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Abstract. Recently in [Dvu3] it was shown that if a pseudo effect algebra
satisfies a kind of the Riesz Decomposition Property ((RDP) for short), then its
state space is either empty or a nonempty simplex. This will allow us to prove
a Yosida–Hewitt type and a Lebesgue type decomposition for measures on
pseudo effect algebra with (RDP). The simplex structure of the state space will
entail not only the existence of such a decomposition but also its uniqueness.

1. Introduction

The classical decomposition theorems of or Yosida–Hewitt [YoHe] initiated in the
last two decades interest of authors studying finitely additive measures on quantum
structures like orthomodular lattices or posets to study an interesting problem
of decomposition measures. There appeared a whole series of papers studying
Lebesgue and Yosida-Hewitt type decompositions, see e.g. [DDP, DeMo, Rut1,
Rut2]. They exhibited at least the existence of such a decomposition. To prove
even the uniqueness of decompositions, some sufficient conditions are presented in
[Rut2].

Quantum structures were inspired by the research of the mathematical founda-
tions of quantum structures. An analogue of a probability measure is a state. One
of the most important examples of orthomodular lattices or of the Hilbert space
quantum mechanics is the system L(H) of all closed subspaces of a Hilbert space
(real, complex or quaternionic) H. The Gleason Theorem, see e.g. [Dvu0], says
that every σ-additive state on L(H) is uniquely expressible via a Hermitian trace
operator on H if 3 ≤ dimH ≤ ℵ0. The Aarnes Theorem, [Dvu0, Thm 3.2.28] says
that every (finitely additive) state on L(H) is a unique convex combination of two
states, s1 and s2, where s1 is a completely additive state and s2 is a finitely additive
state that vanishes on each finite-dimensional subspace of H.

In the Nineties, Foulis and Bennett [FoBe] introduced effect algebras that are par-
tial structures with a partially defined operation + that models the join of mutually
excluding events. They generalize orthomodular lattices and posets, orthoalgebras,
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and the basic example important for so-called POV-measures of quantum mechan-
ics is the system, E(H), of all Hermitian operators of a Hilbert space H that are
between the zero operator and the identity one.

These commutative structures were extended in [DvVe1, DvVe2] to so-called
pseudo effect algebras where the partial addition, +, is not more assumed to be
commutative. In many important examples they are intervals in po-groups (=
partially ordered groups). E.g. E(H) is an interval in the po-group B(H) of all
Hermitian operators on H.

A sufficient condition for a pseudo effect algebra to be an interval of a unital po-
group is a variant of the Riesz Decomposition Property ((RDP) in abbreviation),
see [Dvu2, DvVe2]. It is a weaker form of the distributivity that allows to do a joint
refinement of two decompositions of the unit element 1. For example, (RDP) on
an orthomodular poset entails that it has to be a Boolean algebra, and therefore,
(RDP) fails to hold on L(H) or on E(H).

We recall that every effect algebra with (RDP) has at least one state, however
the state space of a pseudo effect algebra with a stronger type of (RDP) can be
empty, [Dvu1].

Recently in [Dvu3, Thm 5.1], it was shown that the state space of every pseudo
effect algebra with (RDP) is a simplex, more precisely a Choquet simplex. The
simplex is a special type of a convex set that generalizes the classical one in R

n.
For a comprehensive source on simplices see [Alf]. We note that the state space of
E(H) is not a simplex, however the state space of any commutative C∗-algebra is a
simplex, see e.g. [AlSc, Thm 4.4, p. 7]. The simplex structure of the state spaces
allows also to represent uniquely states as an integral [Dvu4] through a regular
Borel probability measure.

The simplex structure of the state space of a pseudo effect algebra E satisfying
(RDP) entails that the space of all Jordan measures on E is an Abelian Dedekind
complete ℓ-group, [Dvu3, Thm 3.5, Thm 3.6]. This new fact is our basic tool to
present a Yosida–Hewitt type and a Lebesgue type of decompositions of finitely
additive measures on E. The property (RDP) as we show is a sufficient condition
to prove not only the existence but also the uniqueness of such a decomposition
that is a main goal of the present paper.

The paper is organized as follows.
Section 2 is an introduction to the theory of pseudo effect algebras gathering the

necessary latest results. Section 3 describes the faces of the state space of pseudo
effect algebras and it gives a general result on a decomposition and it will be applied
in Section 4 to present the main body of the paper - the Yosida–Hewitt type of
decomposition and the Lebesque type decomposition.

2. Elements of Pseudo Effect Algebras

Pseudo effect algebras were introduced in [DvVe1, DvVe2]. We say that a pseudo

effect algebra is a partial algebra (E; +, 0, 1), where + is a partial binary operation
and 0 and 1 are constants, such that for all a, b, c ∈ E, the following holds

(i) a+ b and (a+ b) + c exist if and only if b+ c and a+ (b + c) exist, and in
this case (a+ b) + c = a+ (b+ c);

(ii) there is exactly one d ∈ E and exactly one e ∈ E such that a+d = e+a = 1;
(iii) if a+ b exists, there are elements d, e ∈ E such that a+ b = d+ a = b+ e;
(iv) if 1 + a or a+ 1 exists, then a = 0.



DECOMPOSITIONS OF MEASURES ON PSEUDO EFFECT ALGEBRAS 3

If we define a ≤ b if and only if there exists an element c ∈ E such that a+c = b,
then ≤ is a partial ordering on E such that 0 ≤ a ≤ 1 for any a ∈ E. It is possible
to show that a ≤ b if and only if b = a + c = d + a for some c, d ∈ E. We write
c = a / b and d = b \ a. Then

(b \ a) + a = a+ (a / b) = b,

and we write a− = 1 \ a and a∼ = a / 1 for any a ∈ E.
For basic properties of pseudo effect algebras see [DvVe1, DvVe2]. We recall that

if + is commutative, E is said to be an effect algebra; for a guide overview on effect
algebras we recommend e.g. [DvPu].

For example, let (G, u) be a unital po-group (= partially ordered group) with
strong unit u that is not necessarily Abelian. We recall that a po-group (= partially
ordered group) is a group with a partial ordering ≤ such that if a ≤ b, then x+a+
y ≤ x+ b+ y for all x, y ∈ G; and an element u ∈ G+ := {g ∈ G : g ≥ 0} is said to
be a strong unit if given G =

⋃

n[−nu, nu].
Then for (G, u) we define Γ(G, u) = [0, u] and we endow it with + that is the

restriction of the group addition to the set of all those (x, y) ∈ Γ(G, u) × Γ(G, u)
that x ≤ u− y. Then (Γ(G, u); +, 0, u) is a pseudo effect algebra with possible two
negations: a− = u − a and a∼ = −a + u. Any pseudo effect algebra of the form
Γ(G, u) is said to be an interval pseudo effect algebra. In [DvVe1, DvVe2], we have
some sufficient conditions posed to a pseudo effect algebra to be an interval. They
are analogues of the Riesz Decomposition Properties. Roughly speaking they are a
weaker form of distributivity that allows a joint refinement of two partitions of 1.
This is a reason why they fail to hold for L(H) and E(H).

Now we introduce according to [DvVe1] the following types of the Riesz Decom-
position properties for pseudo effect algebras that in the case of effect algebras may
coincide, but not for pseudo effect algebras, in general.

(a) For a, b ∈ E, we write a com b to mean that for all a1 ≤ a and b1 ≤ b, a1
and b1 commute.

(b) We say that E fulfils the Riesz Interpolation Property, (RIP) for short, if
for any a1, a2, b1, b2 ∈ E such that a1, a2 ≤ b1, b2 there is a c ∈ E such that
a1, a2 ≤ c ≤ b1, b2.

(c) We say that E fulfils the weak Riesz Decomposition Property, (RDP0) for
short, if for any a, b1, b2 ∈ E such that a ≤ b1+ b2 there are d1, d2 ∈ E such
that d1 ≤ b1, d2 ≤ b2 and a = d1 + d2.

(d) We say that E fulfils the Riesz Decomposition Property, (RDP) for short, if
for any a1, a2, b1, b2 ∈ E such that a1+a2 = b1+b2 there are d1, d2, d3, d4 ∈
E such that d1 + d2 = a1, d3 + d4 = a2, d1 + d3 = b1, d2 + d4 = b2.

(e) We say that E fulfils the commutational Riesz Decomposition Property,
(RDP1) for short, if for any a1, a2, b1, b2 ∈ E such that a1 + a2 = b1 + b2
there are d1, d2, d3, d4 ∈ E such that (i) d1 + d2 = a1, d3 + d4 = a2,
d1 + d3 = b1, d2 + d4 = b2, and (ii) d2 com d3.

(f) We say that E fulfils the strong Riesz Decomposition Property, (RDP2) for
short, if for any a1, a2, b1, b2 ∈ E such that a1 + a2 = b1 + b2 there are
d1, d2, d3, d4 ∈ E such that (i) d1 + d2 = a1, d3 + d4 = a2, d1 + d3 = b1,
d2 + d4 = b2, and (ii) d2 ∧ d3 = 0.

We have the implications
(RDP2) ⇒ (RDP1) ⇒ (RDP) ⇒ (RDP0) ⇒ (RIP).



4 ANATOLIJ DVUREČENSKIJ

The converse of any of these implications does not hold. For commutative effect
algebras we have

(RDP2) ⇒ (RDP1) ⇔ (RDP) ⇔ (RDP0) ⇒ (RIP).
If in the above definitions of (RDP)’s we change E to G+, we have po-groups

with the corresponding forms of the Riesz Decomposition Properties. According to
[DvVe2, Thm 5.7], every pseudo effect algebra with (RDP)1 is an interval in some
unital po-group with (RDP)1, so is any effect algebra with (RDP) in an Abelian
po-group with (RDP), see see [Rav] or [DvPu, Thm 1.7.17]. Any effect algebra
with (RDP) that is a lattice, or equivalently, with (RDP)2 is an MV-algebra, for
a definition see e.g. [DvPu]. Any pseudo effect algebra with (RDP)2 is a so-called
pseudo MV-algebra, see [GeIo], and the group G is an ℓ-group (= lattice ordered
group).

A signed measure on a pseudo effect algebra E is any mapping m : E → R such
that m(a+ b) = m(a) +m(b) provided a+ b is defined in E. We have s(0) = 0 and
s(a−) = s(a∼). If a signed measure m is positive, i.e., m(a) ≥ 0 for each a ∈ E, we
call it a measure, and any normalized measure, i.e. a measure s such that s(1) = 1,
is said to be a state. For any measure m, we have m(a) ≤ m(b) whenever a ≤ b. If
m1 and m2 are two measures on E, then the signed measure m = m1 −m2 is said
to be a Jordan signed measure. We denote by M(E), M+(E), S(E), and J (E)
the sets of all signed measures, or measures, or states or Jordan signed measures
on E. We recall that it can happen that M(E) = {0} = J (E).

The set S(E) is convex, i.e., any convex combination s = λs1+(1−λ)s2, λ ∈ [0, 1],
of two states s1 and s2 and λ ∈ [0, 1] is a state. If s cannot be expressed by a convex
combination of two distinct states, it is called an extremal state. Let ∂eS(E) denote
the set of all extremal states. On M(E) we introduce a weak topology: We say that
a net of measures {mα} converges weakly to a measure m if limα mα(a) = m(a).
Then S(E) is a convex compact Hausdorff space, and due to the Krein–Mil’man
Theorem, see [Goo, Thm 5.17], every state on E is a weak limit of a net of convex
combinations of extremal states.

If E is a pseudo effect algebra with (RDP), then S(E) is either empty or a non-
void simplex, [Dvu3, Thm 5.1], for definition of a simplex and its basic properties,
see [Goo, Chap 10].

For two signed measures m1 and m2, we write m1 ≤+ m2 if m1(a) ≤ m2(a) for
each a ∈ E.

The following important statement was proved in [Dvu3, Thm 3.5, Thm 3.6]:

Theorem 2.1. Let E be a pseudo effect algebra with (RDP). Then J (E) is an

Abelian Dedekind complete ℓ-group such that if {mi}i∈I is a nonempty system of

J (E) that is bounded above, and if d(x) =
∨

imi(x) for all x ∈ E, then
(

∨

i

mi

)

(x) =
∨

{d(x1) + · · ·+ d(xn) : x = x1 + · · ·+ xn, x1, . . . , xn ∈ E}

for all x ∈ E.
And if e(x) =

∧

i fi(x) for all x ∈ E, then
(

∧

i

mi

)

(x) =
∧

{e(x1) + · · ·+ e(xn) : x = x1 + · · ·+ xn, x1, . . . , xn ∈ E}

for all x ∈ E.
Given m1, . . . ,mn ∈ J (E),
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(

n
∨

i=1

mi

)

(x) = sup{m1(x1) + · · ·+mn(xn) : x = x1 + · · ·+ xn, x1, . . . , xn ∈ E},

(

n
∧

i=1

mi

)

(x) = inf{m1(x1) + · · ·+mn(xn) : x = x1 + · · ·+ xn, x1, . . . , xn ∈ E},

for all x ∈ E.

3. Faces of the State Space

The present section describes the faces of the state space of a pseudo effect
algebra with (RDP). Since our state space is a simplex, we know that if F is a
closed face, then every simplex is a direct convex sum of F and its complementary
face, [Goo, Thm 11.28]. However, not every face is closed, we present a general
decomposition, Theorem 3.4, where a weaker form of the closedness, ∨-closedness,
allows to obtain a unique decomposition of measures. This result will apply in the
next section to obtain Yosida–Hewitt and Lebesgue types of decomposition.

A face of a convex set K is a convex subset F of K such that if x = λx1 + (1−
λ)x2 ∈ F for λ ∈ (0, 1), then also x1, x2 ∈ F. We note that if x ∈ K, then {x} is a
face iff x ∈ ∂eK.

For any X ⊆ K, there is the face generated by X. Due to [Goo, Prop 5.7], the
face F generated by X is the set of those points x ∈ K for which there exists a
positive convex combination λx + (1 − λ)y = z with y ∈ K and z belongs to the
convex hull of X.

If S(E) 6= ∅, then a state s ∈ S(E) belongs to the face generated by X if and
only if s ≤+ αt for some positive constant α and some state t in the convex hull
of X. In particular, the face of S(E) generated by a state s is the set of states
s′ ∈ S(E) such that s′ ≤+ αs for some real number α > 0.

Let s be a state on a pseudo effect algebra E. The kernel of s is the set

Ker(s) := {x ∈ E : s(x) = 0}.

Then Ker(s) is a normal ideal of E. We note that a subset I of a pseudo effect
algebra is an ideal if (i) 0 ∈ I, (ii) a, b ∈ I and a+ b ∈ E imply a+ b ∈ I, and (iii)
a ∈ E, b ∈ I and a ≤ b entail a ∈ I. An ideal I is normal, if a+ I := {a+ b ∈ E :
b ∈ I} = I + a := {b+ a ∈ E : b ∈ I} for any a ∈ E.

Proposition 3.1. Let E be a pseudo effect algebra and let X be a subset of E.
Then the set

F = {s ∈ S(E) : X ⊆ Ker(s)}

is a closed face of S(E).

Proof. If F = ∅, then F is trivially a closed face. Assume F 6= ∅. If s = λs1 + (1−
λ)s2 for λ ∈ [0, 1] and for two states s1 and s2, then Ker(s) ⊆ Ker(s1) ∩ Ker(s2)
which proves that F is a convex set. If {sα} is a net of states from F that converges
weakly to a state s on E, then for each x ∈ X , 0 = limα sα(x) = s(x) so that F is
closed. If now s = λs1 + (1 − λ)s2 ∈ F for λ ∈ (0, 1) and s1, s2 ∈ F, then for each
x ∈ X we have 0 = s(x) = λs1(x) + (1 − λ)s2(x) so that s1(x) = s2(x) = 0 and
therefore, s1, s2 ∈ F. �
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Let F be a face of a simplex K, and let F ′ be the union of those faces of K
that are disjoint from F. According to [Goo, Prop 10.12], F ′ is a face of K and it
is the largest face of K that is disjoint from F. If a point x ∈ K can be expressed
as convex combinations

x = α1x1 + α2x2 = β1y1 + β2y2

with x1, y1 ∈ F and x2, y2 ∈ F ′, then αi = βi for i = 1, 2 and xi = yi for those i
such that αi > 0. The face F ′ is said to be a complementary face of F in K.

It is possible to show that if F1 ⊆ F2 are two faces of S(E), then F ′

2 ⊆ F ′

1 and
for a set {Fi} of faces, we have F =

⋂

i Fi is a face, and

(

⋂

i

Fi

)′

=
⋃

i

F ′

i (3.0).

Proposition 3.2. Let F be a face of the state space of a pseudo effect algebra E
with (RDP) and let S(E) 6= ∅. Then its complementary face F ′ consists of all states

s′ ∈ S(E) such that s′ ∧ s = 0 for every state s ∈ F.
Equivalently, F ′ consists of all states s′ ∈ S(E) such that if s ∈ F is such that

αs ≤+ s′ for some constant α ≥ 0, then α = 0.

Proof. We know that S(E) is a simplex. According to [Goo, Prop 10.12], F ′ is the
union of all faces of S(E) that are disjoint from F. If s′ ∈ F ′ and s ∈ F, and if
s′ and s belong to mutually disjoint faces, then s′ ∧ s = 0, see [Dvu3, Prop 4.2].
Conversely, let s′ be a state on E such that s′ ∧ s = 0 for each s ∈ F. Then by
[Dvu3, Prop 4.2], s′ and s belong to mutually disjoint faces. Let F (s′) and F (s) be
the faces generated by s′ and s. Therefore, F (s′) ∩ F (s) = ∅. But F =

⋃

s∈F F (s),
so that F (s′) ∩ F =

⋃

s∈F F (s′) ∩ F (s) = ∅ that gives s′ ∈ F ′

Now let s′ ∈ F ′ and let s ∈ F be such that αs ≤ s′ for some α ≥ 0. If α > 0,
then s ≤ s′/α that s belongs to the face generated by s′ that is impossible, whence
α = 0.

Assume that F0 is the set of all those states s′ on E such that if αs ≤+ s′ for
s ∈ F and α ≥ 0, then α = 0. We have seen that F ′ ⊆ F0. Let s

′ ∈ F0 and s ∈ F
If s′ ∧ s >+ 0, then s belongs to the face generated by s′, hence, s ≤+ ts′ for some
t > 0. This gives s/t ≤+ s so that 1/t = 0 that is absurd. Hence, F0 ⊆ F ′. �

Let K1, . . . ,Kn be convex subsets of K. We say that K is the direct convex sum

of K1, . . . ,Kn if (i) K equals the convex hull of
⋃n

i=1
Ki and every element x ∈ K

can be uniquely expressed as a convex combination of some elements xi ∈ Ki,
i = 1, . . . , n. That is, if

α1x1 + · · ·+ αnxn = β1y1 + · · ·+ βnyn

are convex combinations of xi, yi ∈ Ki, for i = 1, . . . , n, then αi = βi for all i’s and
xi = yj for those i such that αi > 0.

Theorem 3.3. Let E be a pseudo effect algebra with (RDP) and let S(E) 6= ∅. Let
I be a normal ideal of E, and set

F = {s ∈ S(E) : I ⊆ Ker(s)}.

Then F is a closed face of S(E), and S(E) is the direct convex sum of F and its

complementary face.
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Proof. By Proposition 3.1, F is a closed face of S(E). If F is empty, then F ′ = S(E).
Now assume F is non-void. Let J (E) be the set of all Jordan signed measures

on E. By Theorem 2.1, J (E) is an Abelian Dedekind complete ℓ-group, and S(E)
is a base for the positive cone J (E)+ = {αs : α ≥ 0, s ∈ S(E)}. We show that the
set

C = {αs : α ≥ 0, s ∈ S(E), s ∈ F}

contains the supremum of any subset of C which is bounded above in J (E). Given
a nonempty system of positive measures {mi}i from C that is bounded in J (E),
let m =

∨

i mi. According to Theorem 2.1,

m(x) = sup{d(x1) + · · ·+ d(xn) : x = x1 + · · ·+ xn}, x ∈ E,

where d(x) = supimi(x), x ∈ E.
If x ∈ I, then x = x1 + · · · + xn entails x1, . . . , xn ∈ I so that d(xj) =

supimi(xj) = 0 for each j = 1, . . . , n. Hence, m(x) = 0 and m ∈ C.
According to [Goo, Prop 10.14], S(E) is the direct convex sum of F and its

complementary face. �

Let F be a face of S(E), where E is a pseudo effect algebra with (RDP). We set

V (F ) := {αs : α ≥ 0, s ∈ F}.

It is a cone that is a subcone of M+(S), i.e., if (i) m1,m2 ∈ V (F ), then m1+m2 ∈
V (F ), (ii) R+(F ) ⊆ V (F ) (ii) −V (F )∩ V (F ) = {0}. We say that V (F ) is ∨-closed
if, for any chain {mi} from V (F ) bounded in M+(E),

∨

imi ∈ V (F ).
If F ′ is the complementary face of F, according to Proposition 3.2, m ∈ V (F ′)

iff for any t ∈ V (F ) with t ≤+ m, we have t = 0.
For an arbitrary cone V of S(E), we denote by V ♯ the set of all those measures

t ∈ M+(E) that m ≤+ t for m ∈ V entails m = 0. The elements of V ♯ are said to
be V -singular measures. Hence, V (F )♯ = V (F ′) for any face F of S(E) of a pseudo
effect algebra E with (RDP).

Theorem 3.4. Let F be a face of the state space S(E) of a pseudo effect algebra

E with (RDP). If V (F ) is ∨-closed, then S(E) equals the direct convex sum of F
and its complementary face F ′.

In addition, every measure m on E can be uniquely decomposed as a sum

m = m1 +m1 (3.1)

of two measures such that m1 ∈ V (F ) and m2 ∈ V (F ′).

Proof. Existence: Let m be a measure on E, and let Γ(m) = {m1 ∈ V (F ) : m1 ≤+

m}. Since the zero measure belongs to Γ(m), Γ(m) is non-void. Let {mi} be a chain
of elements from Γ(m). The measure m is an upper bound for {mi}. By Theorem
2.1, m0 :=

∨

i mi is a measure on E and by the hypotheses, m0 belongs to V (F ).
It follows from the Zorn’s Lemma that Γ(m) contains a maximal element m1 such
that m1 ≤+ m.

If we set m2 = m−m1, we show that m2 ∈ V (F ′). Let t ∈ V (F ) and let t ≤+ m2.
Then m1 + t ≤+ m1 + m2 = m. Since m1 + t ∈ V (F ), the maximality of m1 in
Γ(m) implies t = 0, and therefore, m2 ∈ V (F ).
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Uniqueness: Now let s be an arbitrary state on E. According to the first part of
the present proof, we see that s can be decomposed in the convex form

s = λ1s1 + λ2s2, (3.2)

where s1 ∈ F and s2 ∈ F ′. This implies that S(E) is a direct convex sum of F and
F ′. In particular, according to [Goo, Prop 10.12], this yields that the decomposition
(3.2) is unique, i.e. if s = α1s

′

1+α2s
′

2 is another convex combination of s′1 ∈ F and
s′2 ∈ F ′, then αi = λi for i = 1, 2, and if αi > 0 implies si = s′i. In particular, this
implies that the decomposition in (3.1) is unique. �

4. Decomposition of States on Pseudo Effect Algebras

This section presents the main results of the paper: Yosida–Hewitt type and
Lebesgue type of decomposition of finitely additive measures and states.

Using closed faces F , we can decompose any state s on a pseudo effect algebra
with (RDP) in the unique form: s = λs1 + (1 − λ)s2, where s1 ∈ F and s2 ∈ F ′,
where F ′ is the complementary face of F, see [Goo, Thm 11.28]. But not every face
of S(E) is closed. E.g. the set of all σ-additive states on E is a face that is not
necessarily closed. However, also for some such situations we show that S(E) can
be the direct convex sum of the face F and its complementary face.

A non-empty set X of a poset E is directed downwards (directed upwards), and
we write D ↓ (D ↑), if for any x, y ∈ X there exists z ∈ D such that z ≤ x, z ≤ y
(z ≥ x, z ≥ y). Two downwards directed sets {xt : t ∈ T } and {yt : t ∈ T } indexed
by the same index set T are called downwards equidirected if, for any s, t ∈ T, there
exists v ∈ T such that xv ≤ xs and xv ≤ xt as well as yv ≤ ys and yv ≤ yt. A
similar definition holds for upwards directed sets.

Let x ∈ E and D ⊆ E. We say that D ↑ x if D ↑ and x =
∨

D. Dually we define
D ↓ x, i.e. D ↓ and x =

∧

D.
Let {an} be a sequence of elements of a pseudo effect E such that bn = a1+· · ·+an

exists in E for each n ≥ 1 and if a =
∨

n bn exists in E, we write a =
∑

n an.
A signed measure m on a pseudo effect algebra E is σ-additive if, {an} ր a,

i.e. an ≤ an+1 for each n ≥ 1 and
∨

n an = a, then m(a) = limn m(an). A signed
measure m is σ-additive iff {an} ց 0 entails limn m(an) = 0.

Now let E be an effect algebra (not a pseudo effect algebra). We say that a system
{at}t∈T of elements of E is summable if, for each finite subset F ⊆ T, the element
aF =

∑

t∈F at is defined in E. If there exists the element a =
∨

{aF : F ⊆ T }, we
called it the sum of the summable system {at}t∈T , and write a =

∑

t∈T at.
A signed measure m on an effect algebra is said to be completely additive if

m(a) =
∑

t∈T m(at) whenever a =
∑

t∈T at.
We denote by J (E)σ ,J (E)ca the sets of all σ-additive Jordan signed measures

and completely additive Jordan signed measures on E, respectively. In the same
way we define M+(E)σ , M

+(E)ca and similarly for the states: S(E)σ and S(E)ca
denote the systems of all σ-additive and completely additive states on E.

Then S(E)ca ⊆ S(E)σ ⊆ S(E). Each of these sets can be empty. Moreover,
S(E)σ and S(E)ca are also faces of S(E), and

V (S(E)σ) = M+(E)σ and V (S(E)ca) = M+(E)ca. (4.1)

Proposition 4.1. Let m1, . . . ,mn be completely additive measures on an effect

algebra E that satisfies (RDP). Then m = m1 ∨ · · · ∨ mn is also a completely

additive measure on E.
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The same is true if m1, . . . ,mn are σ-additive measures on a pseudo effect algebra

E with (RDP).

Proof. Without loss of generality, we can assume that n = 2. Let a =
∑

t∈T at and
let F be any finite subset of T and let aF =

∑

t∈F at. Given ǫ > 0, there is F0 such
that, for each finite F ⊇ F0, m1(a− aF ) < ǫ/2 and m2(a− aF ) < ǫ/2.

By Theorem 2.1, m(a − aF ) = sup{m1(x) + m2(y) : x + y = a − aF }. Since
x ≤ a − aF and y ≤ a − aF , we have m1(x) ≤ m1(a − aF ) < ǫ/2 and m2(y) ≤
m2(a− aF ) < ǫ/2. Then m1(x) +m2(y) < ǫ, consequently m(a − aF ) ≤ ǫ. Hence,
m(a)−m(aF ) ≤ ǫ and m is completely additive. �

Lemma 4.2. If {ft}t∈T ↑ f and {gt}t∈T ↑ g, where ft, gt, f, g ∈ R
+ for all t ∈ T.

Then
∨

s,t

(fs + gt) = f + g, (4.2)

If, in addition, {ft}t∈T and {gt}t∈T are upwards equidirected, then

{ft + gt}t∈T ↑ f + g. (4.3)

Proof. We have fs + gt ≤ f + g for all s, t ∈ T. If fs + gt ≤ x for some x ∈ R, then
fs ≤ x−gt so that f ≤ x−gt and hence, gt ≤ x−f so that g ≤ x−f and f +g ≤ x
that gives, (4.2).

Now assume {ft} and {gt} are upwards equidirected. It is clear that ft + gt ≤
f + g. The equidirectness entails that, for all indices s0, t0 ∈ T , there exists an
index t such that fs0 ≤ ft and ft0 ≤ gt. Therefore, for all indices s0 and t0,
fs0 + gt0 ≤ ft + gt ≤ f + g which by (4.2) gives (4.3). �

Lemma 4.3. Let E be a pseudo effect algebra with (RDP). If {mi} is a chain of

measures in M+(E) that is bounded above, then for m0 =
∨

imi we have

m0(a) = sup
i

mi(a), (4.4)

for each a ∈ E.

Proof. We assert that if d(x) =
∨

imi(x), x ∈ E, then d is additive, i.e., d(x +
y) = d(x) + d(y) whenever x + y is defined in E. This follows from the fact that
{mi(x)} ↑ d(x) and {mi(y)} ↑ d(y), are upwards equidirected because {mi} is a
chain, and {mi(x) +mi(y)} = {mi(x+ y)} ↑ (d(x) + d(y)) by (4.3).

Since, d is a measure such that mi ≤+ d ≤+ m0, we conclude d = m0. �

Now we present a Yosida-Hewitt type of decomposition for measures on E.

Theorem 4.4. Let E be an effect algebra with (RDP). Then every measure m on

E can be uniquely expressed in the form

m = m1 +m2, (4.5)

where m1 ∈ M+(E)ca and m2 is a finitely additive measure on E such that if

t ∈ M+(E)ca, such t ≤+ m2, then t = 0.
In particular, every state s on E can be uniquely expressed as a convex combi-

nation

s = λ1s1 + λ2s2, (4.6)

where s1 is a completely additive state and s2 is a finitely additive state such that if

αs′ ≤+ s2 for some completely additive state s′ on E and for some constant α ≥ 0,
then α = 0.
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Proof. First we show that M+(E)ca is a ∨-closed cone in M+(E). Thus let {mi}
be a chain of completely additive measures on E that is bounded above by a finitely
additive measure m′. By Theorem 2.1, there is m0 =

∨

imi that is finitely additive
and m0 ≤+ m′.

We assert that m0 is completely additive. Let a =
∑

t∈T at exist in L. Then
from the monotonicity of m0 we have m0(aF ) ≤ m0(a), where aF :=

∑

t∈F at for
any F finite subset of the index set T .

Assume thatm0(aF ) ≤ x for some x ∈ R
+ and for any finite F. Thenmi(aF ) ≤ x

for any i and any F. The complete additivity of mi entails that mi(a) ≤ x for any
i, so that by (4.4), m0(a) = supimi(a) ≤ x. This gives

m0(a) = sup
F

∑

t∈F

m0(at),

consequently m0 ∈ M+(E)ca, and M+(E)ca is a ∨-closed cone of J (E).
Now let m be an arbitrary finitely additive measure on E. Since all the conditions

of Theorem 3.4 are satisfied, we obtain the unique decomposition m = m1 +m2 in
question. Similarly we have (4.6). �

Theorem 4.5. Let E be a pseudo effect algebra with (RDP). Then every measure

m on E can be uniquely expressed in the form

m = m1 +m2, (4.7)

where m1 ∈ M+(E)σ and m2 is a finitely additive measure on E such that if

t ∈ M+(E)σ, t ≥ 0, such t ≤+ m2, then t = 0.
In particular, every state s on E can be uniquely expressed as a convex combi-

nation

s = λ1s1 + λ2s2, (4.8)

where s1 is a σ-additive state and s2 is a finitely additive state such that if αs′ ≤+ s2
for some completely additive state s′ on E and for some constant α ≥ 0, then α = 0.

Proof. It follows the same steps as the proof of Theorem 4.4. �

Remark 4.6. Theorems 4.5 and 4.5 have been proved in [11, 12, 9, 17]. They are
analogues of the classical Yosida–Hewitt decomposition from [YoHe]. In [DeMo],
the component m2 from Theorem 4.4 is said to be a weakly purely additive measure

and that from Theorem 4.5 a purely additive measure.

Now we present another Yosida–Hewitt type decomposition for an analogue of
complete additivity of measures for pseudo effect algebra. We say that a measure
m on E is upwards continuous if {at} ↑ a entails {m(at)} ↑ m(a). A measure m is
upwards continuous iff {at} ↓ 0 implies {m(at)} ↓ 0.

For example, if E is an effect algebra, then m is completely additive whenever
m is upwards continuous. Indeed, let m be an upwards continuous measure and let
a =

∑

t∈T at. Given any finite subset F of indices we define aF =
∑

t∈F at. Then
{aF}F is upwards directed and {aF } ↑ a, so that m(a) =

∑

t m(at).

Theorem 4.7. Let E be a pseudo effect algebra with (RDP). Then every measure

m on E can be uniquely expressed in the form

m = m1 +m2,

where m1 is an upwards continuous measure and m2 is a finitely additive measure

on E such that if t is an upwards continuous measure with t ≤+ m2, then t = 0.
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In particular, every state s on E can be uniquely expressed as a convex combi-

nation

s = λ1s1 + λ2s2,

where s1 is an upwards continuous state and s2 is a finitely additive state such that

if αs′ ≤+ s2 for some upwards continuous state s′ on E and for some constant

α ≥ 0, then α = 0.

Proof. Let M+(E)uc and S(E)uc be the sets of upwards continuous measures and
states, respectively, on E. Then S(E)uc is a face and V (S(E)uc) = M+(E). We
show that M+(E)uc is a ∨-closed cone. Indeed, let {mi} be a chain in M+(E)uc.
Then supt m(at) ≤ m(a). By (4.4), for m =

∨

imi, we have m(a) = supimi(a) for
each a ∈ E. Assume {at} ↑ a. Given ǫ > 0, there is i such that mi(a) > m(a)− ǫ/2.
Since mi is upwards continuous, there is at such that mi(at) > mi(a)− ǫ/2. Then
mi(at) ≥ m(a)− ǫ and by (4.4), m(at) > m(a)− ǫ. Therefore, m(a) = supt m(at).

For the final desired result, we apply Theorem 3.4. �

In what follows, we present two types of the Lebesgue decomposition.
Let m1 and m2 be measures on a pseudo effect algebra E. We say that (i) m1

is absolutely continuous with respect to m2, and we write m1 ≪ m2 if m2(a) = 0
implies m1(a) = 0 for a ∈ E. (ii) m1 is m2-continuous, and we write m1 ≪ǫ m2

provided given ǫ > 0, there is a δ > 0 such that m2(a) < δ yields m1(a) < ǫ. (iii)
m1 ⊥ m2 if there is an element a ∈ E such that m2(a) = 0 = m1(a

−).
It is clear that m1 ≪ǫ m2 entails m1 ≪ m2.

Theorem 4.8. Let E be a pseudo effect algebra with (RDP). Let t be a fixed measure

on E. Then every measure m on E can be uniquely expressed in the form

m = m1 +m2, (4.9)

where m1 and m2 are finitely additive measures on E such that m1 ≪ǫ t and if

m′ is any measure such that m′ ≪ǫ t and m1 ≤+ m2, then m′ = 0. Moreover,

m2 ∧ t = 0.
In particular, every state s on E can be uniquely expressed as a convex combi-

nation of two states s1 and s1 on E,

s = λ1s1 + λ2s2, (4.10)

where s1 ≪ǫ t and if s′ is any state such that s′ ≪ǫ t and αs′ ≤+ s2, then α = 0.

Proof. If t = 0, the statement is trivial. Suppose that t(1) > 0 and let F (t) = {s ∈
S(E) : s ≪ǫ t}. Then t0 = t/t(1) ∈ F (t) and F (t) is a non-empty face of S(E).

Let C(t) := {s ∈ M+(E) : s ≪ǫ t}. Then C(t) is a nonempty cone that is a
subcone of M+(E), and C(t) = V (F (t)). We claim that C(t) is ∨-closed. Let {mi}
be a chain from C(t) that is bounded above by m′ ∈ M+(E). If we define d(x) =
∨

imi(x), according to Lemma 4.3, we have d = m0 :=
∨

imi and {mi(1)} ↑ d(1).
Since J (E) is an Abelian Dedekind complete ℓ-group, we have {m0 − mi} ↓ 0.
Therefore, {(m0 − mi)(1)} = {m0(1) −mi(1)} ↓ 0. Thus given ǫ > 0, there is an
index i0 such that, for each mi with mi ≥+ mi0 , we have m0(1)−mi(1) < ǫ/2.

Fix the index i0. Given ǫ > 0, there is δ > 0 such that t(a) < δ implies mi0(a) <
ǫ/2.

Calculate,
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m0(a) = mi0(a)+(m0−mi0)(a) ≤ mi0(a)+(m0−mi0)(1) ≤ ǫ/2+(m0−mi0)(1) < ǫ

that gives m0 ≪ǫ t and m0 ∈ C(t).
Applying the general result from Theorem 3.4, we have the existence and unique-

ness of (4.9).
Now we show that m2 ∧ t = 0. Let k be a measure on E such that k ≤+ m2 and

k ≤+ t. Then k ≪ǫ t, so that k = 0 and whence m2 ∧ t = 0. �

Theorem 4.9. Let E be a pseudo effect algebra with (RDP). Let t be a fixed measure

on E. Then every measure m on E can be uniquely expressed in the form

m = m1 +m2, (4.11)

where m1 and m2 are finitely additive measures on E such m1 ≪ t and if m′ is

any measure on E such that m′ ≪ t and m′ ≤+ m2, then m′ = 0.

Proof. Let us define V (t) = {m ∈ M+(E) : m ≪ t} and C(t) := {s ∈ S(E) :
s ≪ t}. Then F (t) is a face of S(E) and it generates V (t) = V (F (t)). Assume that
{mi} is a chain from V (t) that is bounded in J (E). If we set d(x) =

∨

i mi(x) for
each x ∈ E, then according to (4.4), d = m0 :=

∨

imi. Therefore, if t(a) = 0, then
mi(a) = 0 for each i so that m(a) = d(a) = 0 and m0 ∈ V (t).

The existence and uniqueness of (4.11) follows from Theorem 3.4. �

Finally, we show a relation among two types of continuity of measures.

Proposition 4.10. Let s1 and ss be two σ-additive measures on a σ-complete

MV-algebra E. Then s1 ≪ s2 if and only if s1 ≪ǫ s2.

Proof. It is clear that s1 ≪ǫ s2 entails s1 ≪ s2. Now let us suppose s1 ≪ s2 and let
(ad absurdum) s1 6≪ǫ s2. Then there is an ǫ > 0 such that for each n ≥ 1, there is
an an ∈ E such that s2(an) < 1/2n and s1(an) ≥ ǫ. Set a =

∧

∞

n=1

∨

∞

n=k ak. Then

s2(a) ≤ s2(an ∨ an+1 ∨ · · · ) ≤
∞
∑

k=n

s2(ak) < 1/2n−1,

so that s2(a) = 0.
On the other hand, s1(a) = limn s1(an ∨ an+1 ∨ · · · ) ≥ lim supn s1(an) ≥ ǫ that

contradicts s1 ≪ s2. �

We say that a measure t on E is Jauch-Piron if t(a) = t(b) = 0 entails there is
an element c ∈ E such that a, b ≤ c and m(c). Every measure on an MV-algebra is
Jauch-Piron.

Let E be a pseudo effect with (RDP). According to [Dvu, Thm 3.2], we say that
an element a ∈ E is said to be central or Boolean, if a∧a− = 0. Then also a∧a∼ = 0
and a− = a∼. Moreover, for any x ∈ E, x ∧ a is defined in E, and

x = (x ∧ a) + (x ∧ a−).

Let C(E) be the set of all central elements of E. Then it is a Boolean algebra
that is a subalgebra of E. If, in addition, E is monotone σ-complete, then C(E) is
a Boolean σ-algebra, [Dvu, Thm 5.11]. We recall that a pseudo effect algebra E is
said to be monotone σ-complete provided, for any sequence {an} from E such that
an ≤ an+1 for each n ≥ 1, a =

∨

n an is defined in E.



DECOMPOSITIONS OF MEASURES ON PSEUDO EFFECT ALGEBRAS 13

If a, b are central elements and t is a measure, then t(a)+t(b) = t(a∧b)+t(a∨b),
so that if, in addition, t(a) = t(b) = 0, then t(a ∨ b) = 0.

Now we present another Lebesgue type of decomposition for measures. For two
measures m and t on E we write m ≪C t provided t(a) = 0 for a ∈ C(E) implies
m(a) = 0. It is a weaker form of m ≪ t.

Theorem 4.11. Let E be a monotone σ-complete pseudo effect algebra with (RDP)
and let t be a σ-additive measure on E. Every σ-additive measure m on E can be

uniquely decomposed in the form

m = m1 +m2 (4.12)

such that m1,m2 are σ-additive measures, m1 ≪C t, and m2 ⊥ t.
In particular, every σ-additive measure s can be uniquely decompose in the form

s = λs1 + (1− λ)s2, (4.13)

where s1 and s2 are σ-additive measures on E such that s1 ≪ t and s2 ⊥ t.

Proof. Existence: Let Ker(t)C = {a ∈ C(E) : t(a) = 0}. The zero element 0
is central, so that 0 ∈ Ker(t)C . We order the elements of Ker(t)C by a � b iff
a, b ∈ Ker(t)C and m(a) ≤ m(b). Then � is a partial order and now let {ai}
be a chain of elements from Ker(t)C with respect to �, and let δ = supim(ai).
Then either there is an upper bound a of {ai} itself or there is a sequence {an}
in {ai} such that m(an) < m(an+1) ր δ. Set a =

∨

n an; then a ∈ Ker(t)C and
m(a) = limn m(an) = δ, so that a is an upper bound in Ker(t)C for the chain {ai}.
Applying the Zorn Lemma, Ker(t)C contains a maximal element, say a0.

Set m1(x) = m(x ∧ a−0 ) and m2(x) = m(x ∧ a0) for each x ∈ E. Since C(E) is
a Boolean σ-algebra, and x = (x ∧ a−0 ) + (x ∧ a0) for each x ∈ E, we see that m1

and m2 are σ-additive measures on E such that m = m1 + m2. Since t(a0) = 0,
then m2(a

−

0 ) = m(a−0 ∧ a0) = 0 so that m2 ⊥ t. We assert that m1 ≪C t. If
not, there is an element a ∈ Ker(t)C such that m1(a) = m(a ∧ a−0 ) > 0. Since
a0 ≤ a0 ∨ (a ∧ a−0 ) ∈ Ker(t)C which contradicts the maximality of a0. This proves
that m1 ≪C t.

Uniqueness: Let F (t)σ be the set of all σ-additive states s on E such that s ≪C t.
Then F (t)σ is a face and due to Theorems 4.4–4.5, if {mi} is a bounded chain from
V (F (t)σ), then m0 =

∨

i mi is a σ-additive measure, and in view of (4.4), m0 ≪C t.
This gives that V (F (t)σ) is a ∨-closed cone. Now let m′ be an arbitrary σ-additive
measure from V (F (t)σ) such that m′ ≤+ m2. Then m′(a0) = 0 while t(a0) and
m′(a−0 ) ≤ m1(a

−

0 ) = 0 so that m′ = 0. Therefore, m1 ∈ V (F (t)′σ) so that by
Theorem 3.4 we have that the decomposition (4.12) is unique. �

Corollary 4.12. Let X be any subset of a pseudo effect algebra with (RDP), and let

F = {s ∈ S(E) : X ⊆ Ker(s)}. Every measure m on E can be uniquely decomposed

in the form

m = m1 +m2,

where m1 ∈ V (F ) and m2 is V (F )-singular.
In particular, every state s on E can be uniquely expressed as a convex combi-

nation

m = λs1 + (1− λ)s2,

where s1 ∈ F and s2 ∈ F ′.
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Proof. Since V (F ) = {m ∈ M+(E) : X ⊆ Ker(m)} is by (4.4) ∨-closed, the
statements follow from Theorem 3.4. �
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