − essinf
B̃ρ

f ≤ [1 + δ(B, B̃ρ)]‖f‖∗∗ . ‖f‖∗∗.

This together with (2.4) yields that for any ball B,

1

µ(ηB)

∫

B

[
f(y) − essinf

B̃ρ

f

]
dµ(y)

=
1

µ(ηB)

∫

B
[f(y) − fB] dµ(y) +

µ(B)

µ(ηB)

[
fB − essinf

B̃ρ

f

]
. ‖f‖∗∗.

On the other hand, for any (ρ, βρ)-doubling ball B, since (2.4) holds with ρ by Propo-
sition 2.1, we then have

1

µ(B)

∫

B
[f(y) − fB] dµ(y) ≤

µ(ρB)

µ(B)
‖f‖∗∗ . ‖f‖∗∗.

Then from (2.5) and (2.6), it follows that for any two (ρ, βρ)-doubling balls B ⊂ S,

essinf
B

f − essinf
S

f ≤ essinf
B

f − fB + fB − fS

≤
1

µ(B)

∫

B
[f(y) − fB] dµ(y) + [1 + δ(B, S)]‖f‖∗∗

. [1 + δ(B, S)]‖f‖∗∗.

This establishes the converse of (2.7), and hence finishes the proof of Proposition 2.2.

Remark 2.2. In [8], the space RBMO(µ) was defined in the following way, namely, let
η ∈ (1, ∞), a function f ∈ L1(µ) is said to be in the space RBMO(µ) if there exists a
non-negative constant C and a complex number fB for any ball B such that for all balls
B,

1

µ(ηB)

∫

B
|f(y) − fB| dµ(y) ≤ C

and that for all balls B ⊂ S,

|fB − fS | ≤ C[1 + δ(B, S)].
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Moreover, the RBMO(µ) norm of f is defined to be the minimal constant C as above
and denoted by ‖f‖RBMO(µ). From [8, Lemma 4.6], Propositions 2.1 and 2.2, it is easy to
follow that RBLO(µ) ⊂ RBMO(µ).

Proposition 2.3. Let η, ρ ∈ (1, ∞), and βρ be as in (2.1). For f ∈ L1
loc (µ), the following

statements are equivalent:

(i) f ∈ RBLO(µ).

(ii) There exists a non-negative constant C1 satisfying (2.3) and that for all (ρ, βρ)-
doubling balls B,

(2.8)
1

µ(B)

∫

B

[
f(y) − essinf

B
f

]
dµ(y) ≤ C1.

(iii) There exists a non-negative constant C2 satisfying (2.8) and that for all (ρ, βρ)-
doubling balls B ⊂ S,

(2.9) mB(f) −mS(f) ≤ C2[1 + δ(B, S)],

where and in what follow, mB(f) denotes the mean of f over B, namely, mB(f) ≡
1

µ(B)

∫
B f(y) dµ(y).

Moreover, the minimal constants C1 and C2 as above are equivalent to ‖f‖RBLO(µ).

To prove Proposition 2.3, we need the following lemma, which is a simple corollary of
[6, Theorem 1.2] and [8, Lemma 2.5]; see also [11, Lemma 2.2].

Lemma 2.2. Let (X , d) be a geometrically doubling metric space. Then every family F
of balls of uniformly bounded diameter contains an at most countable disjointed subfamily
G such that ∪B∈FB ⊂ ∪B∈G5B.

Proof of Proposition 2.3. By Propositions 2.1 and 2.2, it suffices to show Proposition 2.3
with η ≡ 6/5 and ρ = 6. It is easy to see that (i) implies (ii) automatically.

We now prove that (ii) implies (iii). From (2.3) together with (2.8), it follows that for
any two (6, β6)-doubling balls B ⊂ S,

mB(f) −mS(f) ≤ mB(f) − essinf
B

f + essinf
B

f − essinf
S

f . C1[1 + δ(B, S)],

which implies (iii).

Finally, assuming that (iii) holds, we show f ∈ RBLO(µ) by Definition 2.3. If B is a
(6, β6)-doubling ball, then by (2.8), (2.2) holds. Let B be any ball which is not (6, β6)-
doubling. For µ-almost every x ∈ B, let Bx be the biggest (30, β6)-doubling ball with
center x and radius 30−krB for some k ∈ N. Recall that such ball exists by [8, Lemma
3.3]. Moreover, Bx and 5Bx are also (6, β6)-doubling balls. Since B is not (6, β6)-doubling,
then B̃6 has the radius at least 6rB . From this, it follows that Bx ⊂ (6/5)B ⊂ B̃6. Let
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Ax be the smallest (30, β6)-doubling ball of the form 30kBx for some k ∈ N, which exists
by [8, Lemma 3.2]. Then rAx ≥ rB. To verify (2.2), we first claim that

(2.10) essinf
Bx

f − essinf
B̃6

f . C2.

To show (2.10), we consider the following two cases.
Case (i) rB̃6 ≤ rAx . In this case, B̃6 ⊂ 2Ax. Notice that Bx is also (6, β6)-doubling.

From (iv), (ii) and (iii) of Lemma 2.1, we deduce that δ(Bx, 2̃Ax
6
) . 1. This combined

with (2.9) and (2.8) yields that

essinf
Bx

f − essinf
B̃6

f ≤ mBx(f) −m
2̃Ax

6(f) + m
2̃Ax

6(f) − essinf
2̃Ax

6
f

. C2

[
1 + δ(Bx, 2̃Ax

6
)
]
. C2.

Case (ii) r
B̃6 > rAx . In this case, since rAx ≥ rB , then B ⊂ 2Ax ⊂ 3B̃6. This together

with (2.9), (2.8), the fact that Bx is also (6, β6)-doubling and Lemma 2.1, we have that

essinf
Bx

f − essinf
B̃6

f ≤ mBx(f) −m
˜
3B̃6

6(f) + m
˜
3B̃6

6(f) − essinf
˜
3B̃6

6
f

. C2

[
1 + δ(Bx, 3̃B̃6

6

)

]
. C2

[
1 + δ(Bx, 2Ax) + δ(2Ax, 3̃B̃6

6

)

]

. C2

[
1 + δ(B, 3̃B̃6

6

)

]
. C2.

Thus, (2.10) holds. That is, the claim is true.
Now, by Lemma 2.2, there exists a countable disjoint subfamily {Bi}i of {Bx}x such

that for µ-almost every x ∈ B, x ∈ ∪i5Bi. Moreover, since for any i, Bi and 5Bi are
(6, β6)-doubling, by (2.8) and (2.10), we have

∫

B

[
f(y) − essinf

B̃6
f

]
dµ(y)(2.11)

≤
∑

i

∫

5Bi

∣∣∣∣f(y) − essinf
B̃6

f

∣∣∣∣ dµ(y)

≤
∑

i

∫

5Bi

[
f(y) − essinf

5Bi

f

]
dµ(y) +

∑

i

[
essinf
5Bi

f − essinf
B̃6

f

]
µ(5Bi)

. C2

∑

i

µ(5Bi) +
∑

i

[
essinf

Bi

f − essinf
B̃6

f

]
µ(5Bi)

. C2

∑

i

µ(5Bi) . C2

∑

i

µ(Bi) . C2µ

(
6

5
B

)
.

On the other hand, from (2.8) and (2.9), it follows that for any two (6, β6)-doubling balls
B ⊂ S,

essinf
B

f − essinf
S

f ≤ mB(f) −mS(f) + mS(f) − essinf
S

f . C2[1 + δ(B, S)].
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This together with (2.11) shows that f ∈ RBLO(µ) and ‖f‖RBLO(µ) . C2, which implies
(i), and hence completes the proof of Proposition 2.3.

3 A characterization of RBLO(µ) in terms of the natural

maximal operator

In this section, we give a characterization of RBLO(µ) in terms of the natural maximal
operator. This characterization in R

n equipped with the n-dimensional Lebesgue measure
was obtained by Bennett [1]. In R

n equipped with a non-doubling measure with polynomial
growth, this characterization was first established by Jiang [12] and was improved in [7].

We begin with the notion of the natural maximal operator, which is a variant of the
maximal operator introduced by Hytönen in [8]. In the non-doubling context, the natural
maximal operator was introduce by Jiang in [12]. For any f ∈ L1

loc (µ) and x ∈ X , define

M(f)(x) ≡ sup
B∋x

B (6, β6)−doubling

1

µ(B)

∫

B
f(y) dµ(y).

Obviously, M(f)(x) . M̃f(x), where the maximal operator M̃ is defined by setting, for
all x ∈ X ,

M̃(f)(x) ≡ sup
B∋x

1

µ(6B)

∫

B
|f(y)| dµ(y).

By [8, Proposition 3.5], we know that M̃ is of weak type (1, 1) and bounded on Lp(µ)
with p ∈ (1, ∞]. As a consequence, M is also of weak type (1, 1) and bounded on Lp(µ)
with p ∈ (1, ∞].

Lemma 3.1. f ∈ RBLO(µ) if and only if M(f) − f ∈ L∞(µ) and f satisfies (2.9).
Furthermore,

(3.1) ‖M(f) − f‖L∞(µ) ∼ ‖f‖RBLO(µ).

Proof. By [8, Corollary 3.6], we know that for any f ∈ L1
loc (µ) and µ-almost every x ∈ X ,

f(x) = lim
B↓x

B (6, β6)−doubling

1

µ(B)

∫

B
f(y) dµ(y),

where the limit is along the decreasing family of all (6, β6)-doubling balls containing x,
ordered by set inclusion. Using this fact and following the proof of [12, Lemma 1], we can
show Lemma 3.1. We omit the details, which completes the proof of Lemma 3.1.

Theorem 3.1. Let f ∈ RBMO(µ). Then M(f) is either infinite everywhere or finite
almost everywhere, and in the later case, there exists a positive constant C, independent
of f , such that

‖M(f)‖RBLO(µ) ≤ C‖f‖RBMO(µ).
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From Lemma 3.1 and Theorem 3.1, we immediately deduce the following result. We
omit the details.

Theorem 3.2. A locally integrable function f belongs to RBLO(µ) if and only if there
exist h ∈ L∞(µ) and g ∈ RBMO(µ) with M(g) finite µ-almost everywhere such that

(3.2) f = M(g) + h.

Furthermore, ‖f‖RBLO(µ) ∼ inf(‖g‖RBMO(µ) + ‖h‖L∞(µ)), where the infimum is taken over
all representations of f as in (3.2).

To prove Theorem 3.1, we need the following characterization of RBMO(µ).

Lemma 3.2. Let η, ρ ∈ (1, ∞), and βρ be as in (2.1). For f ∈ L1
loc (µ), the following

statements are equivalent:

(i) f ∈ RBMO(µ).

(ii) There exists a non-negative constant C3 such that for all (ρ, βρ)-doubling balls B,

(3.3)
1

µ(B)

∫

B
|f(y) −mB(f)| dµ(y) ≤ C3,

and that for all (ρ, βρ)-doubling balls B ⊂ S,

(3.4) |mB(f) −mS(f)| ≤ C3[1 + δ(B, S)].

(iii) There exists a non-negative constant C4 satisfying (3.4) and that for all balls B,

(3.5)
1

µ(ηB)

∫

B

∣∣f(y) −mB̃ρ(f)
∣∣ dµ(y) ≤ C4,

(iv) Let p ∈ [1, ∞). There exists a non-negative constant C5 satisfying (3.4) and that
for all balls B,

(3.6)

{
1

µ(ηB)

∫

B

∣∣f(y) −m
B̃ρ(f)

∣∣p dµ(y)

}1/p

≤ C5,

Moreover, the minimal constants C3, C4 and C5 as above are equivalent to ‖f‖RBMO(µ).

Proof. The equivalent of (i) and (ii) is a special case of [11, Proposition 2.2]. Obviously,
(iii) implies (ii). By an argument similar to that used in the proof of [11, Proposition 2.2],
we have that (ii) implies (iii). Hence, (i), (ii) and (iii) are equivalent.

We now prove the equivalent of (iii) and (iv). By the Hölder inequality, it is easy to see
that (iv) implies (iii). Conversely, it follows from [8, Corollary 6.3] that for any ball B,

{
1

µ(ηB)

∫

B
|f(y) − fB|

p dµ(y)

}1/p

. ‖f‖RBMO(µ).
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On the other hand, from the equivalence of (i) and (iii), we deduce that the number fB
in the definition of RBMO(µ) can be chosen to be mB̃ρ . Therefore,

{
1

µ(ηB)

∫

B

∣∣f(y) −m
B̃ρ(f)

∣∣p dµ(y)

}1/p

. ‖f‖RBMO(µ) ∼ min{C4},

which shows that (iii) implies (iv) and hence completes the proof of Lemma 3.2.

Proof of Theorem 3.1. Suppose that f ∈ RBMO(µ) and there exists a point x0 ∈ X such
that M(f)(x0) < ∞. First, we claim that there exists a positive constant C independent
of f such that for all (6, β6)-doubling balls B ∋ x0,

(3.7)
1

µ(B)

∫

B
M(f)(y) dµ(y) ≤ C‖f‖RBMO(µ) + inf

x∈B
M(f)(x).

To prove this, we decompose f as

f = [f −mB(f)]χ3B + [mB(f)χ3B + fχX\(3B)] ≡ f1 + f2.

We choose η ≡ 6/5 and ρ ≡ 6 in Lemma 3.2. Since M is bounded on L2(µ), by the Hölder
inequality, (3.6), (3.4), and (ii) and (iii) of Lemma 2.1, we have

∫

B
M(f1)(y) dµ(y)(3.8)

≤ [µ(B)]1/2
{∫

X
|M(f1)(y)|2 dµ(y)

}1/2

. [µ(B)]1/2
{∫

X
|f1(y)|2 dµ(y)

}1/2

. [µ(B)]1/2
{∫

3B
|f(y) −m

3̃B
6(f)|2 dµ(y) +

∫

3B
|mB(f) −m

3̃B
6(f)|2 dµ(y)

}1/2

. [µ(B)]1/2

{[
µ

(
18

5
B

)]1/2
+ [µ(3B)]1/2

[
1 + δ(B, 3̃B

6
)
]}

‖f‖RBMO(µ)

. µ(6B)‖f‖RBMO(µ) . µ(B)‖f‖RBMO(µ).

Next, we show that

(3.9)
1

µ(B)

∫

B
M(f2)(y) dµ(y) . ‖f‖RBMO(µ) + inf

x∈B
M(f)(x).

It suffices to show that for any y ∈ B,

M(f2)(y) . ‖f‖RBMO(µ) + inf
x∈B

M(f)(x).

To this end, it is enough to show that for any (6, β6)-doubling ball S ∋ y and y ∈ B,

(3.10)
1

µ(S)

∫

S
f2(z) dµ(z) . ‖f‖RBMO(µ) + inf

x∈B
M(f)(x).
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If S ⊂ 3B, we immediately have that

1

µ(S)

∫

S
f2(z) dµ(z) = mB(f) ≤ inf

x∈B
M(f)(x).

If S ∩ [X \ (3B)] 6= ∅. Then rS > rB and 3B ⊂ (5S). Write

f2 =
[
mB(f) −m

5̃S
6(f)

]
χ3B +

[
f −m

5̃S
6(f)

]
χX\(3B) + m

5̃S
6(f).

Obviously, m
5̃S

6(f) ≤ infx∈B M(f)(x). From (3.5), it follows that

∫

S

{[
mB(f) −m

5̃S
6(f)

]
χ3B(z) +

[
f(z) −m

5̃S
6(f)

]
χX\(3B)(z)

}
dµ(z)

≤ µ(3B)
∣∣∣mB(f) −m

5̃S
6(f)

∣∣∣ +

∫

5S

∣∣∣f(z) −m
5̃S

6(f)
∣∣∣χX\(3B)(z) dµ(z)

≤
µ(6B)

µ(B)

∫

B

∣∣∣f(z) −m
5̃S

6(f)
∣∣∣ dµ(z) +

∫

5S\(3B)

∣∣∣f(z) −m
5̃S

6(f)
∣∣∣ dµ(z)

.

∫

5S

∣∣∣f(z) −m
5̃S

6(f)
∣∣∣ dµ(z) . µ(6S)‖f‖RBMO(µ) . µ(S)‖f‖RBMO(µ),

which implies (3.10). Hence, (3.9) holds. Combining the estimates for (3.8) and (3.9)
yields (3.7).

From (3.7), it follows that for f ∈ RBMO(µ), if M(f)(x0) < ∞ for some point x0 ∈ X ,
then M(f) is µ-finite almost everywhere and in this case,

(3.11)
1

µ(B)

∫

B

[
M(f)(y) − essinf

x∈B
M(f)(x)

]
dµ(y) . ‖f‖RBMO(µ),

provided that B is a (6, β6)-doubling ball. To prove M(f) ∈ RBLO(µ), by Proposition
2.3, we still need to prove that for any (6, β6)-doubling balls B ⊂ S,

(3.12) mB[M(f)] −mS [M(f)] . [1 + δ(B, S)]‖f‖RBMO(µ).

To prove (3.12), for any point x ∈ B, we set

M1(f)(x) ≡ sup
P∋x,P (6, β6)−doubling

rP≤4rS

1

µ(P )

∫

P
f(y) dµ(y),

M2(f)(x) ≡ sup
P∋x,P (6, β6)−doubling

rP>4rS

1

µ(P )

∫

P
f(y) dµ(y),

U1, B ≡ {x ∈ B : M1(f)(x) ≥ M2(f)(x)} and U2, B ≡ B \ U1, B. Then for any x ∈ B,
M(f)(x) = max[M1(f)(x), M2(f)(x)]. By writing

f = [f −mS(f)]χ3B + [f −mS(f)]χX\(3B) + mS(f)
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and using the fact that mS(f) ≤ mS [M(f)], we see that

mB [M(f)] −mS[M(f)] ≤
1

µ(B)

∫

U1, B

M1([f −mS(f)]χ3B)(x) dµ(x)

+
1

µ(B)

∫

U1, B

M1([f −mS(f)]χX\(3B))(x) dµ(x)

+
1

µ(B)

∫

U2, B

{M2(f)(x) −mS [M(f)]} dµ(x)

≡ I1 + I2 + I3.

Notice that M is bounded on L2(µ). From this, the Hölder inequality, Lemma 3.2, and
(ii) and (iii) of Lemma 2.1, it follows that

I1 ≤

{
1

µ(B)

∫

B
|M1([f −mS(f)]χ3B)(x)|2 dµ(x)

}1/2

.

{
1

µ(B)

∫

3B
|f(x) −mS(f)|2 dµ(x)

}1/2

.

{
1

µ(B)

∫

3B

∣∣∣f(x) −m
3̃B

6(f)
∣∣∣
2
dµ(x)

}1/2

+
∣∣∣m

3̃B
6(f) −mB(f)

∣∣∣

+ |mB(f) −mS(f)|

. [1 + δ(B, S)]‖f‖RBMO(µ),

To estimate I2, we first claim that for any point x ∈ B and any (6, β6)-doubling ball
P ∋ x with rP ≤ 4rS ,

(3.13) J ≡
1

µ(P )

∫

P
|f(y) −mS(f)|χX\(3B)(y) dµ(y) . [1 + δ(B, S)]‖f‖RBMO(µ).

If P ⊂ 3B, then J = 0 and (3.13) holds automatically. Assume that P 6⊂ 3B. We then have
that rP > rB, which together with the fact that rP ≤ 4rS implies that B ⊂ 3P ⊂ 17S.
Thus, (3.3) and (3.4), together with (ii), (iii) and (iv) of Lemma 2.1, yield that

J ≤
1

µ(P )

∫

P
|f(y) −mP (f)| dµ(y) +

∣∣∣mP (f) −m
3̃P

6(f)
∣∣∣

+
∣∣∣m

3̃P
6(f) −mB(f)

∣∣∣ + |mB −mS(f)| . [1 + δ(B, S)]‖f‖RBMO(µ),

which further implies that for all x ∈ B,

M1([f −mS(f)]χX\(3B))(x) . [1 + δ(B, S)]‖f‖RBMO(µ).

From this, we deduce that I2 . [1 + δ(B, S)]‖f‖RBMO(µ).
Now we estimate I3. Notice that for any x ∈ B, any (6, β6)-doubling ball P containing

x with rP > 4rS and B ⊂ S, S ⊂ 3P . Then from (3.4) and the fact m
3̃P

6(f) ≤ mS[M(f)],
it follows that

mP (f) −mS[M(f)] ≤
∣∣∣mP (f) −m

3̃P
6(f)

∣∣∣ + m
3̃P

6(f) −mS [M(f)] . ‖f‖RBMO(µ).
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Taking the supremum over all (6, β6)-doubling balls P containing x with rP > 4rS , we
have that for all x ∈ B,

M2(f)(x) −mS [M(f)] . ‖f‖RBMO(µ).

This implies that I3 . ‖f‖RBMO(µ).

Combining the estimates for I1 through I3 leads to (3.12), which together with (3.11)
implies that M is bounded from RBMO(µ) to RBLO(µ) and hence completes the proof
of Theorem 3.1.

4 Boundedness of the maximal Calderón-Zygmund opera-

tors

This section is devoted to the boundedness of the maximal operators associated with
the Calderón-Zygmund operators introduced in [10].

Let △ ≡ {(x, x) : x ∈ X} and L∞
b (X ) denote the space of all functions in L∞(X ) with

bounded support. A standard kernel is a mapping K : (X × X )\△ → C for which, there
exist some positive constants σ and C such that for all x, y ∈ X with x 6= y,

(4.1) |K(x, y)| ≤ C
1

λ(x, d(x, y))
,

and that for all x, x̃, y ∈ X with d(x, x̃) ≤ d(x, y)
2 ,

(4.2) |K(x, y) −K(x̃, y)| + |K(y, x) −K(y, x̃)| ≤ C
[d(x, x̃)]σ

[d(x, y)]σλ(x, d(x, y))
.

A linear operator T is called a Calderón-Zygmund operator with kernel K satisfying (4.1)
and (4.2) if for all f ∈ L∞

b (X ) and x 6∈ supp (f),

(4.3) Tf(x) ≡

∫

X
K(x, y)f(y) dµ(y).

Now, we define the corresponding maximal Calderón-Zygmund operator associated with
the kernel K. For any ǫ ∈ (0, ∞), define the truncated operator Tǫ by setting, for all
x ∈ X ,

(4.4) Tǫf(x) ≡

∫

d(x, y)>ǫ
K(x, y)f(y) dµ(y).

The maximal Calderón-Zygmund operator T∗ is defined by setting, for all x ∈ X ,

(4.5) T∗f(x) ≡ sup
ǫ>0

|Tǫf(x)|.
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Remark 4.1. Let X ≡ R
n. It is well known that if µ is the n-dimensional Lebesgue

measure and T is bounded on L2(Rn), then T∗ is bounded from L∞(µ) to BMO(Rn)
(see [16]), and furthermore, is bounded from L∞(µ) to BLO(Rn) (see [13]). When µ is a
non-doubling measure with polynomial growth, Tolsa [17] proved that if T is bounded on
L2(µ), then T is bounded from L∞(µ) to RBMO(µ), and moreover, the boundedness of
T∗ from L∞(µ) to RBLO(µ) was obtained by Jiang [12].

It was proved in [9] that if the Calderón-Zygmund operator T is bounded on L2(µ),
then the maximal operator T∗ is of weak type (1, 1) and is bounded on Lp(µ) for any
p ∈ (1, ∞). On the boundedness of T∗ when p = ∞, we have the following conclusion.

Theorem 4.1. Let T be the Calderón-Zygmund operator as in (4.3) with kernel K satis-
fying (4.1) and (4.2). If T is bounded on L2(µ), then the maximal operator T∗ as in (4.5)
is bounded from L∞(µ) to RBLO(µ).

Proof. First we claim that there exists a positive constant C such that for all f ∈ L∞(µ)∩
Lp0(µ), p0 ∈ [1, ∞), and (6, β6)-doubling balls B,

(4.6)
1

µ(B)

∫

B
T∗f(x) dµ(x) ≤ C‖f‖L∞(µ) + inf

y∈B
T∗f(y).

To prove this, we decompose f as

f = fχ5B + fχX\(5B) ≡ f1 + f2.

By the Hölder inequality and the L2(µ)-boundedness of T∗, we have

1

µ(B)

∫

B
T∗f1(x) dµ(x) ≤

1

[µ(B)]1/2

{∫

X
[T∗(fχ5B)(x)]2 dµ(x)

}1/2

(4.7)

.
1

[µ(B)]1/2

{∫

X
|fχ5B(x)|2 dµ(x)

}1/2

.
[µ(5B)]1/2

[µ(B)]1/2
‖f‖L∞(µ) . ‖f‖L∞(µ).

From (1.3) and (1.2), we deduce that for any ball B, y 6∈ 5B and x ∈ B,

(4.8) λ(cB , d(y, cB)) ∼ λ(y, d(y, cB)) ∼ λ(y, d(y, x)) ∼ λ(x, d(y, x)).

Notice that
{y ∈ X : d(x, y) > 6rB for some x ∈ B} ⊂ [X \ (5B)].

It then follows from (4.1), (4.8) and Lemma 2.1(ii) that for all y ∈ B,

T∗f2(y) ≤ max

{
sup
ǫ≥6rB

|Tǫf2(y)| , sup
0<ǫ<6rB

|Tǫf2(y)|

}
(4.9)

≤ max

{
T∗f(y), sup

0<ǫ<6rB

∣∣∣∣∣

∫

d(y, z)>6rB

K(y, z)f2(z) dµ(z)
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+

∫

ǫ<d(y, z)≤6rB

K(y, z)f2(z) dµ(z)

∣∣∣∣∣

}

≤ T∗f(y) + C‖f‖L∞(µ) sup
0<ǫ<6rB

∫

(7B)\(5B)

1

λ(y, d(y, z))
dµ(z)

≤ T∗f(y) + C‖f‖L∞(µ)

∫

(8B)\B

1

λ(cB , d(z, cB))
dµ(z)

= T∗f(y) + C‖f‖L∞(µ)δ(B, 4B) ≤ T∗f(y) + C‖f‖L∞(µ),

where C is a positive constant independent of f and y. Thus, the proof of the estimate
(4.6) is reduced to proving that for all x, y ∈ B,

(4.10) |T∗f2(x) − T∗f2(y)| . ‖f‖L∞(µ).

To this end, for any ǫ ∈ (0, ∞), write

|Tǫf2(x) − Tǫf2(y)| =

∣∣∣∣∣

∫

d(x, z)>ǫ
K(x, z)f2(z) dµ(z) −

∫

d(y, z)>ǫ
K(y, z)f2(z) dµ(z)

∣∣∣∣∣

≤

∫

d(x, z)>ǫ

d(y, z)>ǫ

|K(x, z) −K(y, z)||f2(z)| dµ(z)

+

∫

d(x, z)>ǫ

d(y, z)≤ǫ

|K(x, z)f2(z)| dµ(z)

+

∫

d(y, z)>ǫ

d(x, z)≤ǫ

|K(y, z)f2(z)| dµ(z) ≡ J1 + J2 + J3.

By (4.2), (4.8) and (1.2), we have that for all x, y ∈ B,

J1 ≤

∫

X\(5B)
|K(x, z) −K(y, z)||f(z)| dµ(z)

. ‖f‖L∞(µ)

∫

X\(5B)

[d(x, y)]σ

[d(x, z)]σλ(x, d(x, z))
dµ(z)

. ‖f‖L∞(µ)

∫

X\(5B)

[
rB

d(z, cB)

]σ 1

λ(cB , d(z, cB))
dµ(z) . ‖f‖L∞(µ).

Now we estimate J2. Notice that if z 6∈ 5B and x ∈ B, then d(x, z) > 4rB . Therefore,
for any ǫ ∈ (0, 4rB ] and x, y ∈ B, {z 6∈ 5B : d(x, z) > ǫ and d(y, z) ≤ ǫ} = ∅. So, we only
need to consider the case that ǫ ∈ (4rB , ∞). In this case, there exists a unique m ∈ N

such that 2m−1rB < ǫ ≤ 2mrB , which leads to that

{z 6∈ 5B : d(x, z) > ǫ and d(y, z) ≤ ǫ} ⊂ [2m+1B \ (max(2, 2m−1 − 1)B)].

This, together with (4.1) and (4.8), and (ii) of Lemma 2.1 shows that

J2 . ‖f‖L∞(µ)

∫

2m+1B\(max(2, 2m−1−1)B)

1

λ(cB , d(z, cB))
dµ(z)
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. ‖f‖L∞(µ)δ(max(2, 2m−1 − 1)B, 2mB) . ‖f‖L∞(µ).

An argument similar to the estimate of J2 also yields that J3 . ‖f‖L∞(µ). Combining
the estimates for J1 through J3 implies (4.10) and hence (4.6) holds.

Thus, by (4.6), we know that if f ∈ L∞(µ) ∩ Lp0(µ) with p0 ∈ [1, ∞), then T∗f is
µ-finite almost everywhere and in this case, by (4.6) again, we have that

1

µ(B)

∫

B

[
T∗f(x) − essinf

y∈B
T∗f(y)

]
dµ(x) . ‖f‖L∞(µ),

provided that B is a (6, β6)-doubling ball. To prove T∗f ∈ RBLO(µ), by Proposition 2.3,
we still need to prove that T∗f satisfies (2.9). Let B ⊂ S be any two (6, β6)-doubling
balls. For any ǫ ∈ (0, ∞), x ∈ B and y ∈ S, we set

Tǫf(x) = Tǫ(fχ5B)(x) + Tǫ(fχ(5S)\(5B))(x)

+
[
Tǫ(fχX\(5S))(x) − Tǫ(fχX\(5S))(y)

]
+ Tǫ(fχX\(5S))(y).

By an estimate similar to that of (4.9), we have that for all y ∈ S,

T∗(fχX\(5S))(y) ≤ T∗f(y) + C‖f‖L∞(µ),

where C is a positive constant independent of f and y. On the other hand, by the estimate
same as that of (4.10), we have that for all x, y ∈ S,

∣∣Tǫ(fχX\(5S))(x) − Tǫ(fχX\(5S))(y)
∣∣ . ‖f‖L∞(µ).

For all x ∈ B, if z 6∈ 5B, then d(x, z) ≥ 4rB , which together with (4.4), (4.1) and (4.8)
shows that

Tǫ(fχ(5S)\(5B))(x) =

∫

d(x, z)>ǫ
K(x, z)fχ(5S)\(5B)(z) dµ(z)

. ‖f‖L∞(µ)

∫

(5S)\(5B)
|K(x, z)| dµ(z)

. ‖f‖L∞(µ)

∫

(5S)\(5B)

1

λ(x, d(x, z))
dµ(z)

. ‖f‖L∞(µ)

∫

(5S)\B

1

λ(cB , d(z, cB))
dµ(z) . [1 + δ(B, S)]‖f‖L∞(µ).

Thus,
T∗f(x) . T∗(fχ5B)(x) + [1 + δ(B, S)]‖f‖L∞(µ) + T∗f(y).

Taking mean value over B for x, and over S for y, then yields

mB(T∗f) −mS(T∗f) . [1 + δ(B, S)]‖f‖L∞(µ),

where we used (4.7). This finishes the proof of Theorem 4.1 in the case of f ∈ L∞(µ) ∩
Lp0(µ) with p0 ∈ [1, ∞).
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If f ∈ L∞(µ) and f 6∈ Lp(µ) for all p ∈ [1, ∞), then the integral

∫

d(x, y)>ǫ
K(x, y)f(y) dµ(y)

may not be convergent. The operator Tǫ can be extended to the whole space L∞(µ) by
following the standard arguments (see, for example, [17, p. 105]): Fix any point x0 ∈ X .
For any given ball B(x0, r) centered at x0 ∈ X with the radius r > 3ǫ, we write f = f1+f2,
with f1 ≡ fχB(x0,3r). For x ∈ B(x0, r), we then define

Tǫf(x) = Tǫf1(x) +

∫

d(x, y)>ǫ
[K(x, y) −K(x0, y)]f2(y) dµ(y).

Now both integrals in this equation are convergent. Using this definition, Remark 2.1(i)
and then repeating the argument as above then completes the proof of Theorem 4.1.
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