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DJKM ALGEBRAS I: THEIR UNIVERSAL CENTRAL

EXTENSION.

BEN COX AND VYACHESLAV FUTORNY

Abstract. The purpose of this paper is to explicitly describe in terms of gen-
erators and relations the universal central extension of the infinite dimensional
Lie algebra, g ⊗ C[t, t−1, u|u2 = (t2 − b2)(t2 − c2)], appearing in the work of
Date, Jimbo, Kashiwara and Miwa in their study of integrable systems arising
from Landau-Lifshitz differential equation.

1. Introduction

In this paper the authors explicitly describe in terms of generators and relations
and three families of polynomials, the universal central extension of an algebra ap-
pearing in work of Date, Jimbo, Kashiwara and Miwa (see [DJKM83, DJKM85]),
where they study integrable systems arising from Landau-Lifshitz differential equa-
tion. Two of these families of polynomials are described below in terms of elliptic
integrals and the other family is a variant of certain ultraspherical polynomials.
The authors Date, Jimbo, Kashiwara and Miwa solved the Landau-Lifshitz equa-
tion using methods developed in some of their previous work on affine Lie algebras.
The hierarchy of this equation is written in terms of free fermions on an elliptic
curve. The infinite-dimensional Lie algebra mentioned above is shown to act on so-
lutions of the Landau-Lifshitz equation as infinitesimal Bäcklund transformations
where they derive an N -soliton formula.These authors arrive at an algebra that is
a one dimensional central extension of g⊗C[t, t−1, u|u2 = (t2 − b2)(t2 − c2)] where
b 6= ±c are complex constants and g is a simple finite dimensional Lie algebra de-
fined over the complex numbers. Below we explicitly describe its four dimensional
universal central extension. Modulo the center this algebra is a particular example
of a Krichever-Novikov current algebra (see ([KN87b], [KN87a], [KN89]). A fair
amount of interesting and fundamental work has be done by Krichever, Novikov,
Schlichenmaier, and Sheinman on the representation theory of certain one dimen-
sional central extensions of these latter current algebras and of analogues of the Vi-
rasoso algebra. In particular Wess-Zumino-Witten-Novikov theory and analogues
of the Knizhnik-Zamolodchikov equations are developed for these algebras (see the
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survey article [She05], and for example [SS99], [SS99],[She03],[Sch03a],[Sch03b], and
[SS98]).

M. Bremner on the other hand has explicitly described in terms of genera-
tors, relations and certain families of polynomials (ultraspherical and Pollacyk)
the structure constants for the universal central extension of algebras of the form
g ⊗ C[t, t−1, u|u2 = p(t)] where p(t) = t2 − 2bt + 1 and p(t) = t3 − 2bt2 + t (see
[Bre95, Bre94]). He determined more generally the dimension of the universal cen-
tral extension for affine Lie algebras of the form g⊗R where R is the ring of regular
functions defined on an algebraic curve with any number of points removed. He
obtained this using C. Kassel’s result ([Kas84]) where one knows that the center
is isomorphic as a vector space to Ω1

R/dR (the space of Kähler differentials of R
modulo exact forms). We will review this material below as needed.

In previous work of the authors (see [Cox08, BCF09]) we used Bremner’s afore-
mentioned description to obtain certain free field realizations of the four point and
elliptic affine algebras depending on a parameter r = 0, 1 which correspond to two
different normal orderings. These later realizations are analogues of Wakimoto
type realizations which have been used by Schechtman and Varchenko and various
other authors in the affine setting to pin down integral solutions to the Knizhnik-
Zamolodchikov differential equations (see for example [ATY91], [Kur91], [EFK98],
[SV90]). Such realizations have also been used in the study of Drinfeld-Sokolov
reduction in the setting of W -algebras and in E. Frenkel’s and B. Feigin’s descrip-
tion of the center of the completed enveloping algebra of an affine Lie algebra (see
[FFR94], [Fre05], and [FF92]). In future work we plan to use results of this paper
to describe free field realizations of the universal central extension of the algebras
of Date, Jimbo, Kashiwara and Miwa (which, since this is a mouth full, we will call
DJKM algebras).

2. Universal Central Extensions of Current Algebras

Let R be a commutative algebra defined over C. Consider the left R-module
with action f(g⊗h) = fg⊗h for f, g, h ∈ R and let K be the submodule generated
by the elements 1⊗ fg − f ⊗ g − g ⊗ f . Then Ω1

R = F/K is the module of Kähler
differentials. The element f ⊗g+K is traditionally denoted by fdg. The canonical
map d : R → Ω1

R by df = 1⊗ f +K. The exact differentials are the elements of the

subspace dR. The coset of fdg modulo dR is denoted by fdg. As C. Kassel showed
the universal central extension of the current algebra g⊗R where g is a simple finite
dimensional Lie algebra defined over C, is the vector space ĝ = (g ⊗ R) ⊕ Ω1

R/dR
with Lie bracket given by

[x⊗ f, Y ⊗ g] = [xy]⊗ fg + (x, y)fdg, [x⊗ f, ω] = 0, [ω, ω′] = 0,

where x, y ∈ g, and ω, ω′ ∈ Ω1
R/dR and (x, y) denotes the Killing form on g.

Consider the polynomial

p(t) = tn + an−1t
n−1 + · · ·+ a0

where ai ∈ C and an = 1. Fundamental to the description of the universal central
extension for R = C[t, t−1, u|u2 = p(t)] is the following:

Theorem 2.0.1 ([Bre94],Theorem 3.4). Let R be as above. The set

{t−1 dt, t−1u dt, . . . , t−nu dt}
forms a basis of Ω1

R/dR (omitting t−nu dt if a0 = 0).
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Set um = p(t). Then u d(um) = mumdu and

n∑

j=1

jajt
j−1u dt−m




n∑

j=0

ajt
j du


 = 0

or

p′(t)udt−mp(t)du = 0.

Multiplying by ti we get

(2.1)
n∑

j=1

jajt
i+j−1u dt−m




n∑

j=0

ajt
i+j du


 = 0

Lemma 2.0.2. If um = p(t) and R = C[t, t−1, u|um = p(t)], then in Ω1
R/dR, one

has

(2.2) ((m+ 1)n+ im)tn+i−1u dt ≡ −
n−1∑

j=0

((m+ 1)j +mi)ajt
i+j−1u dt mod dR

Proof. We have expanding d(ti+ju)

(i + j)ti+j−1u dt ≡ −ti+j du mod dR.

so that (2.1) implies

(2.3)

n∑

j=0

jajt
i+j−1u dt+m




n∑

j=0

(i+ j)ajt
i+j−1u dt


 = 0 mod dR

or

(2.4)

n∑

j=0

((m+ 1)j +mi)ajt
i+j−1u dt ≡ 0 mod dR

This gives (2.2).
�

3. Description of the universal central extension of

Date-Jimbo-Miwa-Kashiwara algebras

In the Date-Jimbo-Miwa-Kashiwara setting one takes m = 2 and p(t) = (t2 −
a2)(t2 − b2) = t4 − (a2 + b2)t2 + (ab)2 with a 6= ±b and neither a nor b is zero.
We fix from here onward R = C[t, t−1, u |u2 = (t2 − a2)(t2 − b2)]. As in this case
a0 = (ab)2, a1 = 0, a2 = −(a2 + b2), a3 = 0 and a4 = 1, then letting k = i − 2 the
recursion relation in (2.2) looks like

(6 + 2k)tku dt = −2(k − 3)(ab)2tk−4u dt+ 2k(a2 + b2)tk−2u dt.

After a change of variables we may assume that a2b2 = 1. Then the recursion
relation looks like

(3.1) (6 + 2k)tku dt = −2(k − 3)tk−4u dt+ 4kctk−2u dt,

after setting c = (a2 + b2)/2, so that p(t) = t4 − 2ct2 + 1. Let Pk := Pk(c) be the
polynomial in c satisfy the recursion relation

(6 + 2k)Pk(c) = 4kcPk−2(c)− 2(k − 3)Pk−4(c)
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for k ≥ 0. Then set

P (c, z) :=
∑

k≥−4

Pk(c)z
k+4 =

∑

k≥0

Pk−4(c)z
k.

so that after some straightforward rearrangement of terms we have

0 =
∑

k≥0

(6 + 2k)Pk(c)z
k − 4c

∑

k≥0

kPk−2(c)z
k + 2

∑

k≥0

(k − 3)Pk−4(c)z
k

= (−2z−4 + 8cz−2 − 6)P (c, z) + (2z−3 − 4cz−1 + 2z)
d

dz
P (c, z)

+ (2z−4 − 8cz−2)P−4(c)− 4cP−3(c)z
−1 − 2P−2(c)z

−2 − 4P−1(c)z
−1.

We then multiply the above through by z4 to get

0 = (−2 + 8cz2 − 6z4)P (c, z) + (2z − 4cz3 + 2z5)
d

dz
P (c, z)

+ (2− 8cz2)P−4(c)− 4cP−3(c)z
3 − 2P−2(c)z

2 − 4P−1(c)z
3.

Hence P (c, z) must satisfy the differential equation
(3.2)
d

dz
P (c, z)− 3z4 − 4cz2 + 1

z5 − 2cz3 + z
P (c, z) =

2 (P−1 + cP−3) z
3 + P−2z

2 + (4cz2 − 1)P−4

z5 − 2cz3 + z

This has integrating factor

µ(z) = exp

∫ ( −2
(
z3 − cz

)

1− 2cz2 + z4
− 1

z

)
dz

= exp(−1

2
ln(1− 2cz2 + z4)− ln(z)) =

1

z
√
1− 2cz2 + z4

.

3.1. Elliptic Case 1. If we take initial conditions P−3(c) = P−2(c) = P−1(c) = 0
and P−4(c) = 1 then we arrive at a generating function

P−4(c, z) :=
∑

k≥−4

P−4,k(c)z
k+4 =

∑

k≥0

P−4,k−4(c)z
k,

defined in terms of an elliptic integral

P−4(c, z) = z
√
1− 2cz2 + z4

∫
4cz2 − 1

z2(z4 − 2cz2 + 1)3/2
dz.

One way to interpret the right hand integral is to expand (z4 − 2cz2 + 1)−3/2 as a
Talyor series about z = 0 and then formally integrate term by term and multiply
the result by the Taylor series of z

√
1− 2cz2 + z4. More precisely one integrates

formally with zero constant term
∫
(4c− z−2)

∞∑

n=0

Q(3/2)
n (c)z2n dz =

∞∑

n=0

4cQ
(3/2)
n (c)

2n+ 1
z2n+1 −

∞∑

n=0

Q
(3/2)
n (c)

2n− 1
z2n−1

where Q
(λ)
n (c) is the n-th Gegenbauer polynomial. After multiplying this by

z
√
1− 2cz2 + z4 =

∞∑

n=0

Q(−1/2)
n (c)z2n+1

one arrives at the series P−4(c, z).



DJKM ALGEBRAS I: THEIR UNIVERSAL CENTRAL EXTENSION. 5

3.2. Elliptic Case 2. If we take initial conditions P−4(c) = P−3(c) = P−1(c) = 0
and P−2(c) = 1 then we arrive at a generating function defined in terms of another
elliptic integral:

P−2(c, z) = z
√
1− 2cz2 + z4

∫
1

(z4 − 2cz2 + 1)3/2
dz.

3.3. Gegenbauer Case 3. If we take P−1(c) = 1, and P−2(c) = P−3(c) =
P−4(c) = 0 and set

P−1(c, z) =
∑

n≥0

P−1,n−4z
n,

then we get a solution which after solving for the integration constant can be turned
into a power series solution

P−1(c, z) = (z
√
1− 2cz2 + z4)

(∫
2cz3

t
√
1− 2cz2 + z4(z5 − 2cz3 + z)

dt+ C

)

=
z(c− z3)

c2 − 1
− c

c2 − 1
z
√
z4 − 2cz2 + 1

=
1

c2 − 1

(
cz − z3 − cz

√
z4 − 2cz2 + 1

)

=
1

c2 − 1

(
cz − z3 −

∞∑

k=0

cQ(−1/2)
n (c)z2n+1

)

=
1

c2 − 1

(
cz − z3 − cz + c2z3 −

∞∑

k=2

cQ(−1/2)
n (c)z2n+1

)

where Q
(−1/2)
n (c) is the n-th Gegenbauer polynomial. Hence

P−1,−4(c) = P−1,−3(c) = P−1,−2(c) = P−1,2m(c) = 0,

P−1,−1(c) = 1,

P−1,2n−3(c) =
−cQn(c)

c2 − 1
,

for m ≥ 0 and n ≥ 2 . The Q
(−1/2)
n (c) are known to satisfy the second order

differential equation:

(1− c2)
d2

d2c
Q(−1/2)

n (c) + n(n− 1)Q(−1/2)
n (c) = 0

so that the P−1,k := P−1,k(c) satisfy the second order differential equation

(c4 − c2)
d2

d2c
P−1,2n−3 + 2c(c2 + 1)

d

dc
P−1,2n−3 + (−c2n(n− 1)− 2)P−1,2n−3 = 0

for n ≥ 2.

3.4. Gegenbauer Case 4. Next we consider the initial conditions P−1(c) = 0 =
P−2(c) = P−4(c) = 0 with P−3(c) = 1 and set

P−3(c, z) =
∑

n≥0

P−3,n−4(c)z
n,
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then we get a power series solution

P−3(c, z) = (z
√
1− 2cz2 + z4)

(∫
2cz3

z
√
1− 2cz2 + z4(z5 − 2cz3 + z)

dz + C

)

=
cz(c− z3)

c2 − 1
− 1

c2 − 1
z
√
z4 − 2cz2 + 1

=
1

c2 − 1

(
c2z − cz3 − z

√
z4 − 2cz2 + 1

)

=
1

c2 − 1

(
c2z − cz3 −

∞∑

k=0

Q(−1/2)
n (c)z2n+1

)

=
1

c2 − 1

(
c2z − cz3 − z + cz3 −

∞∑

k=2

Q(−1/2)
n (c)z2n+1

)

where Q
(−1/2)
n (c) is the n-th Gegenbauer polynomial. Hence

P−3,−4(c) = P−3,−2(c) = P−3,−1(c) = P−1,2m(c) = 0,

P−3,−3(c) = 1,

P−3,2n−3(c) =
−Qn(c)

c2 − 1
,

for m ≥ 0 and n ≥ 2 and hence

(c2 − 1)
d2

d2c
P−3,2n−3 + 4c

d

dc
P−3,2n−3 − (n+ 1)(n− 2)P−3,2n−3 = 0

for n ≥ 2 and P−1,2n−3 = cP−3,2n−3 for n ≥ 2.

4. Main result

First we give an explicit description of the cocyles contributing to the even part
of the DJKM algebra.

Proposition 4.0.1 (cf. [Bre94], Prop. 4.2). Set ω0 = t−1 dt. For i, j ∈ Z one has

(4.1) ti d(tj) = jδi+j,0ω0

and

(4.2) ti−1u d(tj−1u) = (δi+j,−2(j + 1)− 2cjδi+j,0 + (j − 1)δi+j,2)ω0.

Proof. First observe that 2u du = d(u2) = (4t3 − 4ct) dt. The second congruence
then follows from

ti−1u d(tj−1u) = (j − 1)ti+j−3u2 dt+ ti+j−2u du

= (j − 1)ti+j−3(t4 − 2ct2 + 1) dt+ 2ti+j−2(t3 − ct) dt

= (j − 1)(ti+j+1 − 2cti+j−1 + ti+j−3) dt+ 2(ti+j+1 − cti+j−1) dt

= (j + 1)ti+j+1 dt− 2cjti+j−1 dt+ (j − 1)ti+j−3 dt.

�
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The map σ : R → R given by σ(t) = t−1, σ(u) = t−2u is an algebra automor-
phism as σ(u2) = t−4u2 = 1 − 2ct−2 + t−4 = σ(1 − 2ct2 + t4). This descends to a
linear map σ : Ω1

R/dR where

σ(t−1 dt) = −t−1 dt,

σ(t−1u dt) = t(t−2u)d(t−1) = −t−3u dt,

σ(t−2u dt) = t2(t−2u)d(t−1) = −t−2u dt,

σ(t−3u dt) = −t−1u dt,

σ(t−4u dt) = t4(t−2u)d(t−1) = −u dt = −t−4u dt,

whereby the last identity follows from the recursion relation (3.1) with k = 0.

Setting ω−k = t−ku dt, k = 1, 2, 3, 4, then σ(ω−1) = −ω−3, and σ(ω−l) = −ω−l for
l = 2, 4.

Theorem 4.0.2. Let g be a simple finite dimensional Lie algebra over the complex
numbers with the Killing form ( | ) and define ψij(c) ∈ Ω1

R/dR by
(4.3)

ψij(c) =





ωi+j for i+ j = 1, 0,−1,−2

P−3,i+j−2(c)(ω−3 + cω−1) for i + j = 2n− 1 ≥ 3, n ∈ Z,

P−3,i+j−2(c)(cω−3 + ω−1) for i + j = −2n+ 1 ≤ −3, n ∈ Z,

P−4,|i+j|−2(c)ω−4 + P−2,|i+j|−2(c)ω−2 for |i + j| = 2n ≥ 2, n ∈ Z.

The universal central extension of the Date-Jimbo-Kashiwara-Miwa algebra is the
Z2-graded Lie algebra

ĝ = ĝ0 ⊕ ĝ1,

where

ĝ0 =
(
g⊗ C[t, t−1]

)
⊕Cω0, ĝ1 =

(
g⊗ C[t, t−1]u

)
⊕Cω−4⊕Cω−3⊕Cω−2⊕Cω−1

with bracket

[x⊗ ti, y ⊗ tj ] = [x, y]⊗ ti+j + δi+j,0j(x, y)ω0,

[x⊗ ti−1u, y ⊗ tj−1u] = [x, y]⊗ (ti+j+2 − 2cti+j + ti+j−2)

+ (δi+j,−2(j + 1)− 2cjδi+j,0 + (j − 1)δi+j,2) (x, y)ω0,

[x⊗ ti−1u, y ⊗ tj ] = [x, y]u⊗ ti+j−1 + j(x, y)ψij(c).

Proof. The first two equalities follow from Proposition 4.0.1. For the last one we
first observe that for k = i+ j − 2 6= −3,

jωij(c) = ti−1u d(tj) = jti+j−2u dt

= j

(
−2(k − 3)tk−4u dt+ 4kctk−2u dt

6 + 2k

)
,

where the last equality is derived from (3.1). Then by setting k = 0, 1, 2, 3, 4, 5
in (3.1)

(6 + 2k)tku dt = −2(k − 3)tk−4u dt+ 4kctk−2u dt.
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gives us

6u dt = 6t−4u dt,

8tu dt = 4t−3u dt+ 4ct−1u dt,

10t2u dt = 2t−2u dt+ 8cu dt,

12t3u dt = 12ctu dt,

14t4u dt = −2u dt+ 16ct2u dt,

16t5u dt = −4tu dt+ 20ct3u dt,

(6 + 2k)tku dt = −2(k − 3)tk−4u dt+ 4kctk−2u dt.

Hence when i+ j − 2 = k = 0, 1, 2, 3, 4, 5

u dt = ω−4,

tu dt =
1

2
(ω−3 + cω−1) ,

t2u dt =
1

5
ω−2 +

4c

5
ω−4,

t3u dt =
c

2
(ω−3 + cω−1) ,

t4u dt = −1

7
u dt+

8

7
ct2u dt = −1

7
ω−4 +

8

7
c

(
1

5
ω−2 +

4c

5
ω−4

)

=

(
32c2 − 5

35

)
ω−4 +

8

35
cω−2,

t5u dt = −1

8
(ω−3 + cω−1) +

5c2

8
(ω−3 + cω−1)

=
5c2 − 1

8
(ω−3 + cω−1) ,

tku dt =
−2(k − 3)tk−4u dt+ 4kctk−2u dt

6 + 2k
.

Thus by induction using the last equation above for i + j − 2 = k = 2n − 3 ≥ 1,
n ∈ Z, we have

ωij(c) = P−3,i+j−2(c) (ω−3 + cω−1) ,(4.4)

and for i+ j − 2 = k = 2n− 2 ≥ 0, n ∈ Z, we have

ωij(c) = P−4,i+j−2(c)ω−4 + P−2,i+j−2(c)ω−2.(4.5)

Applying σ to (4.4) for i+ j − 2 = k = 2n− 3 ≥ 1 to obtain

jσ(ωij(c)) = t−i+1u d(t−j) = −jt−i−j−2u dt

= jσ (P−3,i+j−2(c) (ω−3 + cω−1))

= −jP−3,i+j−2(c) (ω−1 + cω−3) .

Hence for i+ j − 2 = 2n− 3 ≥ 1

ω−i,−j(c) = t−i−j−2u dt = P−3,i+j−2(c) (ω−1 + cω−3) .

Setting i′ = −i and j′ = −j we get for i′ + j′ − 2 = −k − 4 = −2n+ 3 ≤ −5

ωi′j′ (c) = ti′+j′−2u dt = P−3,|i′+j′|−2(c) (ω−1 + cω−3) .
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Similarly if we apply σ to (4.5) for i+ j = 2n ≥ 2, n ∈ Z, we obtain

jσ(ωij(c)) = t−i+1u d(t−j) = −jt−i−j−2u dt

= jσ (P−4,i+j−2(c)ω−4 + P−2,i+j−2(c)ω−2)

= −j (P−4,i+j−2(c)ω−4 + P−2,i+j−2(c)ω−2)

Hence for i+ j = 2n ≥ 2

ω−i,−j(c) = t−i−j−2u dt = P−4,i+j−2(c)ω−4 + P−2,i+j−2(c)ω−2.

Setting i′ = −i and j′ = −j we get for i′ + j′ = −2n ≤ −2

ωi′j′(c) = ti′+j′−2u dt = P−4,|i′+j′|−2(c)ω−4 + P−2,|i′+j′|−2(c)ω−2.

�

One might want to compare the above theorem with the results that M. Bremner
obtained for the elliptic and four point affine Lie algebra cases ([Bre94, Theorem
4.6] and [Bre95, Theorem 3.6] respectively).
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[DJKM83] Etsurō Date, Michio Jimbo, Masaki Kashiwara, and Tetsuji Miwa. Landau-Lifshitz
equation: solitons, quasiperiodic solutions and infinite-dimensional Lie algebras. J.
Phys. A, 16(2):221–236, 1983.
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