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PRIMITIVE DIVISORS OF CERTAIN ELLIPTIC
DIVISIBILITY SEQUENCES

PAUL VOUTIER AND MINORU YABUTA

ABSTRACT. We establish conditions necessary for the n-th element of
any elliptic divisibility sequence generated by points on E, : y? = 23+ax
to not have a primitive divisor. As a consequence of this, along with our
explicit and uniform version of Lang’s conjecture for the relevant curves,
we show that if a < 0 and fourth-power-free and n > 3, then n-th element
of any such elliptic divisibility sequence always has a primitive divisor.

1. INTRODUCTION

A sequence C' = (C),),>1 is called a divisibility sequence if C,,|C,, when-
ever m|n. For such a sequence C, a prime p is called a primitive divisor of
the term C), if p divides C,, but does not divide C}, for any 0 < k < n. Prim-
itive divisors have been studied by many authors. In 1892, Zsigmondy [20]
showed that for the sequence C, = a™ — b" the term C),, has a primitive
divisor for all n > 6, where a and b are positive coprime integers. In 1913,
Carmichael [3] showed that if n > 12 then the n-th term of any Lucas se-
quence has a primitive divisor in the case of positive discriminant. Ward [17]
and Durst [5] extended Carmichael’s result to Lehmer sequences. In 2001,
Bilu, Hanrot and Voutier [I] proved that if n > 30 then every n-th Lu-
cas and Lehmer number has a primitive divisor, and listed all Lucas and
Lehmer numbers without a primitive divisor. The results of Zsigmondy,
Carmichael, Ward, Durst and Bilu, Hanrot and Voutier are all best possi-
ble (in the sense that for n = 6, n = 12 and n = 30, respectively, sequences
whose n-th element has no primitive divisor do exist).

Let E be an elliptic curve defined over Q and denote by E(Q) the additive
group of all rational points on the curve E. Let P € E(Q) be a point of
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infinite order, and for any non-zero integer n write

An(P)

B.(P)’

in lowest terms with A, (P) € Z and B, (P) € N. The sequence (B,,(P)),>1
is known as an elliptic divisibility sequence.

(1.1) x(nP) =

Ward [16] first studied the arithmetic properties of elliptic divisibility
sequences. Silverman [12] first showed that for any elliptic curve £E/Q in
long Weierstrass form and any point P € E(Q) of infinite order, there exists
a positive integer Ng p such that the term B, (P) has a primitive divisor
for all integers n > Ng p. The bound given by Silverman is not explicit and
not uniform. Everest, Mclaren and Ward [6] obtained a uniform and quite
small bound beyond which a primitive divisor is guaranteed for congruent
number curves y? = 23 — T?x with T' > 0 square-free.

Theorem 1.1 (Everest, Mclaren, Ward [6]). With E : y* = 23 — T?x with
T > 0 square-free, let P € E(Q) be a point of infinite order. If B, (P) does
not have a primitive divisor, then

(a) n <10 if n is even

(b) n <3 if n is odd and x(P) is negative.

(¢) n <21 if n is odd and x(P) is a rational square.

Ingram [7] sharpened the bounds obtained in [6] as follows.

Theorem 1.2 (Ingram [7]). Let E and P be as Theorem [I1. If B,(P)
does not have a primitive divisor, then 51 n, and either n is odd or n = 2.
Furthermore, if

(a) x(P) <0, or

(b) {z(P),z(P)+ T,x(P) — T} contains a rational square,
then n < 2.

The purpose of this paper is obtain results on the existence of primitive
divisors in the more general case of E, : y?> = 2% + ax with a € Z, fourth-
power-free.

In the case of a < 0, we use the ideas in [6], along with our explicit
version of Lang’s conjecture for such curves to prove that for n > 3, the
n-th element of any such elliptic divisibility sequence always has a primitive

divisor.
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2. RESULTS

Denote by h the absolute logarithmic height on Q and by h the canonical
height on E(Q), for an elliptic curve E/Q.

We let w(n) denote the number of distinct prime divisors of n.

Further, we define

(2.1) p(n)=> p? and n(n)=2) logp,

pln p|n
where the sums range over all prime divisors of n. We set the following
notation:

1 1
(2.2) K= 3 log |a] +2.542 and L = 5 log |a| + 1.040.

In the remainder of this work, a will denote a non-zero integer which is
fourth power free and E, : y? = 2° + ax will be an elliptic curve.
Then we obtain the following theorem.

Theorem 2.1. Let P € E,(Q) be a point of infinite order. Let n be a
positive integer and assume that the term B, (P) does not have a primitive
divisor.

(a) If n is odd and x(P) is a rational square or if n is even, write n = 2°N

where e is a non-negative integer and N is an odd integer, then n = 1,2, 4
or N >3 and

0<2 (% ~ 3N (n)) h(P)n* < n(n) +w(n)K + K + L.

(b) Let p be an odd prime. If n is odd, divisible by p and x(P) is a rational
square, or if n is even and divisible by p, then

0<2 ((pZ]_ﬂl) — p(n)) ?L(P)n2 <n(n)+wn)K + L.

(c) Suppose a < 0. If n is even and divisible by an odd prime, p, then

502 + 6 5
0<2<M_

16p2 p(n)) R(P)n? < n(n) + w(n)K + 2L + log|al.

Remark 2.2. Note the condition that the left-hand sides of these inequalities
must be positive. This is the reason for the inclusion of part (c). If the
positivity condition prevents our use of parts (a) or (b), then the conditions
of part (c) will be satisfied.
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By using estimates for p(n), w(n) and n(n), we obtain the following
corollary.

Corollary 2.3. Let P € E,(Q) be a point of infinite order.

(a) Let n > 3 be an odd integer and assume that x(P) is a rational square.

If B, (P) does not have a primitive divisor, then

1.38411og(n)
log log(n)

(b) Suppose a < 0. Letn be a positive even integer. If B,(P) does not have

0.482h(P)n? < 2log(n) + K+K+L.

a primitive divisor, then either n < 4 or n is not a power of 2 and

1.38411og(n)

0.039h(P)n? < 21
(P)n” < 2log(n) + Tog log(n)

K + 2L + log(|al).
Remark 2.4. We can obtain a version of part (b) for a > 0 as well, subject
to p(n) < 4/9.

Applied to QQ, Lang’s conjecture states that

h(P) > Cilog |A(E)| — C
holds for any elliptic curve £/Q and any point P € E(Q) of infinite order,
where A(E) denotes the discriminant of the curve E and C; > 0 and Cy
are absolute constants. Silverman [9] showed that Lang’s conjecture holds
for any elliptic curve with integral j-invariant (note that this includes our
curves, F,, since their j-invariant is 1728), but provided no explicit evalu-
ation of the constants.
We provide an explicit version for E, here for a < 0.

Proposition 2.5. Let a be a negative fourth-power-free integer. Let P €
E.(Q) be a nontorsion point. Denote by h the canonical height on E,. Then

1
R 1 —log(2) ifa# 4 mod 16
(2.3) h(P) > —log(la]) + ¢ 164
16 T log(2) if a =4 mod 16.

Using these estimates, we obtain a uniform and explicit bound such that
for n exceeding this bound, the n-th element of elliptic divisibility sequences
obtained from F, always has a primitive divisor.
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Theorem 2.6. Let a be a negative integer which is fourth power free. Let
P € E,(Q) be a point of infinite order. Let n be a positive integer, and
assume that B, (P) does not have a primitive divisor.

If n is even or if n is odd and x(P) is a rational square, then n < 3.

It is easy to show that there are infinitely many values of a and points
P € E,(Q) such that x([3]P) is an integer (i.e., B3(P) = 1), so this theorem
is best-possible. E.g.,

a P a P
-2 (2,2 28 (2,8)
—12  (6,12) 180 (6, 36)
—420 (30,120) | 5850 (30,450)

From calculations performed using Ingram’s ideas in [7], it appears that
Theorem 2.6]is also true for a > 0 and without any conditions on z(P).

3. PRELIMINARY LEMMAS

Let P € E,(Q) be a point of infinite order. Write
An Cn
in lowest terms with A,,,C, € Z and B,, € N.

Lemma 3.1. Let p be any prime divisor of the term B,. Then
ord,(Byy,) = ord,(B,,) + 2 ord, (k).

Proof. This is Lemma 3.1 of [6]. O

Lemma 3.2. For any m,n € N,

ged (B Bn) = Byea(m,n)-
Proof. This is Lemma 3.2 of [6]. O

Lemma 3.3. If the term B,, does not have a primitive divisor, then

(3.1) log (B,) <2 Z log(p) + Z log (Buyp) -
pln pln

Here the sums range over prime divisors of n.

Proof. This is the first part of Lemma 3.3 of [6]. O
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For a rational number s/t in lowest terms, we define the logarithmic
height by h(s/t) = logmax{|s|, |t|}. For a rational point P € E(Q), we
define the logarithmic height of P by h(P) = h(xz(P)), and the canonical
height of P by

~ L h(2"P)
MP) =3 m =

Let E/K be an elliptic curve in long Weierstrass form over the number
field K,

E: yz + a1y + asy =$3+a2x2 + a4z + ag.

We define as usual

b2 = a%+4a2,

b4 = 2@4 + ajas,
2
bﬁ = das + 4&6,
bs = ajag+ 4dasag — + aza3 — aj
R = Q10¢ QAo0g a1a3ay Q205 Ay.

Let My be the set of valuations of K and for v € My, let n, be the local
degree at v. For z € K and v € Mg, we define v(x) = —log|z|,. Let
. 1 1 1
A\ = min {v (b2). 50 (ba) , 30 (b) . 3 (bs) }

1
Y- mg st

ve My

Lemma 3.4 (Zimmer [19]). Let E/K be an elliptic curve in long Weier-
strass form over the number field K. Let h and h be the logarithmic height
and the canonical height on E /K respectwely. Then for all points P € E(K),

[K 0 Z n, min{0, A\, } — log( )

vE Mg

< Sh(P)~R(P) < 2[K1 5 3 momax(0A} + A+ 3log( )

vE Mg

We now apply this theorem to FE,.
Lemma 3.5. For all points P € E,(Q),

1 1 ~
7 log la] = 0.520 < Sh(P) = h(P) < 7 log |a] + 1.271.

1
4
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Proof. If v is an archimedean absolute value, then

1 1 1
Ao = 5V (bs) = 3 log(2) — 5108 |al.
If v is a non-archimedean absolute value, then
1 1
Ao = 2V (bs) = —5log |al,.

Since n, = 1 for all v € Mg, we have
1
A== =g log(2).
vEMg

Substituting these values into Zimmer’s result, we obtain

1 ~ 1 11
2h(P) h(P) < 1 log |a| + 5 log(2)
Thus we obtain the lemma. U

1
2 lolal — 2 log(2) <

Lemma 3.6. If the term B,, does not have a primitive divisor, then

(3.2) log (B,) <2 log(p) + (2 (g) W(P) + K)

pln pln

= n(n) + 2n%p(n)h(P) + w(n)K.
Here the inequality (3.2) is analogous to the inequality (9) of [6].

Proof. Recalling that K = (1/2) log |a| + 2.542, Lemma [B.5] implies that for
any prime divisor p of n,

p
(3.3) < 2h <—P) +K =2 (—) h(P) + K.
p p
The last equality is a property of the canonical height (see Theorem 9.3
of [10]). Combining ([B.I)) and (B.3]), we obtain the lemma. O

Lemma 3.7. Let P € E,(Q) be a point of infinite order.

(a) Let x(P) = wv® with u € Z square-free and v € Q. If n is even, then
x(nP) is a rational square. If n is odd, then x(nP) = uw? for some w € Q.
(b) Suppose x(P) = Ay/By is a rational square. Writing ©(2P) = As/Bs
in lowest terms, we have ordy (Bg) > ordy (By).



8 PAUL VOUTIER AND MINORU YABUTA

Proof. (a) Let Q* be the multiplicative group of non-zero rational numbers,
and let Q*2 denote the subgroup of squares of elements of Q*. We define a

map a from E(Q) to Q*/Q*? by
a(0) =1, a((0,0)) = a,

a((r,y)) =s if x = st* with s square-free,

where O is the zero element in E(Q). Then « is homomorphism (see p.85
[14]). Let x(P) = uwv? with u € Z square-free and v € Q. Then

a(2P) = a(P+P)=a(P)?=1,
a(3P) = «a2P+ P)=a(2P)a(P) = u.

Using induction shows that if n is even, then a(nP) = 1, and if n is odd
then a(nP) = u. Therefore, if n is even, then xz(nP) is a rational square,
and if n is odd, then z(nP) = uw? for some w € Q.

(b) Since z(P) is arational square, we can write P = (b2 M?/e?, b2 M N/e?)
in lowest terms, where a = b2by with ged(M, N) = ged (e, N) = 1 (see [14],
p. 93).

Suppose a prime p divides both b; and N. Since a is fourth power free,
we observe that p?||b?. Since P € E,(Q), we can write N? = b2 M*+bye?. As
ged (e, N) = 1, it follows that p?|by, therefore p? divides a, which contradicts
the assumption that a is fourth power free. Hence ged (b, N) = 1.

For any @) = (z,y), by the duplication formula, we have

(a2 —a)? _ (22% —y?)’
z(2Q) = iy

Applying that with the expression we just found for P we have, we obtain

o2p) = UM boe!) _ (2BM* — N?)°
4M?2N2e? 4M2N?2e?

If N is odd, then 2b3M* — N? is odd and so ordy (By) > ords (€?) =
ordy (By). If N is even, then bM* is odd, since we saw that ged (b, N) =
ged(M, N) = 1. Hence, 22|| (2b2M* — N2)?, but 23|4M2N2. So, in this case
too, ordy (Bs) > ordy (€?) = ordy (By). O

Lemma 3.8. Let P € E,(Q) be any point of infinite order. Let m and n
be positive integers and write x(mP) = A,,/B,, x(nP) = A, /B, in lowest
terms. If m is even, n is odd and x(P) is a rational square or if m and n
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are both even with ordy(m) > ords(n) > 0, then

(3.4) 0 < (AnBn — AnBi)* < BrsnBim-n|.

Proof. Since P is of infinite order, x(mP) # xz(nP) and hence A,,B, —
A, B,, # 0.

Assume that either m is even, n is odd and z(P) is a rational square or
that m and n are both even with ordy(m) > ordy(n) > 0. Write

A, Cp A, Oy
mP = (:cm,ym) = (B—m’ BTm/Q) , nP= (Imyn) = (B_n’ W)
in lowest terms. By the addition formula on the curve E,, we have

(3.5) z(lm+n|P) = (M)z—xm—xn

Ty — Tp
2
3/2 3/2
(CnB % CuBI) B+ AuBi
BBy, (AnB, — A, B Bn.B,
Substituting y,, = 3, + az,, and y, = 23 + ax, into ([B.5), we have

z((m +n)P)z(|m — n|P)
(X + 2n) (T + T + @) = 2ymyn) (T + 20) (X + 2p + @) + 2UmYn)

(3.6) -

(Im - xn)4
(o + Tn) (T + T + @) — 4 (22 + axy) (23 + azy)
(xm - xn>4

(Tmn — @) ~ (AnA, — aB,B,)?

(xm - xn)2 B (AmBn - Aan)2 .

Therefore, we have

(3.7)  (AnBn — AuBi)? AminApn—n) = (A Ay — aBnBy)? Brion Binn).

So, to complete the proof, it suffices to prove that A,, A, — aB,,B, and
A B,—A, B, are coprime, as this implies from (3.7)) that if p*| (A,, B, — Aan)z,
then pk\BernB‘m_m as well.
Step 1: p = 2. Under the hypotheses of the lemma, we will prove that
2t ged (A A, — aBy, By, Ay B, — Ay By).
Assume that m is even and n is odd. Then By|B,, and hence ords (B,,) >
ordy (By) and ged (Ba, By) = Bgeden) = Bi, from Lemma B2l Hence,
by Lemma B.7(b), ords (B,) = ordy(B;) < ords(Bs2) < ordy(By,). If
B, is odd, then B,, is even and so A,, is odd, since A,, and B,, are
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coprime. Therefore A,,B, — A,B,, is odd. If B, is even, then B,, is
even and so A,,A, is odd, and again A,, A, — aB,,B, is odd. Hence
2t ged (A A, — aBy B, A By, — AnBp).

Next assume that m and n are both even with ords(m) > ords(n) > 0.
From Lemma B(a), z (28P) is a square for k > 1, so by Lemma B7(b)
applied to 2% P rather than P, we find that ordy (Bak+1) > ordy (Bagx). Hence
ords (By,) > ordy (B,). By the same argument as in the case when m is
even and n is odd, we obtain 2 1 ged (A, Ay, — aB,y By, A By, — Ay Br).

Step 2: p, odd. Next we will prove, under the hypotheses of the lemma,
that A,,A,—aB,,B, and A,,B, — A, B,, have no common odd prime divisor.
The proof is by contradiction.

Suppose that A,,A, — aB,,B, and A,,B, — A,B,, have a common odd
prime divisor p. Then

(3.8) A,A, —aB,B, = 0modp
(3.9) AnB, — A,B,, = 0mod p.

If B,, =0 mod p, then, from [39), A,,B, = 0 mod p. Since A,, and B,,
are coprime, we have A,, Z 0 mod p, therefore B, = 0 mod p. From (3.8)
we have A,,A, = 0 mod p, and since A,, # 0 mod p, it follows that A, =
0 mod p. But this contradicts our assumption that A, and B,, are coprime.
Hence B,, Z 0 mod p. By the same argument, we obtain B,, Z 0 mod p.

Next from (B.8) and (3.9) we have

aB2: B, = A, A,B,, = A% B, mod p.

Since B, # 0 mod p, we have aB? = A% mod p. In the same way, we
obtain aB? = A% mod p. Therefore,

(3.10) C? = A +aA,B2 =2A% mod p
(3.11) C? = A +aA,B? =24 mod p.

Since A,,A, —aB,,B, and A,,B,, — A,B,, have a common odd prime

divisor p, from (3.6) it must be the case that
C.B¥* - C,B¥?*=C,,B¥? + C,B3? = 0 mod p.

Therefore 2C,, BY* = 0 mod p. From B, # 0 mod p, we have C,, =
0 mod p and then C, = 0 mod p. Hence from ([B.I0) and (B.II) we have
A = A, = 0mod p. Since ged (A, Bn) = ged (Ay, B,) = 1, we have
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BB, # 0mod p, so from [B.8) a = 0mod p. It follows that FE, has
additive reduction at p and mP has bad reduction at p.

On the other hand, using Tate’s algorithm (see [13], Section IV.9]), we
determine that £, has reduction type Iy, III, I§ or III*. From the character-
isation of E(Q)/Ey(Q) in Table 4.1 of [13] p. 365], we see that 2P has good
reduction at p. So mP has good reduction at p, since m is even. This is a
contradiction. Hence A,,A,, —aB,,B,, and A,,B,, — A, B,, have no common

odd prime divisor.
It follows that 0 < (A, B, — AyBu)? < BuinBjm—n), as desired. O

4. PROOF OF THEOREM [2.1]

We are now ready to prove Theorem 2.1l Our proof is based upon ideas
found in [6].

4.1. Proof of part (a). Assume that either n > 1 is an odd integer and
z(P) is a rational square or n is even.

If Bom (P) does not have a primitive divisor, then m < 2 (see Theorem 1.2
of [18]). Hence we may assume that n is not a power of two, and write
n = 2°N, where e is a non-negative integer and N is an odd integer with
N > 3.

Write N = 3k +r with r = 0, £1, and put m = 2°(2k +r) and m’ = 2°k.
Since N > 1, we have k > 0 and so m' > 0 and m —m’ = 2°(k +r) > 0.
Alson =m+m'.

If » = £1, then k is even and 2k + r is odd. If n is odd, then m
is odd and m' is even. If n is even, then m and m’ are both even with
ords (m') > ords(m) > 0.

If » = 0, then k£ is odd and 2k + r is even. If n is odd, then m is
even and m’ is odd. If n is even, then m and m’ are both even with
ordy (m) > orda(m’) > 0.

In both cases, by Lemma 3.8, we have

(AmBm’ - Am’Bm)2 < Bm+m’Bm—m’-
Taking the logarithm of both sides gives

(4.1) 2108 | Ay Byt — Ay By| < log (By) + 10g (Bym)
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Assume that the term B, does not have a primitive divisor. Then, by
Lemma [3.6] we have

(4.2) log (B,) < n(n) + 2n2p(n)h(P) 4+ w(n)K.
Lemma [3.5] gives

log (Bp—m) < h((m —m/)P)

(4.3) < 2h((m —m')P) + K = 2(m — m')*h(P) + K.

Combining ([4.2) and ([A3]) with ([@I]) gives
2 log |AmBm’ - Am’Bm|
(4.4) < n(n) + 2n*p(n)1(P) + w(n)K + 2(m — m')?h(P) + K.
Lemma [3.7(a) implies that A,, and A,,, are both squares, so we can write
A, =d’, Ay =d’, B, =102 and B,y =b%,. Thus
210g |[Am By — A Bp| = 2log |aZ, b2, — aZ,b|
210g (|ambp | + @b |)
210g (|am| + [bm])
2log max{|am|, [bm|}
= h(mP) > 2h(mP) — L,

(AVARN AVAR AV4

recalling from Lemma B.§ that A,, B, — A,vB,, # 0. Note that the last
inequality is obtained by Lemma [B.5 and the definition of L in (2.2)). Since
h(mP) = m?h(P), we have

2108 | Am By — Ay Bp| > 2m*h(P) — L.
Combining this estimate and (£.4]) gives
2m*h(P) — L
< nn) + 2n2p(n)h(P) + w(n)K + 2(m — m')?h(P) + K.
Substituting m = 2¢(2N + r)/3 and m’ = 2¢(N — r)/3 gives

n(n)+w(n)K+K+L22(%—3T—]\i2— (n))
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4.2. Proof of part (b). Assume that n is a positive integer divisible by p
and z(P) is a rational square, if n is odd. Write n = pk for some positive
integer k. Assume that B, does not have a primitive divisor. Then by
Lemmas and 3.8 we have

210g |Ap1r/2Bp-1r/2 = Ap-1k2 By
(4.6) <log(B,) +log(Bx) <n(n)+ 2n2p(n)ﬁ(P) + w(n)K + log (By) .

On the other hand,

210g | A syk/2 Bo-1k/2 = Ap-1k/2 B
= 2108 |af,1y/200-1)k/2 — Up-1y/2b+ 102
= 210g ||ag1yk/200-1)8/2] = [a@-1)k/2bG k2] |

+210g (|agrnr/2be-1k/2| + [ap-1k200118/2) |

v

2log |bg| + 21og (‘a(p+1)k/2‘ + }b(p_i_l)k/g‘) since by, | bip+1)k/2,
log (By) + h([(p + 1)k/2] P)
(4.7)> log(By) +2((p + 1)k/2)*h(P) — L.

v

Combining (4.0]) and (4.7) gives
2((p + 1)k/2)*h(P) — L < n(n) + 2n*p(n)h(P) + w(n) K.

Substituting & = n/p, we obtain

(4.8) 2 ((p 4;21) - p(n)) h(P)n? < n(n) + w(n)K + L.

We have thus completed the proof of part (b).

4.3. Proof of part (c). Assume that n is a positive even integer divisible
by p. Write n = 2pk for some positive integer k. Assume that B,, does not
have a primitive divisor. Put m = (p + 1)k and m’ = (p — 1)k. Then by
Lemmas and [3.8] we have

2 lOg |AmBm/ — Am/Bm| S lOg (Bn) + 10g (Bm—m’)
(4.9) < n(n)+ 2n2p(n)ﬁ(P) + w(n)K + log (Bay) -
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On the other hand,

2log| A By — Ay B

= 2log‘a b2, —a ,62}

= 2log||ambuy| — |ambm|| + 210g (|ambm | + ambpn|)

> 2log |box| + 21og (|ambm| + |@mbim]) since bog | by, and boy | by

Since m/ is even, x(m’P) is a rational square and hence z(m'P) is non-
negative. If z(m’P) = 0, then since z(m'P) = (z(m/P)% — a)* / (2y(m'P))?,
we must have y(m'P) = 0. But if (z,0) € E,(C), then [2](z,0) = O, the
zero element. So x(m’'P) > 0, and therefore x(m/P) > +/|a| (this is the

place in the proof where we require a < 0). Hence A, > \/|a| B,
Then

21Og(|ambm’| + |am’bm|) > 210g(|ambm/| + |bm/bm|)
210g [byy| + 210g (|am| + [bm])
> log (Bu) + h(mP).

v

Thus we have
2108 [ Ay B — Ay B| > 10g (Bog) +10g (By) + h(mP).

Now we can write (m//2)P = (sU?/B, sUV/B3?) in lowest terms, where
sla and ged(U, V') = 1 (see [14], p. 93). By the duplication formula, we have

(2sU* — V2)?
4U?V?2B
Since ged(U, V) = 1, we have U? B|B,,, therefore

xz(m'P) =

Bm’ Z |S|_1Am’/2Bm’/2 Z |S|_1 max{‘Am//g y

By o} -

Hence
2 10g ‘AmBm/ — Am/Bm|
> log (Ba) + h((m'/2)P) —log|s| + h(mP)
(4.10) > log(Bay) + 2(m'/2)%h(P) + 2m>*h(P) — 2L — log |s|.

Combining (£9)) and (£I0) gives
2 (m'/2)> h(P) + 2m%h(P) — 2L — log|s| < n(n) + 2n2p(n)h(P) + w(n)K.
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Substituting m = n(1 +1/p)/2 and m' = n(1 — 1/p)/2, we obtain

502 4+ 6 5
0<2<M_

16p2 p(n)) R(P)n? < n(n) + w(n)K + 2L + log|s|.

Part (c) follows, completing the proof of the Theorem. O

5. PROOF OF COROLLARY 2.3

To prove Corollary 23] we use Robin’s estimate for w(n) (see Théoreme
11 of [8]):

1.38411og(n)

for all n > 3.
loglog(n) oratn =

(5.1) w(n) <

Furthermore, we use the following estimate for p(n):

pin) < D p 2+ (¢@) - D m| <0.452248 + 0.000001

p<106 m<106

(5.2) < 0.45225,

where the first sum is over primes, p, and the second sum over positive

integers, m.

5.1. Proof of Corollary 2.3[(a). Let P € E,(Q) be a point of infinite
order. Let n > 3 be an odd integer, and assume that x(P) is a rational
square. We will distinguish three cases.

Case 1. Assume that n is not divisible by 3 and 5. Then n > 7 and
p(n) < 0.45225 —-1/4—1/9—1/25 < 0.052. Here we apply Theorem 2.I](a),
so we have N =n and

1 1

and the Corollary follows in this case.
Case 2. Assume that n is divisible by 3. Then p(n) < 0.45225 — 1/4 <
0.203. Here we apply Theorem 2.1i(b) with p = 3, so

2<@+D2—MM)=2<S—MM)>O%Z

4p?

and the Corollary follows in this case.
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Case 3. Assume that n is divisible by 5, but not by 3. Then p(n) <
0.45225 —1/4—1/9 < 0.092. Here we apply Theorem 2.I(b) with p = 5, so

2 ((p;;;)z - p(n)) —9 (2% - p(n)) > 0.536.

Therefore, the Corollary follows in this case too, completing the proof of
part (a).

5.2. Proof of Corollary [2.3[(b). Let n be a positive even integer and
assume that B, (P) does not have a primitive divisor. If n is a power of
two, then n < 4, so by excluding these values of n in the hypotheses of
the Corollary, we may assume here that n is not a power of two. We will
distinguish three cases.

Case 1. Assume that n is not divisible by 3 and 5. From (5.2)), p(n) <
0.45225 — 1/9 — 1/25 < 0.302.

Here we apply Theorem 2.1[(a) and write n = 2° N withe > 1l and N > 7
odd. In this way, we obtain

) @ - ﬁ - (n)) > 0.049,
and the Corollary follows in this case.
Case 2. Assume that n is divisible by 5, but not by 3. Then p(n) <
0.45225 — 1/9 < 0.342. Here we apply Theorem 2T](c) with p = 5, so
2
) (% - p(n)) .y (g - p(n)) > 0.116,
and the Corollary follows in this case.
Case 3. Assume that n is divisible by 3. Then p(n) < 0.45225. Here we
apply Theorem 2.1I(c) with p = 3, so
2
2 (% - p(n)) —2 (% - p(n)) > 0.039,
and the Corollary follows in this case.
We have thus completed the proof. O

6. PROOF OF PROPOSITION

The proof is similar to [2, Proposition 2.1]: based on the decomposition
of the canonical height into a sum of local canonical heights. The proof is
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slightly more complicated by the fact that in this case 2P does not always
have good reduction.

6.1. Archimedean Estimates. We will estimate the archimedean contri-
bution to the canonical height by using Tate’s series. In order to describe
Tate’s series for our curve E, (see [I1] or [19]), let

t(P)=1/x(P), w(P)=4t(P)+4at(P)*, 2(P)=(—at(P)*+ 1)

where P € E,(R).
Then the archimedean local height of P € E,(R) is given by the series

3 (P) = %log o(P)| + % gﬂ log |+(25 P)| — 1—12 log | A\,

E,(R) has two components, and every point, (x,y), in the identity com-
ponent E9(R) satisfies z > y/|a|. From Lemma B.7(a), #(2P) is a square
and hence z(2P) is non-negative. If z(2P) = 0, then since z(2P) =
(x(P)? —a)?/(2y(P))?, we must have y(P) = 0 (since z(P)? —a = 0 has no
solution for z(P) € R). But if (2,0) € E,(C), then [2](x,0) = O, the zero
element). Hence x(2P) > 0. Therefore, 2P, and 2FP for all k > 1, is in
EY(R).

For any Q € E°(R), we have

(@) = Vlal, 0<H(Q) <

Therefore, for every P € E,(R),

~ 1 1 IR 1
Aoo(P) = 3 log |z(P)| + 3 log |2(P)| + 3 24 "o — D log |A,],

k=1
where 0 < z; < log(4).
Using the definition of z(P), we get
~ 1 1 1
1 < Aoo(P)— [ =1 P)> —a) — —log|A,| | < = log(2).
01) 0= AP~ (Jlog (PP~ ) = log Al ) < 5 log(2)

6.2. Non-archimedean Estimates for v odd. Non-archimedean canon-
ical heights are computed using the algorithm presented in [I1]. If v is an
odd prime number, then Tate’s algorithm (see [I3], Section IV.9) can be
used to prove that E, has reduction type:

e [y at v when ord,(a) = 0;

e [I] at v when ord,(a) = 1;
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e [} at v when ord,(a) = 2;
e [II* at v when ord,(a) = 3;

From the characterisation of E(K)/Ey(K) in Table 4.1 of [13] for these
reduction types, we see that 2P always has good reduction at v and we have

(6.2) Ao(2P) = %maX{O, —v(z(2P))} + U(lAQa),

from Theorem 4.1 of [13, Chapter VI].

6.3. Non-archimedean Estimates for v = 2. For v = 2, Tate’s algo-
rithm shows that E, has reduction type:

e /] at 2 when a = 1 mod 4;
e [I] at 2 when a = 3 mod 4;
e []] at 2 when ords(a) = 1;
e I3 at 2 when a = 12 mod 16;
e [; at 2 when a = 4 mod 16;
o [II* at 2 when ords(a) = 3;

Again, according to Table 4.1 of [13], we see that 2P has good reduction
unless the reduction type is I3, which only happens for a = 4 mod 16.

So for a # 4 mod 16, we can apply Theorem 4.1 of [13, Chapter VI|
again.

For a = 4 mod 16, we appeal to the case of Kodiara type [}, m odd and
¢, = 2 or 4 in the proof of Proposition 6 of [4]. Our 2P here must be of
order 2 in E (K3) (since 4P € Ey (K3)) and hence it must equal P, in their
proof of this case (namely, we are in the ¢, = 2 subcase). They calculate
that their A, (P1) = —log(q,) /n,. Since n, = 1 and g, = 2 here, their
Ao (P1) = —log(2). As noted in Section 4 of [4] (see in particular, their
equation (11) there), their A, is twice the A, that we use here. Hence our
Ao (P1) = —log(2)/2 and we must subtract log(2)/2 here.

So
RCP) = 2 max(0,—u(e2P)} + 15
63) _Jo if a # 4 mod 16
) %10g(2) if a = 4 mod 16.

6.4. Conclusion. We compute the canonical height by summing local canon-
ical heights.
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Writing 2P = «/6? as a fraction in lowest terms and taking the sum of
(63) and (E2) over all primes gives the exact formula

{0 if a # 4 mod 16

- 1
D M(2P) = 1og 3] + 1510818l = | 11069) if = 4 mod 16.

VF£0O
Adding this last equation to the lower bound (6.I]) for A (2P), we obtain

R 1 ) . 0 if a # 4 mod 16
h(2P)2110g|0‘ — a0 |_{ %log(Q) if a = 4 mod 16.

Since 2P € E°(R), a/6* > \/|a| and therefore a? — ad* > |2a|é6* > |2al.
This gives the lower bound

o~

1 .
h(2P) > 1 log |20] - { 0 if a # 4 mod 16

1log(2) if a =4 mod 16.

The proposition follows since ﬁ(QP) = 4E(P).

7. PROOF OF THEOREM

7.1. n odd, n > 7. Let n be a positive odd integer and assume that z(P)
is a rational square. Assume that the term B, (P) does not have a primitive
divisor.

Part (a). Assume that a 4 mod 16. From Proposition 2.5, we have

~ 1
(7.1) h(P) > T log |2al.
Assume further that a < —5. Then
L
7.2 <0435, —— <1454, — <0.802.
(72) log |24l " log|2al " log |24

Substituting (7)) into Corollary 2.3|(a) yields

1 1.3841 log(n)
482 ( —log |2 2 <21 —_—
0.48 (16 og | a|) n® < 2log(n) + log log(1)

Dividing both sides of this equation by log |2a| and substituting the
estimates (7.2)) yields

K+ K+ L.

1.3841 log(n)

0.030n* < 0.870log(n) + 1.454 + 2.256
loglog(n)
2.01
< log(n) (0870 + —2213 ) 4 9956
log log(n)

Using this inequality, we obtain the bound n < 18.6, so n < 17.
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We will next give the better bounds by using the inequalities of Theo-
rem [2ZTI(b).
If n is odd and divisible by p, then, by Theorem 2.1I(b), (7.1]) and (7.2]),
1 /(p+1)? 5 _nn)+wn)K + L
- _ <
0< 8 ( 4p? pln) " < log |24l
< 0.4357n(n) + 1.454w(n) + 0.802.

Using this inequality, we can eliminate n = 9, 11, 13, 15 and 17 (with
p =3, 11, 13, 3 and 17, respectively) for a < —5.

Next assume —5 < a < 0. Using PARI, we find that such F, have rank
one for a = —2 and rank zero otherwise. If a = —2, then P = (—1,1) is a
generator for F,(Q). However, for n odd, we require that z(P) is a rational
square. All such elements of E,(Q) are generated by 2P = (9/4,21/8) and
the torsion element of E,(Q) (its torsion subgroup is of order 2).

Substituting a = —2 and h(2P) = 2.4348 . . . into the inequality in Corol-
lary 23[(a), we find that K = 2.889, L = 1.387 and

1.173n% < (2 + log(n) + 4.276.

Using this inequality, we find that if a = —2, then n < 3.
Part (b). Assume that @ =4 mod 16. From Proposition 2.5 we have

~ 1
(7.3) h(P) > 1—610g\a/2|.
We first assume that ¢ < —44. Hence
7.4 —— < 0.324 < 1.435 < 0.949.
09 gl ' Togla/2] ' Togla/]
Using the same argument as above, from Corollary 2.3(a) we have
1.987

0.03n* < (0.648 + ) log(n) + 2.384.

loglog(n)
Using this inequality, we obtain the bound n < 17.95, so n < 17.
Moreover, from Theorem 2.II(b), (Z.3]) and (Z.4), we have

1 ((p +1)?

8 4p?
Using this inequality, we obtain n < 7 for a < —44.

p(n)) n? < 0.324n(n) + 1.435w(n) + 0.949.

Now consider the remaining cases with —44 < a < 0. We find that such
E, have rank one for a« = —12 and rank zero for a = —28.
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For a = —12, using PARI, we found that P = (—2, —4) is a generator of
E,(Q). As above, we need to consider 2P = (4, —4) and h(2P) = 1.0023 . . .
In the same way as in the case of a Z 4 mod 16, first using the inequality in
Corollary 2:3|(a) and then using the inequality in Theorem 2.1I(b), we obtain
n <7 for a = —12, completing the proof of part (a) here.

7.2. n even, n > 22. Let n be a positive even integer and not a power of
two. Assume that B, (P) does not have a primitive divisor.

Part (a). Assume that a 4 mod 16.

Suppose that a < —12. Then

7.5 — < — <
(7.5) log |2al log |24l

By the same argument as above, substituting the estimates (7.I]) and
() into the inequality of Corollary 2:3(b) implies that

1.649
— )1 2.22.
log 1og<n>) o8l +

Using this inequality, we obtain the bound n < 69.8, so n < 68.

1.191, L < 0.719.

31
0315, log |2al

0.002n% < <O.63 +

We will next give better bounds. If n is even, we obtain
2
O<1 5p +6p+5_p(n) < n(n) +w(n)K + 2L + log |a|
8 16p2 log |2a|
< 0.315m(n) 4+ 1.191w(n) + 2.22,

from Theorem 2.1I(c), (Z.I]) and (7.5]). Using this inequality, we find that if
a < —12, then n < 22, excluding n = 8 and n = 16.

Next assume —12 < a < 0. We find that such E, have rank one for
a=—2, =5, —6, —7 and —10, and rank zero otherwise. The generators for

E.(Q) with rank one and their canonical heights are as follows:

a P h(P) a P h(P)
=2 (—1,-1) 0.6087...| —7 (4,—6) 1.6342...
—5 (=1,-2) 0.6355...—10 (—1,—-3) 1.2815...
—6 (—2,-2) 0.8442...

Let @ = —2. Substituting @ = —2 and h(P) = 0.6087... into the
inequality in Corollary 2:3(b), we have

0.023n* < (2 + ) log(n) + 3.467,

log log(n)
since K < 2.889 and L < 1.387.
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Using this inequality, we obtain the bound n < 30.6 and hence n < 30.
Next substituting ¢ = —2 and h(P) = 0.6087... into the inequality in
Theorem 2.I)(c), we obtain

)
1.217 <M _

1657 p(n)) n? < n(n) + 2.889w(n) + 3.467.

Using this inequality, we can eliminate n = 24, 26, 28 and 30.

By the same argument, we can show that n < 22 for a = -5, —6, —7
and —10 as well.

Hence n < 22, excluding 8 and 16.

Part (b). Assume that a =4 mod 16.

Suppose that a < —140. Then

1

— < L

log |a/2| log |a/2|
From Corollary 23(b), we have

(7.6) < 0.827.

< 0.236, 18,

log |a/2|

1.634
log log(n)
By using this inequality, we obtain the bound n < 69.94, so n < 68.
Moreover, from Theorem 2.I)(¢), (7.3]) and (7.6]), we have

1 (5 +6p+5
16p?

0.002n” < (0.472 - ) log(n) + 2.818.

2 p(n)) n® < 0.236n(n) + 1.18w(n) + 2.818.

Using this inequality, we obtain n < 22, excluding n = 8 and n = 16, for
a < —140.

Now assume that —140 < a < 0. We find that such E, have rank one
for a = —12, —60, —76 and —124 and rank zero for a = —28, —44, —92 and
—108. The generators for E,(Q) with rank one and their canonical heights
are as follows:

a P h(P) a P h(P)
—12 (—2,—-4) 0.2505...] —76 (2,—12) 1.0493...
—60 (—6,—12) 0.5673...|—124 (18,60) 1.9118...

Using the same argument as in the case of a # 4 mod 16, we obtain
n < 22, excluding n = 8 and n = 16, for these values of a, completing the
proof. O
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7.3. 4 <n < 22. In this subsection and the following one, we use the ideas
and results in [7] to conclude the proof of Theorem 2.6

In fact, Ingram has proven that there are no solutions for n = 5, 6, 7,
10, 12 (since there are none for n = 6), 14, 18 and 20 (since there are none
for n = 10). So it only remains to consider n = 22.

7.4. n = 22. In Ingram’s notation, we find that Ve (X,Y) is of degree 90
and reducible. It has two irreducible factors over Q[X,Y]. There is one
of degree 30 and another of degree 60. Let us call these irreducible forms,
Fy1(X,Y) and Figo(X,Y), respectively.

Using Maple, we see that if 2|Fyg1(X,Y), then X +Y = 0 mod 2. So in
this case, we put Y = 2Y; — X and find that if 2|Fy 1 (X,Y), then 2% must
divide Fp1(X,Y) (since 2% divides all the coefficients of Fyy1(X,2Y; — X)
expanded as a polynomial in X and Y7).

Writing Fae1 (X, 2Y; — X) /22 = Fh11(X, Y1), we find that Fhe 11 (X, Y))
(X +Y1)* mod 2. Hence, if 23| Fyy1(X,Y), then ¥; = 2Y;— X and, in fact,
again by considering the content, 2*° must divide Fa;(X,Y).

Writing Fye11(X, 2Ya—X) /2% = Fyy 15 (X, Y3), we find that Fag ; 2(X, Y5)
X309 mod 2. And if 2%6|Fy;(X,Y), then X = 2X;. This means that 2|X
and 2|Y, but we are assuming that ged(X,Y) = 1.

Hence Iy 1 (X,Y) = £2%11° where o = 0, 30, 45. Similarly, Fpoo(X,Y) =
429117 where o = 0, 60, 90.

Again, using Maple, we see that if 11|F51(X,Y), then Y = 11Y;. Per-
forming this substitution, we find that the resulting polynomial has 11
as its content. Writing Foo1(X,11Y7)/11 = Fy11(X,Y)), we find that
Fy11(X,Y7) = X3 mod 11. Hence, if 11%|Fy1(X,Y), then 11| ged(X,Y),
which is not possible.

Hence Fyy1(X,Y) = +2°117 where a = 0, 30,45 and 3 = 0, 1. Similarly,
Fy2(X,Y) = £2°11° where a = 0,60,90 and 8 = 0, 1.

Using the gedex command in Maple for each possible combination of
values of Fyy 1(X,Y) and Fi5(X,Y) to eliminate a variable and then search
for rational roots of the resulting single-variable polynomials, we find no
non-trivial solutions that lead to elliptic divisibility sequences whose 22-nd
element has no primitive divisor.

An alternative proof is possible by observing that for a # 4 mod 16, a <
—46 and for a = 4 mod 16, a < —956, the inequalities in Section 7.2 hold.
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Hence we need only solve Fy 1 (X,Y) = £2%117 for X where o = 0, 30, 45,

B

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20

=0,1and —956 < a < 0.
This completes the proof.
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