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WELL-POSEDNESS AND STABILITY OF THE PERIODIC

NONLINEAR WAVES INTERACTIONS FOR THE BENNEY

SYSTEM

J. ANGULO, A. J. CORCHO, AND S. HAKKAEV

Abstract. We establish local well-posedness results in weak periodic function
spaces for the Cauchy problem of the Benney system. The Sobolev space
H1/2

×L2 is the lowest regularity attained and also we cover the energy space
H1

×L2, where global well-posedness follows from the conservation laws of the
system. Moreover, we show the existence of smooth explicit family of periodic
travelling waves of dnoidal type and we prove, under certain conditions, that
this family is orbitally stable in the energy space.

1. Introduction

In this paper we consider the system introduced by Benney in [9] which models
the interaction between short and long waves, for example in the theory of resonant
water wave interaction in nonlinear medium:

(1.1)





iut + uxx = uv + β|u|2u, (x, t) ∈ M×△T
vt = (|u|2)x,
u(x, 0) = u0(x), v(x, 0) = v0(x),

where u = u(x, t) is a complex valued function representing the enveloped of short
waves, and v = v(x, t) is a real valued function representing the long wave. Here β
is a real parameter, △T is the time interval [0, T ] and M is the real line R or the
one dimensional torus T = R/Z.

We let Hs(M) by denoting the classical Sobolev space with the norm

‖f‖s =
(∫

M
(1 + |x|)2s|f̂(x)|2dx

) 1

2

where f̂ denotes the Fourier transform operator and we consider the initial data
(u0, v0) in the space Hr(M)×Hs(M) with the induced norm

‖(f, g)‖r×s := ‖f‖r + ‖g‖s.
The system (1.1) has the following conservation laws:

E1[u(., t)] =

∫

M
|u(x, t)|2dx,(1.2)

E2[u(., t), v(., t)] =

∫

M

[
v(x, t)|u(x, t)|2 + |ux(x, t)|2 + β

2 |u(x, t)|
4
]
dx(1.3)
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and

E3[u(., t), v(., t)] =

∫

M

[
|v(x, t)|2 + 2Im (u(x, t)ūx(x, t))

]
dx,(1.4)

being the natural energy space H1(M)× L2(M).
We are interesting in two important aspects concerning the Cauchy problem

(1.1), which are:

• well-posedness results in the spaces Hr(M)×Hs(M) with low regularities;

• existence and stability of periodic traveling waves.

As follows we define the concepts of well-posedness and the stability that will be
use in this work.

Definition 1.1 (Well-posedness and Ill-posedness). We say that the system (1.1) is
locally well-posed, in time, in the space Hr(M)×Hs(M) if the following conditions
hold:

(a) for every (u0, v0) in the space Hr(M)×Hs(M) there exists a positive time
T = T (‖u0‖r, ‖v0‖s) and a distributional solution (u, v) : M × △T −→
C× R which is in the space C (△T ; Hr(M)×Hs(M));

(b) the data-solution mapping (u0, v0) 7−→ (u, v) is uniformly continuous from
Hr×s(M) to C (△T ; Hr(M)×Hs(M));

(c) there is an additional Banach space X such that (u, v) is the unique solution
to the Cauchy problem in X ∩ C (△T ; Hr(M)×Hs(M)).

Moreover, we say that the problem is ill-posed if, at least, one of the above conditions
fails.

When M = R the local well-posedness for (1.1) for data (u0, v0) ∈ H(s+1/2)(R)×
Hs(R) for indices s ≥ 0 was established in the works [7], [15] and [23]. Furthermore,
in [23] also was proved global well-posedness in H(s+1/2)(R) ×Hs(R) for s = 0 if
β = 0 and for s ∈ Z+ and any real β by using the conservation laws

Recently, Corcho [14] showed that for β < 0 (focusing case) and for data
(u0, v0) ∈ Hr(R) × Hs(R), with 0 ≤ 3r + 1 < 1 and r(2s + 3) + 1 ≥ 0, this
problem is ill-posed in the following sense: the data-solution mapping fails to be
uniformly continuous on bounded sets of Hr(R)×Hs(R).

Concerning to the existence and stability of solitary waves solutions for (1.1) of
the general form

(1.5)

{
u(x, t) = eiωteic(x−ct)/2φs(x− ct),
v(x, t) = ψs(x− ct),

where φs, ψs : R → R are smooth, c > 0, ω ∈ R, and φs(ξ), ψs(ξ) → 0 as |ξ| → ∞,
Laurençot in [20] studied for β = 0, the nonlinear stability of the orbit

Ω(Φ,Ψ) = {(eiθΦ(·+ x0),Ψ(·+ x0)); (θ, x0) ∈ [0, 2π)× R},
in H1(R) × L2(R) by the flow generated by (1.1). Here we have that Φ(ξ) =
eicξ/2φs(ξ), Ψ(ξ) = ψs(ξ), and

(1.6) φs(ξ) =
√
2cσsech(

√
σξ), ψs(ξ) = −1

c
φ2s(ξ)

σ = ω − c2

4 > 0.
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In this work we focus the attention on the problems of well-posedness and exis-
tence and nonlinear stability of periodic travelling waves. For the periodic initial
values problem the data (u0, v0) will belong to the space Hr(T) ×Hs(T), also de-
noted by Hr

per ×Hs
per . Before stating our well and ill posedness results we will give

some useful notations. Let η be a function in C∞
0 (R) such that 0 ≤ η(t) ≤ 1,

η(t) =

{
1 if |t| ≤ 1,

0 if |t| ≥ 2,

and ηδ(t) = η( tδ ). We denote by λ± a number slightly larger, respectively smaller,
than λ and by 〈·〉, 〈ξ〉 = 1+ |ξ|. The characteristic function on the set A is denoted
by χA. Furthermore, we will work with the auxiliary periodic Bourgain space Xs,b

per

defined as follows: first we denote by X the space of functions f : T×R → C such
that

( i ) f(x, ·) ∈ S(R) for each x ∈ T;
(ii) f(·, t) ∈ C∞(T) for each t ∈ R.

For s, b ∈ R, the spaces Hb
tH

s
per and Xs,b

per are the completion of X with respect to
the norms

(1.7) ‖f‖Hb
tH

s
per

=


∑

n∈Z

+∞∫

−∞

(1 + |n|)2s(1 + |τ |)2b|f̂(n, τ)|2dτ




1

2

and

‖f‖Xs,b
per

= ‖S(−t)f‖Hb
tH

s
per

=


∑

n∈Z

+∞∫

−∞

(1 + |n|)2s(1 + |τ + n2|)2b|f̂(n, τ)|2dτ




1

2

,
(1.8)

respectively, where S(t) := eit∂
2

x is the corresponding Schrödinger generator (uni-
tary group) associated to the linear problem,

(1.9)

{
iut + uxx = 0

u(x, 0) = g(x).

For any r, s ∈ R and b1, b2 > 1/2, we have the embeddingXr,b1
per →֒ C

(
R;Hr

per

)
and

Hb2
t H

s
per →֒ C

(
R;Hs

per

)
. For the case b = 1/2 the embedding can be guaranteed

by considering the following slightly modifications of the Bourgain spaces:

(1.10) ‖f‖Xr
per

:= ‖f‖
X

r,1/2
per

+ ‖〈n〉r f̂(n, τ)‖ℓ2nL1
τ

and

(1.11) ‖f‖Y s
per

:= ‖f‖
H

1/2
t Hs

per
+ ‖〈n〉sf̂(n, τ)‖ℓ2nL1

τ

Concerning local well-posedness we obtain the following result:

Theorem 1.2 (Local Well-Posedness). For any (u0, v0) ∈ Hr
per × Hs

per provided
the conditions:

(1.12) max{0, r − 1} ≤ s ≤ min{r, 2r − 1},
there exist a positive time T = T (‖u0‖r, ‖v0‖s) and a unique solution (u(t), v(t))
of the initial value problem (1.1), satisfying
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(a) (ηT (t)u, ηT (t)v) ∈ Xr
per × Y s

per;

(b) (u, v) ∈ C
(
△T ; Hr

per ×Hs
per

)
.

Moreover, the map (u0, v0) 7−→ (u(t), v(t)) is locally uniformly continuous from
Hr

per ×Hs
per into C

(
△T ; Hr

per ×Hs
per

)
.

The proof of Theorem 1.2 is based on the Banach fixed point theorem applied on
the integral formulation of the system combined with new sharp periodic bilinear
estimates, in adequate mixed Bourgain spaces Xr,b1

per × Hb2
t H

s
per , for the coupling

terms uv and ∂x(|u|2).
Also we find a region which the Cauchy problem is not locally well-posed, more

precisely we prove the following theorem:

Theorem 1.3. Let β 6= 0. Then for any r < 0 and s ∈ R, the initial value problem
(1.1) is locally ill-posed for data in Hr

per ×Hs
per.

Regarding the stability of periodic travelling waves, namely, solutions for (1.1)
of the form

(1.13)

{
u(t, x) = e−iωteic(x−ct)/2ϕω,c(x− ct)

v(x, t) = nω,c(x− ct)

where ϕω,c, nω,c are real smooth, L-periodic functions, c > 0, and ω < 0, we have
the following definition.

Definition 1.4 (Non-Linear Stability). The periodic traveling wave Φ(ξ) = eicξ/2ϕω,c(ξ),
Ψ(ξ) = nω,c(ξ), is orbitally stable in H1

per([0, L])×L2
per([0, L]) if for all ε > 0, there

exists δ > 0, such that if ||(u0, v0) − (Φ,Ψ)||H1
per×L2

per
< δ and (u(t), v(t)) is the

solution of (1.1) with (u(0), v(0)) = (u0, v0), then

inf
s∈[0,2π)

inf
r∈R

||(u(t), v(t)) − (eisΦ(·+ r),Ψ(·+ r))||H1
per×L2

per
< ε, t ∈ R.

Otherwise (Φ,Ψ) is called orbitally unstable.

We will show below that there exist a smooth explicit family of profiles solutions
of minimal period L,

(ω, c) ∈ Aβ → (ϕω,c, nω,c) ∈ Hn
per([0, L])×Hm

per([0, L]),

where Aβ = {(x, y) : y > 0, 1 > βy, and x < − 2π2

L2 − y2

4 } and which depends of
the Jacobian elliptic function dn called dnoidal, more precisely,

(1.14)





ϕω,c(ξ) =
√

c
1−βc η1dn

(
η1√
2
ξ;κ
)

nω,c(ξ) = − η2

1

1−βcdn
2
(

η1√
2
ξ;κ
)

with η1 = η1(ω, c) and κ = κ(ω, c), being smooth functions of ω and c.
So, by following Angulo [4] and Grillakis et al. [16], [17], we obtain the following

stability theorem.

Theorem 1.5 (Stability Theory). Let (ω, c) ∈ Aβ such that for c > 0 there is

q ∈ N satisfying 4πq/c = L. Define σ ≡ −ω − c2

4 . Then Φ(ξ) = eicξ/2ϕω,c(ξ),

Ψ(ξ) = nω,c(ξ), with ϕω,c, nω,c given in (1.14), is orbitally stable in H1
per([0, L])×

L2
per([0, L]) by the periodic flow generated by (1.1):
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(a) for β ≤ 0,
(b) for β > 0 and 8βσ − 3c(1− βc)2 ≤ 0.

2. Local theory

We prove Theorem 1.2 using the standard technique, that is: we use the Duhamel
integral formulation for the system (1.1) combined with the Banach fixed point
theorem in adequate Bourgain spaces Xr

per × Y s
per with the objective to get the

desired solution. The main difficulty is the necessity to prove two news mixed
periodic bilinear estimates, which we will prove in the following sections.

2.1. Sharp Periodic Bilinear Estimates. We begin recalling the following ele-
mentary inequalities, which will be used in the proof of the next main estimates.

Lemma 2.1. Let θ1, θ2 > 0 with θ1 + θ2 > 1 and λ > 1/2. Then, there are a
positive constants C1 and C2 such that

(a)
+∞∫
−∞

dx
〈x−a〉θ1〈x−b〉θ2 ≤ C1

〈a−b〉µ , where µ := min{θ1, θ2, θ1 + θ2 − 1};

(b)
∑
n∈Z

1
〈n2+an+b〉λ ≤ C2, with a, b ∈ R.

Proof. For details of the proof we can see, for instance, the works [18] and [6]. �

Lemma 2.2. Let 0 < θ < 1/4. Then, the following estimates

(2.15) ‖uv‖
X

r,−1/2
per

. ‖u‖
X

r,1/2−θ
per

‖v‖
H

1/2
t Hs

per
+ ‖u‖

X
r,1/2
per

‖v‖
H

1/2−θ
t Hs

per

(2.16)

∥∥∥∥〈n〉r
ûv(n, τ)

〈τ + n2〉

∥∥∥∥
ℓ2nL

1
τ

. ‖u‖
X

r,1/2−θ
per

‖v‖
H

1/2
t Hs

per
+ ‖u‖

X
r,1/2
per

‖v‖
H

1/2−θ
t Hs

per

hold provided r ≥ 0 and max{0, r − 1} ≤ s.

Proof. First we prove (2.15). We define f(n, τ) := 〈τ + n2〉b1〈n〉rû(n, τ) and
g(n, τ) := 〈τ〉b2 〈n〉sv̂(n, τ). Then, using duality arguments we obtain

‖uv‖
X

r,−1/2
per

= sup
{
W (ϕ) : ‖ϕ‖ℓ2nL2

τ
≤ 1
}
,

where,

(2.17) W (ϕ) =
∑

(n,n1)∈Z2

∫

R2

〈τ + n2〉−1/2〈n〉rf(n1, τ1)g(n− n1, τ − τ1)ϕ(n, τ )

〈τ1 + n2
1〉

b1〈τ − τ1〉b2〈n1〉r〈n− n1〉s
dτdτ1.

We will divide the space Z2 ×R2 in three regions, namely Z2 ×R2 = A0 ∪A1 ∪A2

and we separate the integral W as follows:

(2.18) W (ϕ) =W0(ϕ) +W1(ϕ) +W2(ϕ),

where

Wj(ϕ) =
∑∫ ∑ ∫

(n,n1,τ,τ1)∈Aj

〈τ + n2〉−1/2〈n〉rf(n1, τ1)g(n− n1, τ − τ1)ϕ(n, τ)

〈τ1 + n2
1〉b1〈τ − τ1〉b2〈n1〉r〈n− n1〉s

,
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for j = 0, 1, 2. It is easy to see that to obtain (2.15) is suffices to prove that whenever
r, s ≥ 0 and r − s ≤ 1 the estimate

(2.19) Wj(ϕ) . ‖f‖ℓ2nL2
τ
‖g‖ℓ2nL2

τ
‖ϕ‖ℓ2nL2

τ
= ‖u‖

X
b1,r
per

‖v‖
H

b2
t Hs

per
‖ϕ‖ℓ2nL2

τ
,

holds with b1 = 1/2− θ and b2 = 1/2 or with b1 = 1/2 and b2 = 1/2− θ. Indeed,
next we will prove the following estimates:

Wj(ϕ) . ‖u‖
X

1/2
per

‖v‖
H

1/2−θ
t Hs

per
‖ϕ‖ℓ2nL2

τ
, for j = 0, 1,

W2(ϕ) . ‖u‖
X

1/2−θ,r
per

‖v‖
H

1/2
t Hs

per
‖ϕ‖ℓ2nL2

τ
.

(2.20)

For this purpose, in region A0 we integrate first over (n1, τ1), in region A1 we
integrate first over (n, τ) and in region A2 we integrate first over (n2, τ2) = (n −
n1, τ−τ1); then using Cauchy-Schwarz inequality we easily see that it remains only
to uniformly bound the following three expressions:

(2.21) W̃0 := sup
n,τ

〈n〉2r
〈τ + n2〉

∑

n1

∫

A0

dτ1
〈τ1 + n2

1〉〈τ2〉1−2θ〈n1〉2r〈n2〉2s

(2.22) W̃1 := sup
n1,τ1

1

〈n1〉2r〈τ1 + n2
1〉
∑

n

∫

A1

〈n〉2rdτ
〈τ + n2〉〈τ2〉1−2θ〈n2〉2s

(2.23) W̃2 := sup
n2,τ2

1

〈n2〉2s〈τ2〉
∑

n

∫

A2

〈n〉2rdτ
〈τ + n2〉〈τ1 + n2

1〉1−2θ〈n1〉2r

Now we define the regions A0, A1 and A2. We use the notation

(2.24) L := max
{∣∣τ + n2

∣∣ ,
∣∣τ1 + n2

1

∣∣ , |τ2|
}
.

and first we introduce the subsets:

A0,1 :=
{

(n, n1, τ, τ1) ∈ Z
2 × R

2 : |n| ≤ 100
}

,

A0,2 :=
{

(n, n1, τ, τ1) ∈ Z
2 × R

2 : |n| > 100 and |n| ≤ 2|n1|
}

,

A0,3 :=
{

(n, n1, τ, τ1) ∈ Z
2 × R

2 : |n| > 100, |n1| < |n|/2 and L =
∣

∣τ + n2
∣

∣

}

.

(2.25)

Then, we put

A0 := A0,1 ∪A0,2 ∪ A0,3,

A1 :=
{

(n, n1, τ, τ1) ∈ Z
2 × R

2 : |n| > 100, |n1| < |n|/2 and L =
∣

∣τ1 + n2
1

∣

∣

}

,

A2 :=
{

(n, n1, τ, τ1) ∈ Z
2 × R

2 : |n| > 100, |n1| < |n|/2 and L = |τ2|
}

.

(2.26)

For later use, we recall that the dispersive relation of this bilinear estimate is:

(2.27) τ + n2 − (τ1 + n2
1)− τ2 = n2 − n2

1,

where τ − τ1 = τ2 and n− n1 = n2.
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We begin with the analysis of (2.21). In the region A0,1, using that |n| . 1 and
r, s ≥ 0 we have

W̃0,1 := sup
n,τ

〈n〉2r
〈τ + n2〉

∑

n1

∫

A0,1

dτ1
〈τ1 + n2

1〉〈τ2〉1−2θ〈n1〉2r〈n2〉2s

. sup
n,τ

1

〈τ + n2〉
∑

n1

+∞∫

−∞

dτ1
〈τ1 + n2

1〉〈τ2〉1−2θ〈n1〉2r〈n2〉2s

. sup
τ

∑

n1

1

〈τ + n2
1〉1−2θ

. 1,

(2.28)

where in the last inequality we have used that 0 < θ < 1/4 combined with
Lemma 2.1.

In the region A0,2, we have that 〈n〉2r . 〈n1〉2r. Thus, similarly to the previous
case, we get

W̃0,2 := sup
n,τ

〈n〉2r
〈τ + n2〉

∑

n1

∫

A0,2

dτ1
〈τ1 + n2

1〉〈τ2〉1−2θ〈n1〉2r〈n2〉2s

. sup
n,τ

1

〈τ + n2〉
∑

n1

+∞∫

−∞

dτ1
〈τ1 + n2

1〉〈τ2〉1−2θ〈n2〉2s

. sup
τ

∑

n1

1

〈τ + n2
1〉1−2θ

. 1.

(2.29)

In the region A0,3 we have that |n1| < |n|/2 and |n| > 100, which imply that
|n− n1| ∼ |n+ n1| ∼ |n|. Moreover, the dispersive relation (2.27) says that

L = |τ + n2| & |n2 − n2
1| = |n− n1||n+ n1| ∼ |n|2.

Therefore,

W̃0,3 := sup
n,τ

〈n〉2r
〈τ + n2〉

∑

n1

∫

A0,3

dτ1
〈τ1 + n2

1〉〈τ2〉1−2θ〈n1〉2r〈n2〉2s

. sup
n,τ

〈n〉2r−2s

〈τ + n2〉
∑

n1

+∞∫

−∞

dτ1
〈τ1 + n2

1〉〈τ2〉1−2θ

. sup
n,τ

〈n〉2r−2s

〈n〉2
∑

n1

1

〈τ + n2
1〉1−2θ

. 1,

(2.30)

since r ≥ 0, r − s ≤ 1 and 0 < θ < 1/4.
Putting together the estimates (2.28), (2.29) and (2.30) we conclude that

|W̃0| ≤ |W̃0,1|+ |W̃0,2|+ |W̃0,3| . 1,

obtaining the desired bounded for (2.21).
Next we estimate the contribution of (2.22). In the region A1, we know that

|n1| < |n|/2, |n| > 100 and L = |τ1 + n2
1|. So, |n2| ∼ |n| and the dispersive
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relation (2.27) implies that |τ1 + n2
1| & n2. Thus,

W̃1 = sup
n1,τ1

1

〈n1〉2r〈τ1 + n2
1〉
∑

n

∫

A1

〈n〉2r
〈τ + n2〉〈τ2〉1−2θ〈n2〉2s

dτ

. sup
τ1

∑

n

+∞∫

−∞

〈n〉2r−2s−2

〈τ + n2〉〈τ2〉1−2θ
dτ

. sup
τ1

∑

n

1

〈τ1 + n2〉1−2θ
. 1,

since r ≥ 0, r − s ≤ 1 and 0 < θ < 1/4.
Finally, we bound (2.23) by noting that, in the region A2 it holds |n| > 100,

|n1| < |n|/2 and L = |τ2|. Then, |n2| ∼ |n| and the dispersive relation (2.27) yield
that |τ2| & n2. Using these conditions and that r ≥ 0, r − s ≤ 1 we obtain

W̃2 = sup
n2,τ2

1

〈n2〉2s〈τ2〉
∑

n

∫

A2

〈n〉2r
〈τ + n2〉〈τ1 + n2

1〉1−2θ〈n1〉2r
dτ

. sup
n2,τ2

∑

n

+∞∫

−∞

〈n〉2r−2s−2

〈τ + n2〉〈τ1 + n2
1〉1−2θ

dτ

. sup
n2,τ2

∑

n

1

〈2n2(n+ τ2
2n2

− n2

2 )〉1−2θ

= sup
n2,τ2

{∑

n∈H1

1

〈2n2(n+ τ2
2n2

− n2

2 )〉1−2θ
+
∑

n∈H2

1

〈2n2(n+ τ2
2n2

− n2

2 )〉1−2θ

}
,

where

H1 :=

{

n ∈ Z :

∣

∣

∣

∣

n+
τ2
2n2

−
n2

2

∣

∣

∣

∣

< 2

}

and H2 :=

{

n ∈ Z :

∣

∣

∣

∣

n+
τ2
2n2

−
n2

2

∣

∣

∣

∣

≥ 2

}

.

Now we note that #H1 ≤ 4 and for any n ∈ H2 we have

〈2n2(n+ τ2
2n2

− n2

2 )〉 & 〈n〉〈n+ τ2
2n2

− n2

2 〉,
since |n2| ∼ |n|. Then, by Hölder’s inequality

∑

n∈H1

1

〈2n2(n+ τ2
2n2

− n2

2 )〉1−2θ
+
∑

n∈H2

1

〈2n2(n+ τ2
2n2

− n2

2 )〉1−2θ

≤ 4 +
∑

n∈H2

1

〈n〉1−2θ〈n+ τ2
2n2

− n2

2 〉1−2θ

4 +

(∑

n

1

〈n〉2(1−2θ)

)1/2(∑

n

1

〈n+ τ2
2n2

− n2

2 〉2(1−2θ)

)1/2

. 1,

since and 0 < θ < 1/4. This completes the proof of (2.15).
Next, we prove (2.16). We let a ∈ (1/2, 3/4 − θ). By using Cauchy-Schwarz

inequality, we have that

∥∥∥∥〈n〉r
ûv(n, τ)

〈τ + n2〉

∥∥∥∥
2

ℓ2nL
1
τ

≤
∑

n

〈n〉2r
{ +∞∫

−∞

|ûv(n, τ)|2
〈τ + n2〉2(1−a)

dτ

+∞∫

−∞

dτ

〈τ + n2〉2a
}
.(2.31)
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Now, we separate Z2 ×R2 in the same regions used to estimate (2.15) and we note
that, except in the region A0,3, the right-hand of (2.1) can be estimated in the

same way that (2.15). To see this, we observe that the integral
∫ +∞
−∞

dτ
〈τ+n2〉2a is

convergent and we replace the term 〈τ + n2〉 by 〈τ + n2〉2(1−a) in (2.21), (2.22)
and (2.23), then we follows the same steps to bound the corresponding expressions
in each region, using that the condition 2(1 − a) + (1 − 2θ) − 1 > 1/2 holds for
a ∈ (1/2, 3/4− θ).

Now we proceed with the estimate of the right-hand of (2.1) in A0,3. Here, by
using the fact that |τ + n2| & |n|2 we have that

(2.32)

∫

A0,3

dτ

〈τ + n2〉2a . 〈n〉2(1−2a).

Then, using (2.32), we have

(2.33)

∥∥∥∥〈n〉r
ûv(n, τ)

〈τ + n2〉χA0,3

∥∥∥∥
2

ℓ2nL
1
τ

. W̃0,3‖u‖2Xr,1/2
per

‖v‖2
H

1/2−θ
t Hs

per

,

where

(2.34) W̃0,3 = sup
n,τ

〈n〉2rn2(1−2a)

〈τ + n2〉2(1−a)

∑

n1

∫

A0,3

dτ1
〈τ1 + n2

1〉〈τ2〉1−2θ〈n1〉2r〈n2〉2s
.

Similarly to the estimate make in (2.30) we obtain

W̃0,3 . sup
n,τ

〈n〉2r−2s+2−4a

〈τ + n2〉2(1−a)

∑

n1

+∞∫

−∞

dτ1
〈τ1 + n2

1〉〈τ2〉1−2θ

. sup
n,τ

〈n〉2r−2s+2−4a

〈n〉4(1−a)

∑

n1

1

〈τ + n2
1〉1−2θ

. 1,

(2.35)

since 0 < θ < 1/4 and r − s ≤ 1. Finally, combining (2.32) and (2.35) we get
∥∥∥∥〈n〉r

ûv(n, τ)

〈τ + n2〉χA0,3

∥∥∥∥
ℓ2nL

1
τ

. ‖u‖
X

r,1/2
per

‖v‖
H

1/2−θ
t Hs

per
,

as we desired. Then, we finished the proof of Lemma 2.2. �

The next result shows that the conditions obtained above for indices r and s are
necessary.

Proposition 2.3. For any real numbers b1 and b2, the veracity of the inequality

‖uv‖Xr,−1/2 . ‖u‖Xr,b1‖v‖Hb2
t Hs

x

implies that max{0, r − 1} ≤ s.

Proof. Firstly, we fix N ≫ 1 a large integer and define de sequences

α1(n) =

{
1 if n = N,

0 otherwise
and β1(n) =

{
1 if n = −2N,

0 otherwise.

Let u1N (x, t) and v1N (x, t) be given by û1N (n, τ) = α1(n)χ[−1,1](τ + n2) and
v̂1N (n, τ) = β1(n)χ[−1,1](τ). Taking into account the dispersive relation

τ + n2 − (τ1 + n2
1)− τ2 = n2 − n2

1,
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we can easily compute that

‖u1Nv1N ‖Xr,−1/2 ∼ N r, ‖u1N‖Xr,b1 ∼ N r and ‖v1N ‖
H

b2
t Hs

x
∼ Ns

Hence, from the bound ‖u1N v1N ‖Xr,−1/2 . ‖u1N‖Xr,b1‖v1N ‖
H

b2
t Hs

x
we must have

N r . N r+s for N ≫ 1, which implies that s ≥ 0.
Secondly, we define the sequences

α2(n) =

{
1 if n = N,

0 otherwise
and β2(n) =

{
1 if n = 0,

0 otherwise.

Let û2N (n, τ) = α2(n)χ[−1,1](τ + n2) and v̂2N (n, τ) = β2(n)χ[−1,1](τ). Again, it is
easy to see that

‖u2Nv2N ‖Xr,−1/2 ∼ N r−1, ‖u2N‖Xr,b1 ∼ 1 and ‖v2N ‖
H

b2
t Hs

x
∼ Ns

Hence, the bound ‖u2Nv2N ‖Xr,−1/2 . ‖u2N‖Xr,b1‖v2N‖Hb2
t Hs

x
implies N r−1 . Ns

for N ≫ 1, so we must have r − 1 ≤ s.
�

Lemma 2.4. Let 0 < θ < 1/4. Then, the following estimates

(2.36) ‖∂x(uw̄)‖H−1/2
t Hs

per
. ‖u‖

X
r,1/2−θ
per

‖w‖
X

r,1/2
per

+ ‖u‖
X

r,1/2
per

‖w‖
X

r,1/2−θ
per

(2.37)

∥

∥

∥

∥

∥

〈n〉s
∂̂x(uw̄)(n, τ )

〈τ 〉

∥

∥

∥

∥

∥

ℓ2nL1
τ

. ‖u‖
X

r,1/2−θ
per

‖w‖
X

r,1/2
per

+ ‖u‖
X

r,1/2
per

‖w‖
X

r,1/2−θ
per

hold provided 0 ≤ s ≤ min{2r − 1, r}.

Proof. The proof is similar to Lemma (2.2). Here, the relevant dispersive relation
is given by

(2.38) (τ1 + n2
1) + (τ2 − n2

2)− τ = n2
1 − n2

2,

where τ2 = τ − τ1 and n2 = n− n1.
To prove (2.36), by duality arguments, it suffices to bound the following expres-

sions:

Z0 = sup
n1,τ1

1

〈n1〉2r〈τ1 + n2
1〉
∑

n

∫

C0

|n|2〈n〉2s
〈τ〉〈τ2 − n2

2〉1−2θ〈n2〉2r
dτ,(2.39)

Z1 = sup
n,τ

|n|2〈n〉2s
〈τ〉

∑

n1

∫

C1

dτ1
〈τ1 + n2

1〉〈τ2 − n2
2〉1−2θ〈n1〉2r〈n2〉2r

,(2.40)

Z2 = sup
n2,τ2

1

〈n2〉2r〈τ2 − n2
2〉
∑

n

∫

C2

|n|2〈n〉2s
〈τ〉〈τ1 + n2

1〉1−2θ〈n1〉2r
dτ,(2.41)

where C0, C1 and C2 are defined as follows. We denote by

L := max
{
|τ |, |τ1 + n2

1|, |τ2 − n2
2|
}
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and then we define de following sets:

C0,1 := {(n, τ, n1, τ1) : |n| ≤ 100},

C0,2 :=
{
(n, τ, n1, τ1) : |n| > 100, |n2|

2 ≤ |n1| ≤ 2|n2|
}
,

C0,3 :=
{
(n, τ, n1, τ1) : |n| > 100, |n1| < |n2|

2 or |n2| < |n1|
2 and L = |τ1 + n2

1|
}
.

Now we put

C0 := C0,1 ∪ C0,2 ∪ C0,3,

C1 :=
{
(n, τ, n1, τ1) : |n| > 100, |n1| < |n2|

2 or |n2| < |n1|
2 and L = |τ |

}
,

C2 :=
{
(n, τ, n1, τ1) : |n| > 100, |n1| < |n2|

2 or |n2| < |n1|
2 and L = |τ2 − n2

2|
}
.

Now, we bound (2.39). In the region C0,1, it holds |n| ≤ 100. Hence,

Z0,1 := sup
n1,τ1

1

〈n1〉2r〈τ1 + n2
1〉
∑

n

∫

C0,1

|n|2〈n〉2s
〈τ〉〈τ2 − n2

2〉1−2θ〈n2〉2r
dτ

. sup
n1,τ1

∑

|n|≤100

+∞∫

−∞

dτ

〈τ〉〈τ2 − n2
2〉1−2θ

. sup
n1,τ1

∑

|n|≤100

1

〈τ1 + (n− n1)2〉1−2θ
. 1,

since r ≥ 0 and 1− 2θ > 0.
In the region C0,2, we have that |n1| ∼ |n2|. Hence,

Z0,2 := sup
n1,τ1

1

〈n1〉2r〈τ1 + n2
1〉
∑

n

∫

C0,2

|n|2〈n〉2s
〈τ〉〈τ2 − n2

2〉1−2θ〈n2〉2r
dτ

. sup
n1,τ1

〈n1〉2s−4r+2

〈τ1 + n2
1〉

∑

n

+∞∫

−∞

dτ

〈τ〉〈τ2 − n2
2〉1−2θ

. sup
n1,τ1

∑

n

1

〈τ1 + (n− n1)2〉1−2θ
. 1,

for 0 ≤ s ≤ 2r − 1 and 0 < θ < 1/4.
In the region C0,3, the dispersion relation (2.38)and the assumptions |n1| ≁ |n2|,

|n| ≥ 100 and L = |τ1 + n2
1| imply that |τ1 + n2

1| & (max{|n1|, |n2|})2. Then,

Z0,3 := sup
n1,τ1

1

〈n1〉2r〈τ1 + n2
1〉
∑

n

∫

C0,3

|n|2〈n〉2s
〈τ〉〈τ2 − n2

2〉1−2θ〈n2〉2r
dτ

. sup
n1,τ1

∑

n

+∞∫

−∞

〈
max{|n1|, |n2|}

〉2s−2r

〈τ〉〈τ2 − n2
2〉1−2θ

dτ

. sup
n1,τ1

∑

n

1

〈τ1 + (n− n1)2〉1−2θ
. 1,

for 0 ≤ s ≤ r and 0 < θ < 1/4. Then, the inequality |Z0| ≤ |Z0,1|+|Z0,2|+|Z0,3| . 1
yields the desired estimate for Z0.
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The contribution of (2.40) can be estimated as follows. In the region C1, we have
that |n| ∼ max{|n1|, |n2|} and |τ | ≥ (max{|n1|, |n2|})2. Thus,

Z1 ≤ sup
n,τ

〈n〉2s+2

〈τ〉
∑

n1

∫

C1

dτ1
〈τ1 + n2

1〉〈τ2 − n2
2〉1−2θ〈n1〉2r〈n2〉2r

. sup
n,τ

∑

n1

∞∫

−∞

〈
max{|n1|, |n2|}

〉2s−2r

〈τ1 + n2
1〉〈τ2 − n2

2〉1−2θ
dτ1

. sup
n,τ

∑

n1

1

〈τ + n2
1 − n2

2〉1−2θ

. sup
n,τ

∑

n1

1

〈2nn1 + τ − n2〉1−2θ
. 1,

for 0 ≤ s ≤ r and 0 < θ < 1/4, using the same arguments to estimate W̃2 in Lemma
2.2.

On the other hand, the expression (2.41) can be controlled by using that in the
region C2 hold |n| ∼ max{|n1|, |n2|} and |τ2 − n2

2| & (max{|n1|, |n2|})2. Then,

Z2 = sup
n2,τ2

1

〈n2〉2r〈τ2 − n2
2〉
∑

n

∫

C2

|n|2〈n〉2s
〈τ〉〈τ1 + n2

1〉1−2θ〈n1〉2r
dτ

. sup
n2,τ2

∑

n

+∞∫

−∞

〈
max{|n1|, |n2|}

〉2s−2r

〈τ〉〈τ1 + n2
1〉1−2θ

dτ

. sup
n2,τ2

∑

n

1

〈(n+ n2)2 − τ2〉1−2θ
. 1,

for s ≤ r and 0 < θ < 1/4. Collecting all the estimates above we obtain the claimed
estimate (2.36).

The prove of (2.37) follows from a similar way to the proof of (2.16). �

Now we exhibit examples showing the necessity of the conditions for r and s
used in Lemma 2.4.

Proposition 2.5. For any real numbers b1 and b2 the veracity of the inequality

‖∂x(uw̄)‖H−1/2
t Hs

per
. ‖u‖Xr,b1‖w‖Xr,b2

implies that s ≤ min{2r − 1, r}.
Proof. For a fixed large integer N ≫ 1, we define de following sequences:

α1(n) =

{
1 if n = N,

0 otherwise
and β1(n) =

{
1 if n = −N,
0 otherwise.

Putting û1N (n, τ) = α1(n)χ[−1,1](τ + n2) and ŵ1N (n, τ) = β1(n)χ[−1,1](τ + n2), a
simple calculation using the dispersive relation (2.38) gives that

‖(u1w̄1)x‖H−1/2
t Hs

per
∼ Ns+1 and ‖u1‖Xr,b1 ∼ N r ∼ ‖w1‖Xr,b2 .

Hence, the inequality ‖(u1w̄1)x‖H−1/2
t Hs

per
. ‖u1‖Xr,b1‖w1‖Xr,b2 implies

Ns+1 ≤ N2r, for N ≫ 1 ⇐⇒ s ≤ 2r − 1.
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Finally, we define

α2(n) =

{
1 if n = 0,

0 otherwise
and β2(n) =

{
1 if n = N,

0 otherwise.

and we put û2N (n, τ) = α2(n)χ[−1,1](τ+n
2) and ŵ2N (n, τ) = β2(n)χ[−1,1](τ+n

2).
Then, by similar calculations as in the previous case we obtain

‖(u2w̄2)x‖H−1/2
t Hs

per
∼ Ns, ‖u2‖Xr,b1 ∼ 1 and ∼ ‖w2‖Xr,b2 ∼ N r.

Again, the inequality ‖(u2w̄2)x‖H−1/2
t Hs

per
. ‖u2‖Xr,b1‖w2‖Xr,b2 implies

Ns ≤ N r, for N ≫ 1 ⇐⇒ s ≤ r.

Thus, we finished the proof. �

2.2. Proof of Local Theorem. The next lemmas will be useful in the proof of
Theorem 1.2.

Lemma 2.6. For any s ∈ R, δ ∈ (0, 1], 0 < µ < 1/2 and −1/2 < b1 ≤ b2 < 1/2 we
have

(a) ‖ηδ(·)F‖
X

s,1/2
per

≤ Cδ−µ‖F‖
X

s,1/2
per

and ‖ηδ(·)F‖
H

1/2
t Hs

per
≤ Cδ−µ‖F‖

H
1/2
t Hs

per
;

(b) ‖ηδ(·)F‖
X

s,b1
per

≤ Cδb2−b1‖F‖
X

s,b2
per

and ‖ηδ(·)F‖
H

b1
t Hs

per
≤ Cδb2−b1‖F‖

H
b2
t Hs

per
.

Proof. The proof of this result can be found, for instance, in [22] and [6]. �

Lemma 2.7 (Trilinear Estimate). For any s ≥ 0, we have

‖uvw̄‖Xr
per

. ‖u‖
X

s,3/8
per

‖v‖
X

s,3/8
per

‖w‖
X

s,3/8
per

Proof. See [12] and [6]. �

Now we give the sketch of the proof of local theorem. First, we let (u0, v0) ∈
Hr

per ×Hs
per where r and s satisfying

max{0, r − 1} ≤ s ≤ min{r, 2r − 1}
and we consider the operator Φ = (Φ1, Φ2), with

Φ1(u, v) = η(t)u0 − iη(t)

∫ t

0

ei(t−t′)∂2

x
(
(ηδuηδv)(t

′) + ηδu|ηδu|2(t′)
)
dt′,

Φ2(u, v) = η(t)v0 + η(t)

∫ t

0

∂x(|ηδu|2)(t′)dt′,
(2.42)

defined on the ball

B[a, b] =
{
(u, v) ∈ Xr

per × Y s
per : ‖u‖Xr

per
≤ a and ‖v‖Y s

per
≤ b
}
.

Then, by Lemmas 2.2, 2.4, 2.6 and 2.7 we have

‖Φ1(u, v)‖Xr
per

≤ C0‖u0‖Hr
per

+ C
(
‖ηδu‖Xr,1/2−θ

per
‖ηδv‖H1/2

t Hs
per

+

+ ‖ηδu‖Xr,1/2
per

‖ηδv‖H1/2−θ
t Hs

per
+ ‖ηδu‖3Xr,3/8

per

)

≤ C0‖u0‖Hr
per

+ Cδǫ(ab+ a3)

(2.43)
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and

‖Φ2(u, v)‖Y s
per

≤ C0‖v0‖Hs
per

+ C
(
‖ηδu‖Xr,1/2−θ

per
‖ηδu‖Xr,1/2

per

)

≤ C0‖v0‖Hs
per

+ Cδǫa2,
(2.44)

with ǫ enough small.
Now we put a = 2C0‖u0‖Hr

per
and b = 2C0‖v0‖Hs

per
and then we let δ such

that δǫ ≤ min
{

1
2C(ab+a3) ,

1
2Ca2

}
. Thus, we have that Φ(B[a, b]) ⊂ B[a, b]. The

contraction condition

‖Φ(u, v)− Φ(ũ, ṽ)‖r×s
per ≤ C(a, b)δθ‖(u− ũ, v − ṽ)‖r×s

per ,

where ‖(f, g)‖r×s
per := ‖f‖Xr

per
+‖g‖Y s

per
and C(a, b) is a positive constant depending

only on a and b, follows similarly. This shows that the map Φ is a contraction on
B[a, b]. There we obtain a unique fixed point which solves the system for T < δ
and we finish the proof.

Remark 2.8. We note that global well-posedness in H1
per ×L2

per follows directly of
the local theorem for (r, s) = (1, 0) combined with the conservation laws (1.2), (1.3)
and (1.4).

3. Ill-posedness

In this section we will show that the solution of (1.1) cannot depend uniformly
continuously on its initial data for r < 0 and s ∈ R. We will use the same argument
given in [13].

3.1. Proof of theorem 1.3. It is easy to check that

(3.45)
uN,a(t, x) = a exp(iNx) exp(−it(N2 + (γ + β)a2))

vN,a(t, x) = γa2,

where a ∈ R and N is any positive integer, solves (1.1) with initial data u0(x) =
a exp(iNx) and v0(x) = γa2. Moreover, for a = α(1 + N2)

r
2 , where α is a real

constant, and |γ| = (1 +N2)r we have

||u0(x)||2Hr ≤ cα2

and

||v0(x)||2Hs ≤ cα4,

where c is a constant.
Let a1 = α1(1 + N2)

r
2 and a2 = α2(1 + N2)

r
2 . For the Sobolev norm of the

difference of two initial data, we have

||uN,a1
(0)− uN,a2

(0)||2Hr = c|α1 − α2|2 → 0, as α1 → α2

and

||va1
(0)− va2

(0)||2Hs = |γ|2|α2
1 − α2

2|2(1 +N2)−2r = |α2
1 − α2

2|2, as α1 → α2
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On the other hand we have

||uN,a1
(t, x) − uN,a2

(t, x)||2Hr =

+∞∑

ξ=−∞
(1 + |ξ|2)r|ûN,α1

(ξ)− ûN,α2
(ξ)|2

= (1 +N2)r|a1e−it(N2+(γ+β)a2

1
) − a2e

−it(N2+(γ+β)a2

2
)|2

= |α1 − α2e
it(γ+β)(α2

1
−α2

2
)(1+N2)−r |2

Let r < 0, and α1 and α2 are such that

β(α2
1 − α2

2)(1 +N2)−r = δ(1 +N2)ν ,

where ν > 0, and ν + r < 0. Then for t = π
2 (δ

−1(1 +N2)−ν) we have

||uN,a1
(t, x) − uN,a2

(t, x)||2Hr ≥ c(α2
1 + α2

2)

Note that t can made arbitrary small, by choosing N sufficiently large.

4. Existence of periodic travelling wave solutions

We are interesting in this section in finding explicit solutions for (1.1) in the
form

(4.46)





u(t, x) = e−iωtei
c
2
(x−ct)ϕω,c(x− ct)

v(t, x) = nω,c(x − ct)

where ϕω,c, nω,c are smooth, L-periodic functions, c > 0, ω ∈ R and suppose

that there is a q ∈ N such that 4πq
c = L. So, putting (4.46) into (1.1) we obtain

(4.47)





ϕ
′′

ω,c + (ω + c2

4 )ϕω,c = ϕω,cnω,c + βϕ3
ω,c

−cn′

ω,c = 2ϕω,cϕ
′

ω,c

If nω,c = γϕ2
ω,c, then from the second equation in (4.47) we have γ = − 1

c . Substi-
tuting nω,c in the first equation in (4.47), it follows that ϕω,c satisfies

(4.48) ϕ
′′

ω,c +

(
ω +

c2

4

)
ϕω,c =

(
β − 1

c

)
ϕ3
ω,c

If 1− βc > 0 and ϕω,c =
(

c
1−βc

) 1

2

φω,c, then φω,c satisfies the equation

(4.49) φ
′′

ω,c − σφω,c + φ3ω,c = 0

where σ = −ω − c2

4 . So, by following Angulo in ([3], [4]) we have from (4.49) that
φω,c satisfies the first-order equation

(4.50) [φ′ω,c]
2 =

1

2
Pφ(φ)

where Pφ(t) = −t4 + 2σt2 + 2Bφ and Bφ is an integration constant. Let −η1 <
−η2 < η2 < η1 are the zeros of the polynomial Pφ(t). Then

(4.51) [φ
′

ω,c]
2 =

1

2
(η21 − φ2ω,c)(φ

2
ω,c − η22)
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The solution of (4.51) is

(4.52) φω,c = η1dn

(
η1√
2
ξ;κ

)

where

(4.53)





η21 + η22 = 2σ

κ2 =
η2

1
−η2

2

η2

1

0 < η2 < η1.

Define the function in variable κ, 0 < κ < 1

K = K(κ) =

∫ 1

0

dt√
(1− t2)(1 − κ2t2)

called the complete elliptic integral of the first kind. Since dn has fundamental
period 2K(κ), it follows that φω,c has fundamental period

Tφω,c =
2
√
2

η1
K(κ)

Analogously as in [3] we obtain the following.

Theorem 4.1. Let L be fixed but arbitrary positive constant and 1 − βc > 0, and

−ω − c2

4 > 0. Let σ0 >
2π2

L2 and η2,0 = η2(σ0) ∈ (0,
√

σ0

3 ) is the unique such that
Tφ = L. Then

(1) There exists an interval I(σ0) around of σ0, an interval B(η2,0) around η2,0,
and a unique smooth function Λ : I(σ0) → B(η2,0), such that

Λ(σ0) = η2,0 and
2
√
2√

2σ − η22
K(κ) = L

where σ ∈ I(σ0), η2 = Λ(σ)
(2) Solutions (ϕω,c, nω,c) of (4.47) given by

(4.54)





ϕω,c =
√

c
1−βcη1dn

(
η1√
2
ξ;κ
)

nω,c = − η2

1

1−βcdn
2
(

η1√
2
ξ;κ
)

with η1 = η1(σ), η2 = η2(σ), η21 + η22 = 2σ, have the fundamental period L and
satisfies (4.47). Moreover, the mapping

σ ∈ I(σ0) → (ϕω,c, nω,c)

is a smooth function

(3) I(σ0) can be chosen as (2π
2

L2 ,+∞)
(4) The mapping σ → κ(σ) is a strictly increasing function
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5. Stability of travelling waves

In this section we consider the stability of the orbit

Ω(Φ,Ψ) = {(eiθΦ(·+ x0),Ψ(·+ x0)); (θ, x0) ∈ [0, 2π)× R},
in H1

per([0, L])×L2
per([0, L]) by the periodic flow generated by (1.1), where we have

that Φ(ξ) = eicξ/2ϕω,c(ξ), Ψ(ξ) = nω,c(ξ), with ϕω,c, nω,c given in (4.54). Let X be
the space X = H1

complex([0, L])× L2
real([0, L]), with real inner product

( ~u1, ~u2) = ℜ
∫ L

0

(ε1η1 + ε1xη1x + ε2η2)dx.

Let T1, T2 be one-parameter groups of unitary operators on X defined by

T1(s)~u(·) = ~u(·+ s)
T2(r)~u(·) = (e−irε(·), n(·))

for ~u ∈ X, s, r ∈ R. Obviously

T
′

1(0) =

(
−∂x

−∂x

)
, T

′

2(0) =

(
−i

0

)
.

Note that the equation (1.1) is invariant under T1 and T2. If

Φω,c(x) = (εω,c(x), nω,c(x))

where εω,c(x) = ei
c
2
xϕω,c(x), then from Theorem 4.1 we obtain that

T1(ct)T2(ωt)Φω,c(x)

is a travelling wave solution of (4.47) with ϕω,c(x), nω,c(x) defined by (4.54).
Now, it is easy to verify that E2(~u) is invariant under T1 and T2

(5.55) E(T1(s)T2(r)~u) = E(~u).

We also have

(5.56) E(~u(t)) = E(~u0).

Note that equation (1.1) can be written as the following Hamiltonian system

(5.57)
d~u

dt
= JE′(~u)

where ~u = (u, v) and J is a skew-symmetric linear operator defined by

J =

(
−i 0
0 2∂x

)

and

E′(u, v) =

(
−uxx + uv + β|u|2u

1
2 |u|2

)

is the Frechet derivative of E.
Define B1 and B2 such that T ′

1(0) = JB1, T ′
2(0) = JB2. Then

B1 =

(
−i∂x 0
0 − 1

2

)
, B2 =

(
1 0
0 0

)

and

Q1(~u) =
1

2
〈B1~u, ~u〉 = −1

4

∫ L

0

v2dx+
1

2
Im

∫ L

0

uxudx
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Q2(~u) =
1

2
〈B2~u, ~u〉 =

1

2

∫ L

0

|u|2dx.

It is easy to verify that

(5.58) Q1(T1(s)T2(r)~u) = Q1(~u), Q2(T1(s)T2(r)~u) = Q2(~u)

(5.59) Q1(~u(t)) = Q1(~u(0)), Q2(~u(t)) = Q2(~u(0))

and

Q
′

1(u, v) =

(
−iux
− 1

2v

)
, Q2

′(u, v) =

(
u
0

)
.

From (4.47) we have

(5.60) E′(Φω,c)− cQ′
1(Φω,c)− ωQ′

2(Φω,c) = 0.

Define an operator from X to X∗

(5.61) Hω,c = E′′(Φω,c)− cQ′′
1(Φω,c)− ωQ′′

2(Φω,c)

and the function d(ω, c) : R× R → R by

(5.62) d(ω, c) = E(Φω,c)− cQ1(Φω,c)− ωQ2(Φω,c).

The operatorHω,c is self-adjoint. The spectrum ofHω,c consists of the real numbers
λ such that Hω,c − λI is not invertible.

From (4.47) we have

(5.63) T
′

1(0)Φω,c ∈ KerHω,c, T
′

2(0)Φω,c ∈ KerHω,c.

Let Z = {k1T
′

1(0)Φω,c+ k2T
′

2(0)Φω,c , k1, k2 ∈ R}. By (5.63), Z is in the kernel
of Hω,c.

Assumption (Spectral decomposition of Hω,c) : The space X is decomposed as
a direct sum

X = N ⊕ Z ⊕ P

where Z is defined above, N is a finite-dimensional subspace such that

〈Hω,c~u, ~u〉 < 0 for ũ ∈ N

and P is a closed subspace such that

〈Hω,c~u, ~u〉 ≥ δ||~u||2X
for ~u ∈ P with some constant δ > 0 independent of ~u.

Our stability results is based in the following general theorem in [17],

Theorem 5.1. ( Abstract Stability Theorem) Assume that there exists three func-
tionals E,Q1, Q2 satisfying (5.55)-(5.59). Let n(Hω,c) be the number of negative
eigenvalues of Hω,c. Assume d(ω, c) is non-degenerated at (ω, c) and let p(d′′) be
the number of positive eigenvalues of d′′. If p(d′′) = n(Hω,c), then the periodic
travelling wave Φω,c(x) is orbitally stable.

The idea of the proof of Theorem 1.5 is to apply the general Theorem 5.1.
Initially we identify the quadratic form associated to Hω,c. Let ~z = (ei

c
2
xz1, z2),

with z1 = y1 + iy2, y1 = Rez1, y2 = Imz1. By direct computation, we get

〈Hω,c ~z1, ~z1〉 = 〈L1y1, y1〉+ 〈L2y2, y2〉+
c

2

∫ L

0

(
z2 +

2

c
ϕω,cy1

)2

dx
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where

L1 = −∂2x −
(
c2

4
+ ω

)
+ 3

(
β − 1

c

)
ϕ2
ω,c

L2 = −∂2x −
(
c2

4
+ ω

)
+

(
β − 1

c

)
ϕ2
ω,c.

From (4.47) we also have L1(∂xϕω,c) = 0 and L2ϕω,c = 0. Consider the following
periodic eigenvalue problems

(5.64)

{
L1f = λf
f(0) = f(L), f ′(0) = f ′(L),

(5.65)

{
L2g = λg
g(0) = g(L), g′(0) = g′(L).

The problem (5.64) determines a countable infinite set of eigenvalues {λn} with
λn → ∞. We shall denote by χn the eigenfunction associated to the eigenvalue
λn. For the periodic eigenvalue problem (5.64) there is an associated semi-periodic
eigenvalue problem in [0, L], namely,

(5.66)

{
L1h = λh
h(0) = −h(L), h′(0) = −h′(L).

As in the periodic case, there is a countable infinity set of eigenvalues {µn}. Denote
by ξn the eigenfunction associated to the eigenvalue µn. From the Oscillation
Theorem [21] we have that

λ0 < µ0 ≤ µ1 < λ1 ≤ λ2 < µ2 ≤ µ3, ...

λ0 is simple and

(a) χ0 has no zeros on [0, L]

(b) χ2n+1 and χ2n+2 have exactly 2n+ 2 zeros on [0, L)

(c) ξ2n and ξ2n+1 have exactly 2n+ 1 zeros on [0, L).

The intervals (λ0, µ0), (µ1, λ1), ... are called intervals of stability and the intervals
(−∞, λ0), (µ0, µ1), (λ1, λ2), ... are called intervals of instability.

For the eigenvalue problem (5.65) we have the same results.

Theorem 5.2. Let σ ∈ [ 2π
2

L2 ,+∞) and (ϕω,c, nω,c) be the travelling wave solutions
of (4.54). Then the first three eigenvalues of operator L1 are simple, 0 is the second
eigenvalue of L1 with eigenfunction ∂xϕω,c. The first eigenvalue of the operator L2

is 0, which is simple.

Proof. Since L2ϕω,c = 0 and ϕω,c has no zeros on [0, L], then form (a) it follows
that zero is the first eigenvalue of L2.

Now since L1∂xϕω,c = 0 and ∂ϕω,c has two zeros on [0, L), then it follows that
eigenvalue zero of L1 is either λ1 or λ2. Let ψ = f(θx), where θ2 = 2

η2

1

. From

equality κ2sn2(x) + dn2(x) = 1 and (5.64), we obtain that ψ satisfies the equation

(5.67) ψ
′′

+ (ρ− 6κ2sn2(x))ψ = 0,

where

(5.68) ρ = 6− 2

η21
(σ − λ).
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From Floquet theory, it follows that (−∞, ρ0), (µ0, µ1) and (ρ1, ρ2) are instability
intervals associated to the Lame’s equation. Therefore the eigenvalues ρ0, ρ1 and
ρ2 of (5.68) are simple and the rest of eigenvalues ρ3 ≤ ρ4, ... satisfies ρ3 = ρ4, ρ5 =
ρ6, ... The eigenvalues ρ0, ρ1, ρ2 and its corresponding eigenfunctions ψ0, ψ1, ψ2 are

ρ0 = 2(1 + κ2 −
√
1− κ2 + κ4, ψ0 = 1− (1 + κ2 −

√
1− κ2 + κ4)sn2(x)

ρ1 = 4 + κ2, ψ2 = sn(x)cn(x)

ρ2 = 2(1 + κ2 +
√
1− κ2 + κ4, ψ2 = 1− (1 + κ2 +

√
1− κ2 + κ4)sn2(x)

Since ρ0 < ρ1 for every κ2 ∈ (0, 1), then from (5.68) we have

3λ0 =
η21
2
(κ2 − 2− 2

√
1− κ2 + κ4) < 0

Therefore λ0 is negative eigenvalue of L1 with eigenfunction χ0(x) = ψ0(
x
θ ). Simi-

larly

3λ2 =
η21
2
(κ2 − 2 + 2

√
1− κ2 + κ4) > 0

and λ2 is the positive eigenvalue of L1 with eigenfunction χ2(x) = ψ2(
x
θ ). Thus

λ1 =
η21(ρ1 − 6) + 2σ

6
=
η21
6
(4 + κ2 − 6 + 2− κ2) = 0

is the second eigenvalue of L1. This complete the proof of the theorem. �

Remark 5.3. The main properties of the spectrum of L1, namely, there is exactly a
negative eigenvalue and zero is simple, it can also be obtained via positive properties
of the Fourier transform of the solution ϕω,c (see Angulo & Natali [5]).

So, from Theorem 5.2 we obtain immediately the following two results.

Lemma 5.4. For any real function y1 ∈ H1 satisfying 〈y1, χ0〉 = 〈y1, ∂xϕω,c〉 = 0
there exists a positive constant δ1 > 0 such that 〈L1y1, y1〉 ≥ δ1||y1||2H1 .

Lemma 5.5. For any real function y2 ∈ H1 satisfying 〈y2, ϕω,c〉 = 0 there exists a
positive constant δ2 such that 〈L2y2, y2〉 ≥ δ2||y2||2H1 .

Proof. [Theorem 1.5] Choose y−1 = χ0, y
−
2 = 0, z−2 = − 2

cϕω,cχ0 and Ψ− =

(y−1 , y
−
2 , z

−
2 ) then

〈Hω,cΨ
−,Ψ−〉 = λ0〈χ0, χ0〉 < 0.

So Hω,c has a negative eigenvalue. Note that the following vectors

Ψ0,1 = (∂xϕω,c, 0,−
2

c
ϕω,c∂xϕω,c), Ψ0,2 = (0, ϕω,c, 0)

are in the kernel of operator Hω,c.
Define the following subspaces associated to Hω,c:

Z = {k1Ψ0,1 + k1Ψ0,2 : k1, k2 ∈ R}
N = {kΨ− : k ∈ R}

P = {~p ∈ X : ~p = (p1, p2, p3), 〈p1, χ1〉 = 〈p1, ∂xϕω,c〉 = 〈p2, ϕω,c〉 = 0}.
For any ~u ∈ X,~u = (y1, y2, y2) choose

a =
〈y1, χ0〉
〈χ0, χ0〉

, b1 =
〈∂xϕω,c, y1〉

〈∂xϕω,c, ∂xϕω,c〉
, b2 =

〈ϕω,c, y2〉
〈ϕω,c, ϕω,c〉

,
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then ~u uniquely can be represented by

~u = aΨ− + b1Ψ0,1 + b2Ψ0,2 + ~p,

where ~p ∈ P .
For any ~p ∈ P , by Lemmas 5.4 and 5.5, we have

〈Hω,c~p, ~p〉 ≥ δ1||p1||2H1 + δ1||p2||2H1 +
c

2

∫ L

0

(
p3 +

2

c
ϕp1

)2

dx

Next we consider the following two cases:

(1) If ||p3||L2 ≥ 8||ϕω,c||L∞

c ||p1||L2 , then

c

2

∫ L

0

(
p3 +

2

c
ϕω,cp1

)2

dx ≥ c

2

[
||p3||2L2 − 4

c
||ϕω,c||L∞ ||p1||L2 ||p3||L2

]
=
c

4
||p3||2L2

(2) If ||p3||L2 ≤ 8||ϕω,c||L∞

c ||p1||L2 , then

δ1||p1||2H1 ≥ δ1
2
||p1||2H1 +

δ1
2

c

8||ϕω,c||L∞

||p3||2L2

Thus, for any ~p ∈ P , it follows that

〈Hω,c~p, ~p〉 ≥ δ3||p3||2L2 +
δ1
2
||p1||2H1 + δ2||p2||2H1 ,

where δ3 = min{ δ1c
16||ϕω,c||L∞

, c4}. Finally, we have

〈Hω,c~p, ~p〉 ≥ δ||~p||2X ,

where δ > 0 is independent of ~p. This proved that Assumption above is holds, and
n(Hω,c) = 1.

Now we shall verify that p(d′′) = 1. We have

dc(ω, c) = −Q1(Φω,c) =
1

4(1− βc)2

∫ L

0

ϕ4
ω,cdx− c2

4(1− βc)

∫ L

0

ϕω,cdx

dω(ω, c) = −Q2(Φω,c) = − c

2(1− βc)

∫ L

0

ϕ2
ω,cdx.

From equalities

∫ L

0

ϕ2
ω,cdx =

8KE

L
,

∫ L

0

ϕ4
ω,cdx =

64

L3
V (κ)
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where E = E(κ) =
∫ 1

0

√
1−κ2t2

1−t2 dt is the complete elliptic integral of the second

kind and V (κ) = κ2−1
3 K4 + 2

L (2− κ2)K2E, we obtain

(5.69)

dωω = 4c
L(1−βc)(K

′

(κ)E(κ) +K(κ)E
′

(κ))κ
′

(σ)

dωc = − 4
L(1−βc)2K(κ)E(κ) + c

2dωω

dcω = − 16
L3(1−βc)2V

′

(κ)κ
′

(σ) + c
2dωω

dcc =
32β

L3(1−βc)3V (κ)− 8c
L3(1−βc)2V

′

(κ)κ
′

(σ)−

2c(2−βc)
L(1−βc)2K(κ)E(κ) + c2

4 dωω.

Thus

dccdωω − dcωdωc = − 64
L4(1−βc)4V

′

(κ)κ
′

(σ)K(κ)E(κ)+

1
L(1−βc)

[
32α

L2(1−βc)2V (κ)− 2cK(κ)E(κ)
]
dωω.

We have

V ′(κ) =
2K2E

κ(1− κ2)

[
(2− κ2)E − (1− κ2)K

]
.

and
V

L2
=

σ(κ2 − 1)

12(2− κ2)
K2 +

σ

6
KE.

Using the above estimates, we obtain

dccdωω − dcωdωc = 4κ′

L2(1−βc)2

{
−32K2

L2 KE
2
[
(2− κ2)E − 2(1− κ2)K

]}

+ c
3

[
8βσ(κ2−1)

2−κ2 K2 + (16βσ − 6c(1− βc)2)KE
] [

E2

κ(1−κ2) − K2

κ

]}

= 4Kκ
′

L2(1−βc)2

{
− 8σ

2−κ2

[
(2− κ2)E3 − 2(1− κ2)KE2

]}

+
[
8βσc(κ2−1)
3(2−κ2) K + c(16βσ−6c(1−βc)2)

3 E
] [

E2

κ(1−κ2) − K2

κ

]}

From Theorem 4.1-(4), we have that κ
′

> 0. Therefore the sign of det(d′′) =
dccdωω − dcωdωc depends on the sign of

B(c, ω, κ, β) =
{
− 8σ

2−κ2

[
(2 − κ2)E3 − 2(1− κ2)KE2

]

+
[
8βσc(κ2−1)
3(2−κ2) K + c(16βσ−6c(1−βc)2)

3 E
] [

E2

κ(1−κ2) − K2

κ

]}
.

From the relation

(5.70) 0 <
(1 − κ2)K

(2 − κ2)E
<

1

2

we get that the first term of B(c, ω, κ, β) is negative. Now we consider three cases
for β.

(1) Obviously if β = 0, then det(d
′′

) < 0.
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(2) For β < 0, using (5.70), we get

8βσ(κ2−1)K
3(2−κ2)E + c(16βσ−6c(1−βc)2)

3 E =

= − 8cβσE
3

[
(1−κ2)K
(2−κ2)E − 2 + 6c(1−βc)2

8cβ

]
< 0

and det(d
′′

) < 0.
(3) If β > 0 and 8βσ−3c(1−βc)2 ≤ 0, then all terms of B(c, ω, κ, β) are negatives

and det(d′′) < 0.
Thus under above three conditions, d′′(ω, c) has exactly one positive and one

negative eigenvalues and p(d′′) = 1. This finishes the proof of the Theorem. �
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