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WELL-POSEDNESS AND STABILITY OF THE PERIODIC
NONLINEAR WAVES INTERACTIONS FOR THE BENNEY
SYSTEM

J. ANGULO, A. J. CORCHO, AND S. HAKKAEV

Abstract. We establish local well-posedness results in weak periodic function
spaces for the Cauchy problem of the Benney system. The Sobolev space
H/2 x L2 is the lowest regularity attained and also we cover the energy space
H' x L?, where global well-posedness follows from the conservation laws of the
system. Moreover, we show the existence of smooth explicit family of periodic
travelling waves of dnoidal type and we prove, under certain conditions, that
this family is orbitally stable in the energy space.

1. INTRODUCTION

In this paper we consider the system introduced by Benney in [9] which models
the interaction between short and long waves, for example in the theory of resonant
water wave interaction in nonlinear medium:

iU + Uz = uv + Blul?u, (x,t) e M x AT
(1.1) v = (|ul*)e,

u(z,0) = uo(x), wv(x,0)=uvy(x),
where u = u(z,t) is a complex valued function representing the enveloped of short
waves, and v = v(z,t) is a real valued function representing the long wave. Here /3
is a real parameter, AT is the time interval [0,T] and M is the real line R or the

one dimensional torus T = R/Z.
We let H*(M) by denoting the classical Sobolev space with the norm

= ([ |x|>23|f(x>|2dx)%

where f denotes the Fourier transform operator and we consider the initial data
(ug,vo) in the space H"(M) x H*(M) with the induced norm

1CFs @ llrxs = 1 fllr + llglls-
The system (LLI)) has the following conservation laws:

(12)  Eifu(,t)] = /M (i, ) [2da,

(1.3) Eg[u(.,t),v(.,t)]:/M [ota, Olute, D + s, + Blute, O] do
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and

(1.4) Esu(.,t),v(.,t)] = /

M

being the natural energy space H'(M) x L?(M).
We are interesting in two important aspects concerning the Cauchy problem

(1), which are:
o well-posedness results in the spaces H" (M) x H®(M) with low regularities;

[|v(x,t)|2 + 2Im (u(z, )iy (z, t))} de,

e existence and stability of periodic traveling waves.

As follows we define the concepts of well-posedness and the stability that will be
use in this work.

Definition 1.1 (Well-posedness and Ill-posedness). We say that the system (1)) is
locally well-posed, in time, in the space H" (M) x H*(M) if the following conditions
hold:
(a) for every (ug,vo) in the space H" (M) x H®(M) there exists a positive time
T = T (||luollr, [|volls) and a distributional solution (u,v) : M x AT —
C x R which is in the space C (AT; H" (M) x H*(M));
(b) the data-solution mapping (uo,vo) — (u,v) is uniformly continuous from
H™3(M) to C(AT; H" (M) x H¥(M));

(c) there is an additional Banach space X such that (u,v) is the unique solution
to the Cauchy problem in X N C (AT; H"(M) x H5(M)).

Moreover, we say that the problem is ill-posed if, at least, one of the above conditions
fails.

When M = R the local well-posedness for (IZT)) for data (ug, ve) € HEH/2)(R) x
H?(R) for indices s > 0 was established in the works [7], [15] and [23]. Furthermore,
in [23] also was proved global well-posedness in H+1/2)(R) x H*(R) for s = 0 if
B =0 and for s € Z™ and any real 3 by using the conservation laws

Recently, Corcho [I4] showed that for 8 < 0 (focusing case) and for data
(ug,v0) € H"(R) x H*(R), with 0 < 3r+1 < 1 and r(2s + 3) + 1 > 0, this
problem is ill-posed in the following sense: the data-solution mapping fails to be
uniformly continuous on bounded sets of H"(R) x H*(R).

Concerning to the existence and stability of solitary waves solutions for (IIl) of

the general form
(L5) ul(a, ) = eteiele=eD 2, (i  ct)
' v(z,t) = Ys(x — ct),

where ¢5, 19 : R = R are smooth, ¢ > 0, w € R, and ¢5(£),¥s(§) — 0 as [£] = oo,
Laurencot in [20] studied for 8 = 0, the nonlinear stability of the orbit

Qa,0) = {(” (- +20), U(- +0)); (8,20) € [0,27) x R},
in HY(R) x L*(R) by the flow generated by (LI). Here we have that ®(¢) =
€/20,(£), W(E) = s(6), and
1

(1.6) ¢s(€) = V2cosech(Vaf),  ¥(€) = —=¢2(€)

c

2
oc=w-—F>0.
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In this work we focus the attention on the problems of well-posedness and exis-
tence and nonlinear stability of periodic travelling waves. For the periodic initial
values problem the data (ug, vg) will belong to the space H"(T) x H*(T), also de-
noted by Hy,, x Hp.,. Before stating our well and ill posedness results we will give

some useful notations. Let  be a function in C§°(R) such that 0 < n(t) <1,

oo {1 o=t
=0 it e > 2,

and n5(t) = (). We denote by A+ a number slightly larger, respectively smaller,
than A and by (), (§) = 1+ |¢]. The characteristic function on the set A is denoted
by x 4. Furthermore, we will work with the auxiliary periodic Bourgain space X;g;
defined as follows: first we denote by X the space of functions f : T x R — C such
that

(i) f(z,) € S(R) for each = € T;

(ii) f(-,t) € C°(T) for each t € R.
For s,b € R, the spaces HfH;eT and X;él; are the completion of X with respect to
the norms

=

+oo
A1) g, = (X [ @D+ ) P P
nEZ "y
and
9z, = IS0,
(1.8) :

+oo
S [ @l i ) F ) |

nEL "o

respectively, where S(t) := ¢it9: is the corresponding Schrodinger generator (uni-

tary group) associated to the linear problem,

(1.9) U + U
u(z,0) = g(x).
Foranyr,s € R and by,bs > 1/2, we have the embedding X;’eb; —C (R; H;GT) and
Hsz;er — C (]R; ngr). For the case b = 1/2 the embedding can be guaranteed
by considering the following slightly modifications of the Bourgain spaces:
(1.10) 1., o= 1L + 1) Fln )l o
and
(1.11) WAl = 1 gy, 1) Fl )l

Concerning local well-posedness we obtain the following result:

Theorem 1.2 (Local Well-Posedness). For any (ug,vo) € H,,
the conditions:

(1.12) max{0, r — 1} < s < min{r, 2r — 1},

there exist a positive time T = T (||uol|r, [[volls) and a unigque solution (u(t),v(t))
of the initial value problem (1)), satisfying

x Hp,, provided

T
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(@) (nr()u,nr(t)v) € Xpe, X Yy,
(b) (u,v) € C(AT; H.,, x HS,,).

per per
Moreover, the map (ug,vo) — (u(t),v(t)) is locally uniformly continuous from
H' x H? intoC(AT; H' x H? )

per per per per

The proof of Theorem [[.2]is based on the Banach fixed point theorem applied on
the integral formulation of the system combined with new sharp periodic bilinear
estimates, in adequate mixed Bourgain spaces X;}j} X th *Hp.,, for the coupling
terms uv and 9, (|u|?).

Also we find a region which the Cauchy problem is not locally well-posed, more
precisely we prove the following theorem:

Theorem 1.3. Let 8 # 0. Then for any r < 0 and s € R, the initial value problem
(L) is locally ill-posed for data in H',,. x H?

per per:*

Regarding the stability of periodic travelling waves, namely, solutions for (]
of the form

(1.13) {u(t’ ) = eimeic(zict)ﬂ‘%’wﬁ(x —ct)

v(x,t) = Ny (T — ct)
where @, ¢, M. are real smooth, L-periodic functions, ¢ > 0, and w < 0, we have
the following definition.

Definition 1.4 (Non-Linear Stability). The periodic traveling wave ®(&) = €*¢/2p,, (),
(&) = nw,c(£), is orbitally stable in H},,.([0, L)) x L2.,.([0, L]) if for all e > 0, there
ezists 0 > 0, such that if ||(uo,vo) — (@, V)|l «r2, < & and (u(t),v(t)) is the
solution of (L) with (u(0),v(0)) = (ug,vo), then

inf inf ||(u(t),v(t)) — (P 4+7), U(-+r)||g xr2 <& teR.
s€[0,2m) rER per X Mper

Otherwise (®, V) is called orbitally unstable.

r

We will show below that there exist a smooth explicit family of profiles solutions
of minimal period L,

(w;¢) € Ag = (Pu.es Nw.e) € Hpe, ([0, L)) x Hye, ([0, L]),

per per

where Ag = {(z,y) : y > 0,1 > By, and z < —2ml y;} and which depends of
the Jacobian elliptic function dn called dnoidal, more precisely,

Pucl€) = /55 mdn (L5 )
(1.14)

ol §) = = Plzdn® (2565 k)

with 71 = m1(w, ¢) and k = k(w, ¢), being smooth functions of w and c.
So, by following Angulo [4] and Grillakis et al. [16], [I7], we obtain the following
stability theorem.

Theorem 1.5 (Stability Theory). Let (w,c) € Ag such that for ¢ > 0 there is

g € N satisfying 4mq/c = L. Define 0 = —w — 04—2. Then ®(&) = /%, .(£),

W(E) = nuy,e(§), with @y e, N giwen in (I14), is orbitally stable in H,,, ([0, L]) x
2 i .

L:.,([0, L]) by the periodic flow generated by (1.1)):
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(a) for 8 <0,
(b) for B3>0 and 830 — 3c¢(1 — Bc)? < 0.

2. LOCAL THEORY

We prove Theorem [[.2]using the standard technique, that is: we use the Duhamel
integral formulation for the system (LI} combined with the Banach fixed point
theorem in adequate Bourgain spaces X .. X Y, with the objective to get the
desired solution. The main difficulty is the necessity to prove two news mixed

periodic bilinear estimates, which we will prove in the following sections.

2.1. Sharp Periodic Bilinear Estimates. We begin recalling the following ele-
mentary inequalities, which will be used in the proof of the next main estimates.

Lemma 2.1. Let 01,05 > 0 with 01 + 62 > 1 and X\ > 1/2. Then, there are a
positive constants C1 and Cy such that
+oo
(a) f <m—a>9lli?m—b)92 < (agz)w where i = min{917 02,61 + 02 — 1};

(b) > m < Co, with a, b € R.

nez

Proof. For details of the proof we can see, for instance, the works [I8] and [6]. O

Lemma 2.2. Let 0 < 6 < 1/4. Then, the following estimates

@15)  fuolge S Nullgacollol g, + el oy,
S|
(216) H<"> ) |y, S Wlgemelolyre gy, + el ol ey,
no—T

hold provided r > 0 and max{0, r — 1} < s.

Proof. First we prove [ZI5). We define f(n,7) := (7 + n?)**(n)"%(n,7) and
g(n, ) := (1)%2(n)*v(n, 7). Then, using duality arguments we obtain

[wol r -1/ = sup{W () : [l¢llez 2 <1},
where,

(r+n) "2 ()" f(na, m)g(n —ma, 7 — T1)p(n,7)

drdry.
R e ) R

217) W)= 3

2
(n,ny1)€ez? R

We will divide the space Z? x R? in three regions, namely Z? x R2 = Ag U A; U A,
and we separate the integral W as follows:

(2.18) W(p) = Wolp) + Wi(p) + Wa(e),

where

Wi(p) = Z/Z (r+02) 2 )" f(n1,1)g(n = na, 7 — T1)p(n, 7)
(

(r1 4 n)or (T — )2 (na)"(n — na)* 7
n,ni,7,71)EA;
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for j = 0,1, 2. It is easy to see that to obtain (Z.15)) is suffices to prove that whenever
r, s >0 and r — s < 1 the estimate

nr

(219)  Wile) S Wl ez ol ez lollesze = lull ool oo, Nollenne,

holds with b; = 1/2 — 0 and b = 1/2 or with by = 1/2 and b2 = 1/2 — . Indeed,
next we will prove the following estimates:

Wi(0) S lull a2 ol vz, ol zas for j=0,1,
(2.20)
Wale) S lull oo ol o,z

For this purpose, in region Ay we integrate first over (nq,71), in region A; we
integrate first over (n,7) and in region A, we integrate first over (ng, 72) = (n —
ny, 7 —71); then using Cauchy-Schwarz inequality we easily see that it remains only
to uniformly bound the following three expressions:

(2.21) Wo := P 2y Z/ (11 +n3) (1) f ;9<n1>2r<”2>
— . 1 <n>2TdT
(2.22) Wy = 5171_)1 (n1)2 (1 + n2) ;/ (T +n2)(12)1720 (ng)?s

(2.23) Wa :

2 / e

su

77,2,71?2 TL2 25 7-2 T+TL2 7—1 +n >1729<n1>2r
Now we define the regions Ay, A; and A;. We use the notation

Il

(2.24) L:= max{

and first we introduce the subsets:

Aoy == {(n,n1,7,m) € Z* x R* : |n| < 100},
(2.25) Aoz = {(n,n1,7,71) € Z* x R* : |n| > 100 and |n| < 2|n1|},

Aoz = {(n7n177'77'1) € Z* xR?: |n| > 100, |n1| < |n|/2 and £ = |T—|—n2‘ }
Then, we put

Ag == Ao U A2 U Ags,
(2.26) Ay = {(n, ni, 7, 1) € Z° x R? : [n| > 100, |n1| < |n|/2 and £ = |71 —|—nﬂ },

Ay = {(n, ni,7,m) € Z2 x R® : |n| > 100, |n1| < |n|/2 and £ = |72|}.
For later use, we recall that the dispersive relation of this bilinear estimate is:
2

(2.27) T4+n%— (11 +n%)—7'2 :n2—n1,

where 7 — 7 =7 and n—n; = nsg.
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We begin with the analysis of (ZZI)). In the region Ay 1, using that |n| < 1 and
r, s > 0 we have

_— (n)?" / dm
WO,l = 371171? <7_ T n2> Z <7—1 + n%><7‘2>1—29<n1>2r<n2>25
™ Ag

—+oo
1 dr

(2.28) S sup ———+ E / !

S OF (T n?) o +ng)(72) 12 (n1)2r (na) 2

1
< R |
~ S‘;PZ (T +n2)1-20 ~ 7
ny

where in the last inequality we have used that 0 < 6 < 1/4 combined with
Lemma 211

In the region Ag 2, we have that (n)?" < (n;)?". Thus, similarly to the previous
case, we get

2 i sup A e
Wo.z:= S;LE (T +n2) Z / (11 4+ n7) ()20 (n1)2 (n2)2s

™ Aoz
1 o d
(2:29) S sup ———+ / i
S & e

1
S S‘;PZ (T 4+ n2)1-20 S
ny

In the region A3 we have that |ni| < |n|/2 and |n| > 100, which imply that
[n — n1| ~ |n + n1| ~ |n|. Moreover, the dispersive relation ([227)) says that

L=|r+n? > |n?—n?| = |n—nilln+ni| ~ |n>
Therefore,
e <7’L>2T / dT1
Wo.3 :=sup ———~
08 =N T 2 | T P
0,3
+oo
2r—2s
(2.30) < sup T / dry
~ o T+ n?) — (11 + n2)(ma)1-20

<n>27"72s 1
S sup (n)? (T +n2)1-20 St
n,t n1 1

sincer >0, r—s<land0<6<1/4.
Putting together the estimates (Z28)), (2:29) and [230) we conclude that

[Wol < [Wo,i| + [Wo2| + [Wos| S 1,

obtaining the desired bounded for (Z21]).
Next we estimate the contribution of ([222). In the region A;, we know that
In1| < |n|/2, |n| > 100 and £ = |r1 + n?|. So, |n2| ~ |n| and the dispersive
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relation (Z27) implies that |71 + n?| > n?. Thus,

W, = su —1 <n> ' T
W= o e (r + ) Z/ () o) (g

sincer >0, r—s<land 0<8<1/4.

Finally, we bound (223)) by noting that, in the region As it holds |n| > 100,
|ni| < |n|/2 and £ = |72|. Then, |ns| ~ |n| and the dispersive relation (2.27) yield
that || > n?. Using these conditions and that r > 0, r — s < 1 we obtain

>2’I"

Wy =s d
27 P )2 (1) Z/ (r +n2)( T1+n 2y1-20 (py y2r 7

+oo

<n>27‘—2s—2
su dr
2 | T

A

< 1
sup —
n2,m2 T <27’LQ(7’L + 2n2 - n72)>1 26

1 1
= sup i _ 7
n2,72 {ng (2na2(n + 5= 2n2 — 2 2))1-26 n; (2n2(n + 5= 2n2 — %»1 29}
where
H1—{n€Z n—&-%—% <2} ande::{neZ: n—i—;z —% 22}'
? 2

Now we note that #H; < 4 and for any n € Hs we have
<2n2(n+ 2n2 - %» 2 < ><n+ 2n2 %>7
since |ng| ~ |n|. Then, by Holder’s inequality

)3 : +3 1 :
(2n2(n + 27'722 — 2))1-20 (2na(n + S= — 12))1-20

neH; neHs;

1
<d+ Z Y1=20(n 4 2 — m2)1-29

nEHz 2n2

) 1/2 X 12
o <Z W) <Z (n+ 5= — %>2(129)> S
n n no

since and 0 < 6 < 1/4. This completes the proof of ([ZIH]).
Next, we prove (216). We let a € (1/2, 3/4 — 6). By using Cauchy-Schwarz

inequality, we have that
: T @ d
< 27«{ uv(n, T d / T }
o Z<n> / (r +n2)20-a) T (7 + n%)2a

n
— 00 — 00

uv(n, 7)

(n)"
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Now, we separate Z2 x R? in the same regions used to estimate (2.I5) and we note
that, except in the region Ag 3, the right-hand of 21 can be estimated in the

same way that (ZI0). To see this, we observe that the integral fj;: .

(r+n2)Za
convergent and we replace the term (1 + n?) by (r + n2)2(0-9) in @21), Z22)
and (Z:23)), then we follows the same steps to bound the corresponding expressions
in each region, using that the condition 2(1 — a) + (1 — 26) — 1 > 1/2 holds for
ac(1/2, 3/4—0).

Now we proceed with the estimate of the right-hand of 21I) in Ag 3. Here, by
using the fact that |7 + n?| > |n|? we have that

dr 2(1—2a
(232) / W 5 <’I’L> ( )
Ao3
Then, using ([2.32)), we have

2

uv n, 7' 774
< 2 2
(2'33) H 7' + n2 T 2y XAos 021 ~ WO’3HUHXZZ:IT/ZHUHHQ/PQH ’
where
n)2rp2(1=2a) / dm
2.34 Wos = sup - —— - — '
( ) 0,3 SUP (1 + n2)20-a) ~ (11 4+ n2)(12)1=20(ny)2" (ng)?s

1 Aoz
Similarly to the estimate make in (Z30) we obtain

+oo
(n)

2r—2s+2—4a / dT1
(1T 4+ n2)2(1-a) — (11 + n2)(me)1—20

Wo 3 S SUP

(2.35)
2r—2s+2—4a 1

(n)
N S;Luf (n)4(i=a) (T +n2)1-20 S
ny

since 0 < 6 < 1/4 and r — s < 1. Finally, combining ([2.32) and (Z.35) we get

XAO,S S HU‘HX;QNM||U||H:/2*9H;€T7

2)
H T+n
2L

as we desired. Then, we finished the proof of Lemma O

The next result shows that the conditions obtained above for indices r and s are
necessary.

Proposition 2.3. For any real numbers by and bs, the veracity of the inequality
vl xcrvrs S ullxess ol o,
implies that max{0,r — 1} < s.
Proof. Firstly, we fix N > 1 a large integer and define de sequences
1 ifn=N, 1 ifn=-2N,
ar(n) = { and fi(n) = {

0 otherwise 0 otherwise.

Let uyy(x,t) and viy(z,t) be given by @1y (n,7) = ai(n)x—1,1)(7 + n?) and
Uiy (n,7) = B1(n)x[=1,1](7). Taking into account the dispersive relation

2 2 2_ 2
T+n°— (11 +nj)—1m=n"—nj,
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we can easily compute that

||u1Nle||X“"v*1/2 ~ NT, ||u1N||XTvb1 ~ N" and ”leHHsz; ~ N*®

Hence, from the bound [Ju1yviy |l xr-1/2 S Uiy |l xron Uiy [l o2 . We must have
t x

N7 < N™ % for N > 1, which implies that s > 0.
Secondly, we define the sequences

a2(n):{1 ifn=N, ) = {1 if n =0,

0 otherwise 0 otherwise.

Let Uz (n,7) = az(n)x(—1,1)(T +n?) and Day (n,7) = Ba(n)x(—1,1)(7). Again, it is
easy to see that

||u2NU2N ”X“*l/2 ~ NT_lv Hu?N”X“’l ~1 and ||U2N ”HszS ~ N°?
t x
Hence, the bound ||uayvey ||xr-1/2 S |Juey lxr0 ||’U2N||HSQHS implies N"~! < N
for N > 1, so we must have r — 1 < s.
O

Lemma 2.4. Let 0 < 6 < 1/4. Then, the following estimates

236)  N0a(ud)ly1r2 gy, S Null graresllwl rnrs + lull grasllwl oo
82 (uw) (n, 7)
. (uw)(n, 7

(2.37) (m)* =Ry ZQLI5Hu|\X;é1T/279|\w||X£,€1T/2—|—||u||X£,€1T/2Hw||X;,€1T/279

hold provided 0 < s < min{2r — 1, r}.

Proof. The proof is similar to Lemma (2.2]). Here, the relevant dispersive relation
is given by
(2.38) (11 +n3) + (12 —n3) — 7 =n3 —n3,
where 79 = 7 — 1 and no = n — ny.

To prove ([2.30), by duality arguments, it suffices to bound the following expres-
sions:

n|?(n)?*

2.39 Zo = d

( ) 0 5371')1<n127‘7_1+n1 Z/ 2_n 120< >T‘T’
dm

2.40 71 =

( ) 1 sup Z/ T1 +n1 Ty — M >1 29<n1>2T<n2>
n[*(n)*

2.41 o = d

2l T (27 (s —nj Z/ Y1+ n3) =2 ()2

where Cy, C7 and Cs are defined as follows. We denote by

L= max{|7'|, |Tl + n%|7 |TQ - TL§|}
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and then we define de following sets:
Co,1 = {(n,7,n1,71) : [n] <100},

00)2 = {(n,T,’nl,Tl) : |n| > 100, |n_22\ < |7’Ll| < 2|7’L2|},
Cos3:= {(n,T,nl,Tl) :n| > 100, |nq] < @ or [ng| < I"—;I and £ = |n +nf|}

Now we put
Co := Cp,1 UCy2 U Cp 3,

Cy = {(TL,T,TLl,Tl) : |n] > 100, |nq] < @ or |ng| < I"—;‘ and £ = |T|},
Cy = {(TL,T,TLl,Tl) s n] > 100, |n1| < @ or [ng| < I"—;‘ and £ = |7 —n§|}

Now, we bound (2.39). In the region Cj 1, it holds |n| < 100. Hence,

Zo1 = sup Z / [n|?(n)* .
) <n1 2r7-1+n1 7'2—7’L 1 29< >r

ni,T1

+o0 d
T
S sup 2 : / TN/ o 2\1—20
~ _ 1—-260
n1,T1 In|<100 7 <T> <7—2 TL2>
1

< su g <1,
anﬂl')l <Tl +(n_n1)2>1_29 ~

|n|<100

since r > 0 and 1 — 26 > 0.
In the region Cp 2, we have that |nq| ~ |na|. Hence,

S S n|?(n)?* .
%J’Sphm”m+n%%%/@Mw—@ﬂ”%mwd

ni,T1

2s—4r+2 d
< sup ) 2 Z / . 2V1-29
nin (714 ng) n (1)(r2 —n3)

1
< su <1
~ nl,El ; <T1 + (n - n1)2>1—29 ~
for0<s<2r—land 0<6<1/4.
In the region Cj 3, the dispersion relation [238)and the assumptions |nq| = |na,
|n| > 100 and £ = |11 + n?| imply that |71 + n?| > (max{|ny|,|nz2|})?. Then,

Zos = sup Z/ n|*(n)>* .
) <n1 2r7-1+n1 7'2—7’L 1 29< >r

ni,T1

2s—2r
> dr

7@mwmmm

CICET I

1
< su E S,
~ nl,‘ll:')l " <T1 + (n — n1)2>1—29 ~

for0 < s <rand0 < 6 < 1/4. Then, the inequality | Zo| < |Zo.1|+|Z0.2|+|Z0,3] S 1
yields the desired estimate for Zj.
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The contribution of ([Z-40]) can be estimated as follows. In the region Cy, we have
that |n| ~ max{|n1|, |na|} and |7| > (max{|n1|, |n2|})?. Thus,

71 <su y2e? / dry
P ] T ) B ()

Sopy [ Lol

m+@wrm%49

>2572r

dT1

n,T
ni

<
SUPZ —|—n1 _n >1 20

1
< su <1
~ ”E; (2nny + 7 —n2)1-20 ~

)

for 0 < s <rand 0 < 6 < 1/4, using the same arguments to estimate Wz in Lemma

On the other hand, the expression (241]) can be controlled by using that in the
region Cy hold |n| ~ max{|n1| Ina|} and |2 — n3| = (max{|ni|,|n2|})?. Then,
|n|*(n)>*
Zy='s d
2 oD )y — n2) Z/ W+ n2)i-20(nyy2r

>2572’I"

A

sup dr

n2,7T2 n

7%mﬂmmmn
() (r + )12
1

S su S,
e

for s <rand 0 < 0 < 1/4. Collecting all the estimates above we obtain the claimed

estimate (2.30]).
The prove of [237) follows from a similar way to the proof of [2.16). O

Now we exhibit examples showing the necessity of the conditions for r and s
used in Lemma 2.4

Proposition 2.5. For any real numbers by and by the veracity of the inequality

”aﬂc (WD)

ooy, S Il ol
implies that s < min{2r — 1, r}.
Proof. For a fixed large integer N > 1, we define de following sequences:
1 ifn=N, 1 ifn=-N,
ai(n) = { and fBi(n) = { .

0 otherwise 0 otherwise.

Putting U1 (n,7) = a1(n)x(—1,1)(7 +n?) and @1y (n,7) = Bi(n)x[-1,1(T +71?), a
simple calculation using the dispersive relation (Z38) gives that

@)zl =172y, ~ N and sl xren ~ N7~ Jlwn]]xrea.
Sor

< JJua || x oo ||wa]| x . implies

Hence, the inequality [|(u1w1)zll y-1/25., S
t per

NSTL<S N for N> 1 <= s < 2r — 1.
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Finally, we define

az(n)_{1 ifn=0, ﬂz(n)_{1 if n = N,

0 otherwise 0 otherwise.

and we put Uz, (1, 7) = az(n)x(-1,1)(T+n?) and @ay (n,7) = B2(n)x[-1,1)(T+1?).
Then, by similar calculations as in the previous case we obtain

[(ue@a)ell y-1r2gp.  ~ N, luzllxres ~ 1 and ~ [lwal|xres ~ N".
t per

Again, the inequality ”(UQIDQ)IHH;”QHS < Jue || b |we || xrbe implies
Ser

NS <N, forN>1<=s<r.
Thus, we finished the proof. O

2.2. Proof of Local Theorem. The next lemmas will be useful in the proof of
Theorem [[.2

Lemma 2.6. For anys € R, 0 € (0,1],0 < pu <1/2 and —1/2 < by < by < 1/2 we
have

(8) Im5()Fllzp2 < CEFllonsn and Ins()Fll gy, < O IFl prray,

Her
() s () sn < M F o ond O F oy < O8 8 [Fll
Proof. The proof of this result can be found, for instance, in [22] and [6]. O
Lemma 2.7 (Trilinear Estimate). For any s > 0, we have
Juvlg, S el s lol e ol g

Proof. See [12] and [6]. O

Now we give the sketch of the proof of local theorem. First, we let (ug,vg) €

Hp., x Hp,, where r and s satisfying

per r

max{0, r — 1} < s < min{r, 2r — 1}
and we consider the operator ® = (@, ®5), with

O (u,v) = n(t)ug — in(b‘)/ % (nsunsv)(t') + nsulnsul* () dt’,
(2.42) 0

t
Ba(u, v) = n(t)o + (1) / O (Insul?)(t') '
0
defined on the ball
Bla,b] = {(u,v) € Xper X Yoy o |lullxy,, < aand ||vf

per per
Then, by Lemmas 2.2] 2.4] and 2.7] we have

[[®1(w, v)l|xz., < Colluolla:

per per

Vi, S b}-

+C(IImstul g a-olinsvll y oy, +

(2.43) +lnsull gz nsvll grre-o g, + ||776U||§{;§/s>

< Co||u0||H;;€T + Co(ab+ a3)
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and

[[@2(u, v)llv,

o 20 < Collvolla,, +C (Insull g 2/-olImsul 2 )

< CQ”’UQHHs + C(5€a2,

per

with € enough small.
Now we put a = 2Co[uo|luy,, and b = 2Cyl|volln;,, and then we let § such

that §¢ < min{m, ﬁ} Thus, we have that ®(Bla,b]) C Bla,b]. The

contraction condition

1@ (u, v) = (@, )55 < Cla, b)8%||(u — @,v — 0) |12

4
per per

where [|(f, 9)l5e;" = |/l x5, +lgllv;,, and C(a,b) is a positive constant depending
only on a and b, follows similarly. This shows that the map @ is a contraction on
Bla,b]. There we obtain a unique fixed point which solves the system for T < §
and we finish the proof.

Remark 2.8. We note that global well-posedness in ngr X Lier follows directly of

the local theorem for (r,s) = (1,0) combined with the conservation laws (I.2), (1.3)
and ({I4).

3. ILL-POSEDNESS

In this section we will show that the solution of (LT cannot depend uniformly
continuously on its initial data for r < 0 and s € R. We will use the same argument
given in [I3].

3.1. Proof of theorem It is easy to check that

un o(t,z) = aexp(iNz)exp(—it(N? + (v + B)a?))
(3.45)
UNo(t, T) = ~a?,

where a € R and N is any positive integer, solves ([LI]) with initial data ug(z) =
aexp(iNz) and vo(x) = ya?. Moreover, for a = a(l + N?)2, where « is a real
constant, and |y| = (1 + N?)" we have

|uo ()] F- < ca?
and

4

)

[lvo(@)[[F+ < car

where ¢ is a constant.
Let a1 = a1(1 + N?)2 and ap = a(1 + N?)3. For the Sobolev norm of the
difference of two initial data, we have

||’LLN7a1 (0) — uN1a2(0)||%{7' = C|041 — 042|2 — 0, as ap — Q9

and

190, (0) = vay (0)[[7s = W laf — a3 (1 + N*) ™" = |af — a3[*,as a1 — ay
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On the other hand we have
400

||’U’N>U«1 (tv :E) - U’Nyllz(tv :E)H%{T = Z (1 + |§|2)T|{I‘N7O¢1 (5) - aN7az(§)|2

E=—o00

(14 N2)"|age tN*+(r6)at) _ gy =it(N*+(r+5)a3) |2

= oy — ageit(rFA)(al—ad)(1+N?) 7" 2
Let r < 0, and a7 and asy are such that
Blaf = a3)(1+ N?)™" = 6(1+ N?)",
where v > 0, and v + 7 < 0. Then for t = Z(6~'(1 4+ N?)™") we have
U ay (£, 2) = U 0y (t, )| > clad + a3)

Note that ¢ can made arbitrary small, by choosing N sufficiently large.

4. EXISTENCE OF PERIODIC TRAVELLING WAVE SOLUTIONS

We are interesting in this section in finding explicit solutions for () in the
form

u(t,x) = e_mei%(w_‘:t)gawﬁc(x —ct)
(4.46)
v(t, ) = ng (x — ct)
where ¢, c, 7N, are smooth, L-periodic functions, ¢ > 0, w € R and suppose

that there is a ¢ € N such that 2% = L. So, putting (£40) into (LI) we obtain

" 2
e + W+ G)we = P cNoe + BLE .

(4.47)
_an,c = 29000,!2(/7(41,0
If ng.c = 792 ., then from the second equation in #47) we have v = —%. Substi-
tuting n,, . in the first equation in (A7), it follows that ¢, . satisfies
2
7" C 1
(448) Puw,c + (W + Z) Pw,c = (ﬂ - E) </7§1,c

1
If1—pBc>0and ¢, = (ﬁ) : @w,c, then @, . satisfies the equation

(4.49) oo = OGuc + 05, =0

where o0 = —w — %. So, by following Angulo in ([3], [4]) we have from ([@49]) that
®w,c satisfies the first-order equation

(4.50) (6,2 = = Py(0)

T2
where P,(t) = —t* + 20t? + 2By and By is an integration constant. Let —m; <
—n2 < m2 < m1 are the zeros of the polynomial Py(t). Then
(77% - f},c)( i,c - 775)

’

(4.51) [bu.c]* =

N =
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The solution of {@5])) is

Uit
4.52 we =mdn | —=& Kk
(452) b = man (L)
where
s =20
2 2
(4.53) w2 = ik
0< e <M.

Define the function in variable K, 0 <k < 1

! dt
K =50 = | ==

called the complete elliptic integral of the first kind. Since dn has fundamental
period 2K (k), it follows that @, . has fundamental period

2\/§K

Uit

Ty, . = ()

Analogously as in [3] we obtain the following.

Theorem 4.1. Let L be fixed but arbitrary positive constant and 1 — B¢ > 0, and
—w — % > 0. Let o9 > 2LL22 and n2,0 = n2(00) € (0,/%F) is the unique such that
Ty =L. Then

(1) There exists an interval I(og) around of og, an interval B(na,0) around 12,0,
and a unique smooth function A : I(og) — B(n2,0), such that

where o € I(0g),n2 = A(o)
(2) Solutions (Pu,csNw,c) of (Z-47) given by

Pue =\ Tzmdn (256 )
(4.54)

— M g2 (e
Nw,c = 1—Bc n ﬂgv’%

with n1 = (o), 12 = n2(0), n? +n3 = 20, have the fundamental period L and
satisfies {{-47). Moreover, the mapping

o€ 1(00) = (Puw.cr Nw,c)

is a smooth function
(8) I(og) can be chosen as (QLL;, +00)
(4) The mapping o — k(o) is a strictly increasing function
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5. STABILITY OF TRAVELLING WAVES
In this section we consider the stability of the orbit
Qo) = {(€”®(- +20), U(- + 20)); (6, 20) € [0,27) x R},
in HL, ([0, L]) x L?,,.([0, L]) by the periodic flow generated by (I.T]), where we have

per per

that ®(§) = eicg/%w,c(ﬁ), U(&) = nw,(§), with @y ¢, Ny e given in (@54). Let X be
the space X = H! ([0, L]) x L2_,,([0, L]), with real inner product

complex real

L
(ui,uz) = 3?/ (e17) + €171, + €272)da.
0
Let T, T3 be one-parameter groups of unitary operators on X defined by
Ty(s)u(-) = (- + s)
To(r)u(-) = (e7"e(-),n(-))

for i e X, s, r € R. Obviously

o= ("% _, ) mo=(", )

Note that the equation (II)) is invariant under 7} and Ts. If
Do () = (Ew,e(@), M e ()
where €, () = €'2%p,, (), then from Theorem 1] we obtain that
T (ct)To(wt) Dy, ()

is a travelling wave solution of (@A) with ¢, (), nw,(z) defined by [@54]).
Now, it is easy to verify that E5(@) is invariant under 77 and T

(5.55) E(Th(s)T2(r)@) = E(q).

We also have

(5.56) E(i(t)) = E(ip).

Note that equation (1) can be written as the following Hamiltonian system
da

5.57 — =JE'(d

(557) =B @)

where @ = (u,v) and J is a skew-symmetric linear operator defined by
—i 0
J—<o 2@)

_ 2
E/(U,U): ( umm+uv+ﬂ|u| u)

3lul?

and

is the Frechet derivative of E.
Define By and B such that T7(0) = JBy, T4(0) = JB3. Then

—idy, 0 (10
= () (0

I 1 v
(B1u,4) = ——/ vidx + —Im/ Uy udx
4 Jo 2 0

and
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BN e N
Q2(€) = = (Bat, W) = = |u|*dz.
2 2./,

It is easy to verify that

(5.58) Q1(T1(s)Tz(r)u) = Q1(4), Q2(T1(s)T2(r)u) = Qa(w)
(5.59) Q1(u(t)) = Q1(u(0)), Q2(u(t)) = Q=2((0))
and

@ = (1) et = ()
From ({A4T) we have

(5.60) E' (@) — cQ1(Puc) — wQ3(Pus,c) = 0.
Define an operator from X to X*

(5.61) Hye = E"(Pu,c) = Q1 (Do) — wQ5(Pus,c)

and the function d(w,c) : R x R — R by

(5.62) d(w,c) = E(Py,c) — cQ1(Pu,c) — wQ2(Pus,c).

The operator H,,,  is self-adjoint. The spectrum of H,, . consists of the real numbers
A such that H, . — Al is not invertible.
From ([@4T) we have

(5.63) T, (0)®y. € KerH, ., Ty(0)®, . € KerH, ..

Let Z = {kiT,(0)®y, o + ko Ty(0)®, ., ki, ko € R}. By (5.63), Z is in the kernel
of H ..

Assumption (Spectral decomposition of H, ) : The space X is decomposed as
a direct sum

X=NaoZoP
where Z is defined above, IV is a finite-dimensional subspace such that
(Hy, t,i) <0 for neN
and P is a closed subspace such that
(oo, @) > ||

for « € P with some constant § > 0 independent of 4.
Our stability results is based in the following general theorem in [I7],

Theorem 5.1. ( Abstract Stability Theorem) Assume that there exists three func-
tionals E,Q1, Q2 satisfying (223)-(259). Let n(H,.) be the number of negative
eigenvalues of H, .. Assume d(w,c) is non-degenerated at (w,c) and let p(d”) be
the number of positive eigenvalues of d”. If p(d’) = n(Hy,), then the periodic
travelling wave D, () is orbitally stable.

The idea of the proof of Theorem is to apply the general Theorem [E.11
Initially we identify the quadratic form associated to H, .. Let 2’ = (€37 21, 29),
with 21 = y1 + iy2, y1 = Rez1,y2 = Imzy. By direct computation, we get

2

L
oo c 2
(Hy 21, 21) = (L1y1, y1) + (Laya, y2) + 5/ <Z2 + E%”Cyl) dx
0
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2 1
Ly =-0%— <Cz+w>+3<ﬂ——) <p37c
c

c? 1
et () (- 1)

4 c ’
From ([@A47) we also have L1(0z¢w,c) = 0 and Lap, . = 0. Consider the following
periodic eigenvalue problems

where

Lif =Xf
(5.64) { f(0) = f(L), £(0)=f/(L),
Lag = Ag

The problem (5.64) determines a countable infinite set of eigenvalues {\,} with
An — oo. We shall denote by x, the eigenfunction associated to the eigenvalue
An. For the periodic eigenvalue problem (5.64)) there is an associated semi-periodic
eigenvalue problem in [0, L], namely,

Lih = Mh
h(0) = —h(L), KW(0)=—H(L).
As in the periodic case, there is a countable infinity set of eigenvalues {u, }. Denote

by &, the eigenfunction associated to the eigenvalue u,. From the Oscillation
Theorem [21] we have that

(5.66)

Ao <o < pr <A < A < g < g,
Ap is simple and

(a) xo has no zeros on [0, L]
(b) x2n+1 and x2n+2 have exactly 2n + 2 zeros on [0, L)

(¢) &2, and Eop 41 have exactly 2n + 1 zeros on [0, L).

The intervals (Ao, ft0), (41, A1), ... are called intervals of stability and the intervals
(=00, o), (o, 1), (A1, A2), ... are called intervals of instability.
For the eigenvalue problem (5:65) we have the same results.

Theorem 5.2. Let o € [QLL;, +00) and (Yuw.c, Nw.c) be the travelling wave solutions

of (4-54). Then the first three eigenvalues of operator Ly are simple, 0 is the second
eigenvalue of Ly with eigenfunction 0yp, .. The first eigenvalue of the operator Lo

is 0, which is simple.

Proof. Since Lap,.. = 0 and ¢, has no zeros on [0, L], then form (a) it follows
that zero is the first eigenvalue of L.

Now since L19;¢w,c = 0 and d¢,, . has two zeros on [0, L), then it follows that

eigenvalue zero of Lp is either \; or \o. Let v = f(0x), where 6% = n% From

1

equality k?sn?(z) + dn?(x) = 1 and (5.64)), we obtain that v satisfies the equation

(5.67) "+ (p— 6K2sn2(x))h = 0,
where
(5.68) p=6- 2(c-N).
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From Floquet theory, it follows that (—oo, po), (po, 1) and (p1, p2) are instability
intervals associated to the Lame’s equation. Therefore the eigenvalues po, p1 and
pa of (B.68)) are simple and the rest of eigenvalues p3 < py, ... satisfies p3 = py, p5 =
pe, --- The eigenvalues pg, p1, p2 and its corresponding eigenfunctions g, 1, 12 are

po =21+ kK2 —V1—r2+ kKLY Yo=1-(1+k?—V1—-r2+rHsn?()
p1 =4+ K2, o = sn(x)en(z)

p2 =21+ K2+ V1 —kKZ+ KLY Po=1—-(1+kr?+V1—-r2+rH)sn?()

Since po < p1 for every % € (0, 1), then from (5.68) we have
2

3)\0:%1(;@2—2—2 1- K2+ k%) <0
Therefore \g is negative eigenvalue of L; with eigenfunction xo(x) = 1 (7). Simi-

larly
,,72
3\ = 71(,12 —24+2V1 K2+ k%) >0

and Ay is the positive eigenvalue of L; with eigenfunction x»(z) = v2(%). Thus

2 _ 2 2
A= % :77—61(4+/£2—6+2—Ii2):0
is the second eigenvalue of L;. This complete the proof of the theorem. O

Remark 5.3. The main properties of the spectrum of L1, namely, there is exactly a
negative eigenvalue and zero is simple, it can also be obtained via positive properties
of the Fourier transform of the solution ¢, . (see Angulo & Natali [3]).

So, from Theorem we obtain immediately the following two results.

Lemma 5.4. For any real function y1 € H' satisfying (y1,x0) = (Y1, 0z Pw.c) =0
there exists a positive constant 81 > 0 such that (Lyy1,y1) > 61||y1]|3:-

Lemma 5.5. For any real function yo € H* satisfying (y2, puw.c) = 0 there exists a
positive constant 62 such that (Laya,y2) > da||y2||3: -

Proof. [Theorem [L5] Choose y; = Xo0,y3 = 0,25 = —Zpucxo and ¥~ =

(y1, Y3, 25 ) then
(Ho, W™, %) = Ao{xo, xo0) <O0.

So H, . has a negative eigenvalue. Note that the following vectors

2
\I}O,l = (am(pw,caou _E@w,cam(;ow,c)u \110,2 = (Oa(pw,cao)

are in the kernel of operator H,, .
Define the following subspaces associated to H,, .

Z ={kUo1+ kW ky ko € R}
N={k¥~ :kecR}
P={pe X :p=(p1,p2,p3): (P1,X1) = (P1, 02Pw,c) = (P2, Pw,c) = 0}.
For any @ € X, 4 = (y1, y2, y2) choose
(:x0)  _ (Oepueyr) _ (Pueye)

; U1 s U2 )
<X07 X0> <amspw,ca 8m(pw,c> <90w,ca (pw,c>
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then @ uniquely can be represented by
U=a¥ ™ + b1Wo,1 +b2Wp,0 + P,

where p € P.
For any p' € P, by Lemmas [5.4] and 5.5 we have

L 2
R c 2
(o) = Bl e+ ikl + 5 [ (2 2om ) o
0

Next we consider the following two cases:
(1) £ [[ps||z= > Bl |py |2, then

c

L 2
2 c 4 c
2 [ (st 2o ) a0 5 [male = 2llpucllesllpllalpales| = Slpal

(2) TF ||ps|[ g2 < SlEeelle= |1y [[ 2, then

61 61 C
5 2 L0 2 [ R 2
1||p1||H1 =9 ||p1||H1 + 9 8||@w,c||L°° ||p3||L2

Thus, for any p' € P, it follows that

- 01
(Hoo, P) > 63| |ps|[7 + 3||p1||§11 + 82|pal|31

where 03 = min{m, ¢} Finally, we have

(Ho,c, B) > 0[[p1[%,

where § > 0 is independent of p. This proved that Assumption above is holds, and
n(Hy,.) = 1.
Now we shall verify that p(d”) = 1. We have

1

L 2 L
—_ - dodp— — ¢
de(w, €) = =Q1(Pu,c) = A(1— Bo)? /0 P, cdT A(1— fe) /0 Pu,cdr

L
dw(wuc) = _Q2((I)w,c) = _ﬁA spg),cdx'

From equalities

L L
SKE 64
2 4
/O O cdT 7 /0 et = 73 (%)
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where £ = FE(k) = fl L_r?22 dt is the complete elliptic integral of the second

0 -2
kind and V (k) = %K‘l + 2(2 — K?)K?E, we obtain
Qo = s (K (0)B(R) + K(R)E () (0)
dwc = —WK(K,)E(K}) —+ %dww
(569) dcw = _WV,(FOK, (U) + %dww
dec = %V(’ﬂ - %‘/ (k)R ()=
c(2—pPec o2
T K (D) E(R) + 5 duws.
Thus
dccdww - dcwdwc = _ﬁvl (’{)Kl (U)K(H)E(H)_'—
i |V (k) = 20K () ()| duw.
We have
2K2FE 9 9
and
Vv o(k2-1) , o
—=——""K"+-—-KFE.
L2 12(2-k?) + 6
Using the above estimates, we obtain
’ 2
Qe — el = oty { ~3257 KE2 [2 = »)E — 21 - 1)K] |

_|_

g K/2—
5 [S5 e o+ (1660 — (1~ oK E] [ — ]}
4Kk { 8o [(2 KB —2(1— HQ)KEQ]

T IP(1-B0)2% | 2-w2
8Boc(rk2—1) c(16B0—6¢(1—Bc)?) B2 K?
+ [ 3(2—k?) K+ 3 E} [n(l—,&) o T}}

From Theorem EIH(4), we have that x > 0. Therefore the sign of det(d") =
decdyw — dewdy,e depends on the sign of

Ble,w, 5, 8) = {—% [(2— K2)E® — 2(1 — k2) K E?]

8Boc(k?—1) (1680 —6¢(1—pBc)?) B2 K2
+ [ 3(2—r2) K+ 3 E} [;-;(1—;-;2) - T}}

From the relation

1-xk>)K 1
5.70 0< —F—< =
(5:70) < (2-kK2E <3

we get that the first term of B(c,w, , 8) is negative. Now we consider three cases

for .
(1) Obviously if 8 = 0, then det(d") < 0.
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(2) For 8 < 0, using (5.70), we get

8B0(k2—1)K c(1680—6¢c(1—6¢)?) 1 _
32— E T 3 E=

_ 8cBoE [(1-r)HK 6c(1—Be)?
-3 [(%n?)E -2+ 8cB <0

and det(d") < 0.

(3) If 8 > 0 and 830 —3c(1—Bc)? < 0, then all terms of B(c,w, k, 3) are negatives
and det(d") < 0.

Thus under above three conditions, d”(w,¢) has exactly one positive and one
negative eigenvalues and p(d”) = 1. This finishes the proof of the Theorem. O
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