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SPECTRAL METHODS IN PDE

W.-M. Wang

Abstract. This is to review some recent progress in PDE. The emphasis is on (energy)
supercritical nonlinear Schrödinger equations. The methods are applicable to other non-

linear equations.

1. Introduction

We consider the nonlinear Schrödinger equation on the d-torus Td = [0, 2π)d:

i
∂

∂t
u = −∆u+ |u|2pu+H(x, u, ū) (p ≥ 1, p ∈ N), (1.1)

with periodic boundary conditions: u(t, x) = u(t, x+2nπ), x ∈ [0, 2π)d for all n ∈ Zd,
where H(x, u, ū) is analytic and has the expansion:

H(x, u, ū) =
∞
∑

m=1

αm(x)|u|2p+2mu,

with αm periodic and uniformly real analytic. The integer p in (1.1) is arbitrary.

We study (1.1) from two perspectives, that of existence of quasi-periodic solutions
and that of existence and uniqueness of smooth solutions to Cauchy problems. The
link of these two questions are classical as the known invariant measure for smooth
solutions are supported on KAM tori. Conceptually, one could view quasi-periodic
solutions as providing a “basis” for the nonlinear solutions.

It is well known [Bo1] that on Td, when H = 0, (1.1) is locally wellposed in Hs for

s > max(0,
1

2
(d−

2

p
)), (1.2)

which is derived by linearizing about the flow of the Laplacian and proving Lp estimates
of its eigenfunction solutions (Strichartz estimates).

For d ≥ 3 and sufficiently large p, the right side of (1.2) is larger than 1. For
example, in dimension 4, the quintic nonlinear Schrödinger equation is locally well-
posed in Hs for s > 1, above the Hamiltonian H1 topology, hence there is no available
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conservation law. These equations are therefore supercritical as there is no a priori
global existence from patching up local solutions, not even for small data, as (1.1) is
non-dispersive, i. e., ‖u‖∞ cannot tend to 0 as t→ ∞ on the torus Td.

The main purpose of this review is to describe the new method developed in [W2,
3] to construct global or almost global solutions to (1.1) both in the perturbative and
semi-classical regime. The semi-classical limit reveals further the geometric nature
of this construction. This is not surprising, as already in the critical case, the local
existence time depends on the Fourier geometry of the solution and not just its H1

norm.

Following the PDE custom, when considering applications to the Cauchy problem,
we will set the higher order terms H = 0. This is also because for small data, the
construction carries over verbatim to H 6= 0. For KAM construction we choose to
keep the translation invariance breaking term H, which traditionally lead to more
complicated small divisors in the normalizing transform. Our method is different, it
hinges on establishing a spectral gap, which is stable under small perturbations. So
we keep H to illustrate this stability.

To understand this stability, it is important to remark that the spectral gap is in
the “space-time” sense as we put space and time on equal footing via a space-time
Fourier series.

The point of departure here is that this spectral gap is produced by the nonlinear-
ity itself and not by eigenvalue variation of the linear operator, which has been the
tradition. It is well known that eigenvalue variations are difficult to achieve with a
multiplicative potential in dimensions 2 and above due to degeneracy of the Laplacian.

A step was taken in [W1] to break the degeneracy with a trigonometric polynomial
potential in dimension 2, but much remains to be done. On the other hand, the spec-
tral gap produced by the nonlinearity is geometric in origin and hence robust. This
is also because (1.1) essentially preserves translation invariance and hence the alge-
braic properties of the exponentials, while adding a multiplicative potential destroys
integrability.

In the last part of the paper, we consider the nonlinear Schrödinger equation on gen-
eral compact manifolds. We obtain critical Sobolev exponents for local well-posedness
on general surfaces. This is an indication that the results on the flat torus may not be
improved geometrically.

2. Quasi-periodic solutions

In this section, we consider the KAM aspect of (1.1). The Kolmogorov non-
degeneracy conditions (or its weaker versions) are completely violated, as we perturb
about a (infinite dimensional) linear system and not an integrable non-linear system.
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Let u(0) be a solution to the linear equation:

i
∂

∂t
u(0) = −∆u(0). (2.1)

We seek quasi-periodic solutions to (1.1) with b frequencies close to u(0) in the form
of a nonlinear space-time Fourier series:

u(t, x) =
∑

(n,j)

û(n, j)ein·ωteij·x, (n, j) ∈ Z
b+d, (2.2)

with ω ∈ Rb to be determined.

Writing in this form, a solution u(0) to (2.1) with b frequencies ω(0) = {j2k}
b
k=1

(jk 6= 0) has Fourier support

supp û(0) = {(−ejk , jk), k = 1, ..., b},

where ejk is a unit vector in Z
b and jk 6= jk′ if k 6= k′. (Unless otherwise stated

j2k := |jk|
2 etc.)

We note that (2.2) treats space and time on equal footing, contrary to the usual
ODE approach, which views the solution as the time evolution of (Hamiltonian) vector
fields. In this Hamiltonian language, the vector fields corresponding to the nonlinear
Schrödinger equation in (1.1) are infinite dimensional. We also note that in (2.2), for
each additional frequency in time, we add a dimension, which plays an important role
in untangling the resonances.

Define the bi-characteristics

C = {(n, j) ∈ Z
b+d| ± n · ω(0) + j2 = 0}. (2.3)

C is the solution set in the form (2.2) to (2.1) and its complex conjugate in the Fourier
space. This is the resonant set for the nonlinear equation (1.1). The fact that the
singularities are not isolated points is the major difficulty here.

To treat this manifold of singularities, we observe that in the absence of the non-
linear term, there is no propagation in the Fourier space Zb+d, as there is no coupling
among different (n, j), even though C is an infinite set. In the Fourier space, the non-
linear term becomes a convolution operator and couples different (n, j). But as long
as the connected (relative to this convolution) sets in C remain bounded in the first
approximation, we should still be able to construct quasi-periodic solutions close to a
given linear solution u(0) by implementing a Newton scheme.

Let

u(0)(t, x) =
b

∑

k=1

ake
−ij2kteijk·x,
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be a solution to the linear equation (2.1). We achieve this by first making a geometric
selection in the Fourier frequencies {jk}

b
k=1 and then an amplitude selection in the

Fourier coefficients {ak}
b
k=1. The geometric selection is in order to ensure bounded

connected sets in C and is the main new ingredient in this theory.

We call u(0) generic, if it satisfies the genericity conditions (i-iv) in [W2]. Here it
suffices to say that the genericity conditions pertain entirely to the Fourier support of
u(0): {jk}

b
k=1 ∈ (Rd)b and are determined by the |u|2pu term in (1.1) only. Moreover

the non-generic set Ω is of codimension 1 in (Rd)b.

The main result is

Theorem 1 [W2]. Assume

u(0)(t, x) =

b
∑

k=1

ake
−ij2kteijk·x,

a solution to the linear equation (2.1) is generic and a = {ak} ∈ (0, δ]b = B(0, δ).
There exist C, c > 0, such that for all ǫ ∈ (0, 1), there exists δ0 > 0 and for all
δ ∈ (0, δ0) a Cantor set G with

meas {G ∩ B(0, δ)}/δb ≥ 1− Cǫc.

For all a ∈ G, there is a quasi-periodic solution of b frequencies to the nonlinear
Schrödinger equation (1.1):

u(t, x) =
∑

ake
−iωkteijk·x +O(δ3),

with basic frequencies ω = {ωk} satisfying

ωk = j2k +O(δ2p).

The remainder O(δ3) is in an analytic norm about a strip of width O(1) on T
b+d.

Remark. When d = p = 1, the non-generic set Ω = ∅. All u(0) are generic and
only amplitude selection is necessary. This is the well understood scenario, see the
Appendix in sect. 5. To understand the substance of the geometric and amplitude
excisions in the theorem, it is useful to take H = 0 and note the perpetual existence
of periodic solutions:

u = ae−i(j2+|a|2p)teij·x

to (1.1) for all j ∈ Zd and a ∈ C.

We have moreover the following semi-classical analog, which is new to the KAM
context:
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Corollary 1 [W2]. Set H = 0 in (1.1). Assume

u(0)(t, x) =
b

∑

k=1

ake
−ij2kteijk·x,

a solution to the linear equation (2.1) is generic, {jk}
b
k=1 ∈ [KZd]b, K ∈ N+ and

a = {ak} ∈ (0, 1]b = B(0, 1). There exist C, c > 0, such that for all ǫ ∈ (0, 1), there
exists K0 > 0 and for all K > K0 a Cantor set G with

meas {G ∩ B(0, 1)} ≥ 1− Cǫc.

For all a ∈ G, there is a quasi-periodic solution of b frequencies to the nonlinear
Schrödinger equation (1.1):

u(t, x) =
∑

ake
−iωkteijk·x +O(1/K2),

with basic frequencies ω = {ωk} satisfying

ωk = j2k +O(1).

The remainder O(1/K2) is in an analytic norm about a strip of width O(1) in t and
O(1/K) in x on Tb+d.

Remark. These are quantitative, global, L2 size 1 and large (kinetic) energy solutions,
which could be relevant to the compressible Euler equations.

A sketch of proof of the theorem

We write (1.1) in the Fourier space, it becomes

diag (n · ω + j2)û+ (û ∗ v̂)∗p ∗ û+

∞
∑

m=1

α̂m ∗ (û ∗ v̂)∗(p+m) ∗ û = 0, (2.4)

where (n, j) ∈ Zb+d, v̂ = ˆ̄u, ω ∈ Rb is to be determined and

|α̂m(ℓ)| ≤ C′e−c′|ℓ| (C′, c′ > 0)

for all m. From now on we work with (2.4), for simplicity we drop the hat and write u
for û and v for v̂ etc. We seek solutions close to the linear solution u(0) of b frequencies,
supp u(0) = {(−ejk , jk), k = 1, ..., b}, with frequencies ω(0) = {j2k}

b
k=1 (jk 6= 0) and

small amplitudes a = {ak}
b
k=1 satisfying ‖a‖ = O(δ) ≪ 1.
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We complete (2.4) by writing the equation for the complex conjugate. So we have

{

diag (n · ω + j2)u+ (u ∗ v)∗p ∗ u+
∑∞

m=1 αm ∗ (u ∗ v)∗(p+m) ∗ u = 0,

diag (−n · ω + j2)v + (u ∗ v)∗p ∗ v +
∑∞

m=1 αm ∗ (u ∗ v)∗(p+m) ∗ v = 0,
(2.5)

By supp, we will always mean the Fourier support, so we write supp u(0) for supp û(0)

etc. Let
S = supp u(0) ∪ supp ū(0).

Denote the left side of (2.5) by F (u, v). We make a Lyapunov-Schmidt decomposi-
tion into the P -equations:

F (u, v)|Zb+d\S = 0,

and the Q-equations:
F (u, v)|S = 0.

We seek solutions such that u|S = u(0). The P -equations are infinite dimensional and
determine u in the complement of supp u(0); the Q-equations are 2b dimensional and
determine the frequency ω = {ωk}

b
k=1.

This Lyapunov-Schmidt method was introduced by Craig and Wayne [CW] to con-
struct periodic solutions for the wave equation in one dimension. It was inspired by
the multiscale analysis of Fröhlich and Spencer [FS]. The construction was further de-
veloped by Bourgain to embrace the full generality of quasi-periodic solutions and in
arbitrary dimensions d [Bo4, 6]. More recently, Eliasson and Kuksin [EK] developed
a KAM theory in the Schrödinger context. All the above results, however, pertain to
parameter dependent tangentially non-resonant equations.

We use a Newton scheme to solve the P -equations, with u(0) as the initial approx-
imation. The major difference with [Bo4, 6, CW, EK] is that (2.5) is completely
resonant and there are no parameters at this initial stage. The frequency ω(0) is an
integer in Zb. So we need to proceed differently.

First recall the formal scheme: the first correction

∆

(

u(1)

v(1)

)

=

(

u(1)

v(1)

)

−

(

u(0)

v(0)

)

= [F ′(u(0), v(0)]−1F (u(0), v(0)), (2.6)

where

(

u(1)

v(1)

)

is the next approximation and F ′(u(0), v(0)) is the linearized operator

on ℓ2(Zb+d × Zb+d)
F ′ = D + A,

where

D =

(

diag (n · ω + j2) 0
0 diag (−n · ω + j2)

)
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and

A =

(

(p+ 1)(u ∗ v)∗p p(u ∗ v)∗p−1 ∗ u ∗ u
p(u ∗ v)∗p−1 ∗ v ∗ v (p+ 1)(u ∗ v)∗p

)

+O(δ2p+2) (p ≥ 1),

= A0 +O(δ2p+2).

with ω = ω(0), u = u(0) and v = v(0).

Since we look at small data, ‖A‖ = O(δ2p) ≪ 1 and the diagonal: ±n · ω + j2

are integer valued, using the Schur complement reduction [S1, 2], the spectrum of F ′

around 0 is equivalent to that of a reduced operator on ℓ2(C), where C is defined in
(2.3) and to O(δ2p+2) it is the same as the spectrum of A0 on ℓ2(C).

To implement the Newton scheme using (2.5), we need to bound A−1
0 , which leads

to genericity conditions (i-iv) in [W2]. From previous considerations, it suffices to
consider A0 restricted to C. For generic u(0), A0|C = ⊕A0, where A0 are Töplitz
matrices of sizes at most (2b+ d)× (2b+ d). This can be seen as follows.

Let

C+ = {(n, j)|n · ω(0) + j2 = 0, j 6= 0} ∪ {(n, 0)|n · ω(0) = 0, n1 ≤ 0},

C− = {(n, j)| − n · ω(0) + j2 = 0, j 6= 0} ∪ {(n, 0)|n · ω(0) = 0, n1 > 0},

C+ ∩ C− = ∅, C+ ∪ C− = C.

(2.7)

Assume (n, j) ∈ C+ is connected to (n′, j′) ∈ C by the convolution operator A0, then
n′ = n + ∆n and j′ = j + ∆j, where (∆n,∆j) ∈ supp (u(0) ∗ v(0))∗p, if (n′, j′) ∈ C+

and
{

(n · ω(0) + j2) = 0,

(n+∆n) · ω(0) + (j +∆j)2 = 0;
(2.8)

and if (n′, j′) ∈ C−, then (∆n,∆j) ∈ supp (u(0) ∗ v(0))∗p−1 ∗ u(0) ∗ u(0) and

{

(n · ω(0) + j2) = 0,

−(n +∆n) · ω(0) + (j +∆j)2 = 0.
(2.9)

(Clearly the situation is similar if (n, j) ∈ C−.)

(2.8, 2.9) define a system of polynomial equations. The generic condition on u(0)

is imposed precisely to ensure that, aside from the degenerate case, (2.8, 2.9) have
a solution for at most d + 2 equations. The degenerate case can be analyzed and
correspond to systems of at most 2b equations reflecting translation invariance. So
the largest connected set is of size at most max (2b, d+ 2) ≤ 2b + d. Analysis of the
degenerate case is in fact the reason for requiring the leading nonlinear O(δ2p+1) term
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in (1.1) to be independent of x. The x dependence of the higher order terms do not
matter as they are treated as perturbations.

The invertibility of A0 is then ensured by making an initial excision in a as 0 is

typically not an eigenvalue of a finite matrix. So ‖F ′−1
‖ ≍ ‖A−1

0 ‖ ≤ O(δ−2p). Let

F0(u
(0), v(0)) =

(

(u(0) ∗ v(0))∗p ∗ u(0)

(u(0) ∗ v(0))∗p ∗ v(0)

)

.

By requiring

supp F0(u
(0), v(0)) ∩ {C\S} = ∅,

which is part of the genericity conditions in [W2], we obtain from (2.6)

‖∆u(1)‖ = ‖∆v(1)‖ ≤ O(δ3)

for small δ. Inserting this into the Q-equations, which determine ω, we achieve
amplitude-frequency modulation:

‖∆ω(1)‖ ≍ O(δ2p)

∣

∣ det(
∂ω(1)

∂a
)
∣

∣ ≍ O(δ2p−1) > 0

ensuring transversality and moreover Diophantine ω(1) on a set of a of positive measure.
The tangentially non-resonant perturbation theory in [Bo4, 6] becomes available.

Previously, quasi-periodic solutions were constructed using partial Birkhoff normal
forms for the resonant Schrödinger equation in the presence of the cubic nonlinearity
in dimensions 1 and 2 [GXY, KP]. These constructions rely on the specifics of the
resonance geometry given by the cubic nonlinearity, see the Appendix in sect. 5.

3. Almost global existence

In this section, we set H = 0. As in sect. 2, we have results both on the perturbative
as well as the semi-classical case. For the perturbative case, it is convenient to add a
small parameter δ and look at data of size 1. So we investigate the Cauchy problem
on Td:

{

i ∂
∂tu = −∆u+ δ|u|2pu (p ≥ 1, p ∈ N arbitrary),

u(t = 0) = u0,
(3.1)

Relying on the geometric information afforded by the resonance analysis in sect.
2 and linearizing about a suitable approximate quasi-periodic solutions, we prove the
following:
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Theorem 2. Let u0 = u1 + u2. Assume u1 is generic satisfying (I. i-iv.) and ‖u2‖ =
O(δ), where ‖·‖ is an analytic norm (about a strip of width O(1)) on Td. Let B(0, 1) =
(0, 1]b, where b is the dimension of the Fourier support of u1. Then there exists an
open set A ⊂ B(0, 1) of positive measure, such that for all A > 1, there exists δ0 > 0,
such that for all δ ∈ (−δ0, δ0), if {|û1|} ∈ A, then (1.1) has a unique solution u(t) for
|t| ≤ δ−A satisfying u(t = 0) = u0 and ‖u(t)‖ ≤ ‖u0‖+O(δ), moreover meas A → 1
as δ → 0.

Remark. It is essential that the set A is open, which enables us to establish an open
mapping theorem to analyze Cauchy problems .

For perturbations of the 1d cubic NLS (d = p = 1), similar stability results are
proven in [Ba, Bo5]. For parameter dependent equations see [BG, Bo3]. The equations
treated in [Ba, BG, Bo3, 5] are either L

2 or essentially L
2 well-posed. So there is a

priori global existence.

The equations treated in the theorem are of a different nature, there is no a priori
global existence from conservation laws. In fact existence is obtained via explicit con-
struction. Linearizing about approximate quasi-periodic solutions to prove existence
and uniqueness for a time arbitrarily longer than local existence time, which is O(δ−1),
is the main novelty.

As in sect. 2, we also have the following semi-classical counterpart, providing quan-
titative, almost global, L2 size 1 and large (kinetic) energy solutions to Cauchy prob-
lems. These solutions could be relevant to Cauchy problems for compressible Euler
equations.

Corollary 2. Set δ = 1 in (3.1). Assume u0 is generic with frequencies {jk}
b
k=1 ∈

[KZd]b, K ∈ N+. Let B(0, 1) = (0, 1]b. Then there exists an open set A ⊂ B(0, 1)
of positive measure, such that for all A > 1, there exists K0 > 0, such that for all
K > K0, if {|û0|} ∈ A, then (1.1) has a unique solution u(t) for |t| ≤ KA satisfying
u(t = 0) = u0 and ‖u(t)‖ ≤ ‖u0‖+O(1/K2), where ‖ · ‖ is an analytic norm (about a
strip of width O(1/K)) on Td, moreover meas A → 1 as K → ∞.

Remark. The previous related results are up to time O(K), by solving the associated
Hamilton-Jacobi equations before the arrival of caustics, cf. [Car].

A sketch of the proof

Writing the first equation in (3.1) as F (u) = 0, for u0 satisfying the conditions in
the theorem, we first find an approximate solution v such that

{

F (v) = O(δr), (3.2)

v(t = 0)− u0 = O(δr), (3.3)
9



where r > A > 1.

This approximate solution v is quasi-periodic with O(| log δ|) number of basic fre-
quencies. The construction of v comprises of a finitely iterated Newton scheme to
construct quasi-periodic solutions which solve (3.2) but (3.3) only to order δ and then
establishing an open mapping theorem using the spectral gap to solve (3.3) to order
δr.

Differentiate these quasi-periodic solutions with respect to the Fourier coefficients
of u(0) gives a basis which spans L

2(Td) and allows to control the linearized flow.
Schematically this could be understood as follows.

Assume u is a solution satisfying the equation F (u) = 0 and that it depends on a
parameter a, then ∂u/∂a is a solution to the linearized equation:

F ′(u)(
∂u

∂a
) = 0.

The difficulty here is that in the linearized equation for u, there is ū. However the
generic condition allows us to control the coupling of u and ū on the flat torus.

Using Duhamel’s formula and the linearized flow to control the difference of (3.1)
and (3.2, 3.3), we conclude the proof of the theorem.

4. Nonlinear Schrödinger equations on surfaces

We now consider the problem of nonlinear Schrödinger equations on smooth com-
pact manifolds (without boundary):

{

i ∂
∂tu = −∆u+ |u|2pu,

u(t = 0) = u0.

We specialize to dimension 2 and cubic nonlinearity (p = 1) as this is the most
amenable. So we study the Cauchy problem

{

i ∂
∂tu = −∆u+ |u|2u,

u(t = 0) = u0,
(4.1)

on a compact 2-manifold M .

It is known from [BGT1, ST] that (4.1) is uniformly locally wellposed in Hs for
s > 1/2, in fact the flow is Lipshitz. We note that the corresponding Strichartz
estimate on the flat 2-torus gives s > 0, cf. (1.2) and on the 2-sphere s > 1/4 [BGT2].
Both are known to be optimal [CCT, BGT2]. However the optimality of 1/2 on general
surfaces M remained open.

The following proposition constructs a counter example on the torus of revolution:
10



Proposition. Let ds2 = dx2 + g(x)dy2 with g ∈ C3 and admitting a unique global
maximum. Then there are initial data, which are eigenfunctions of the Laplacian, such
that the flow map is not Lipshitz in Hs for s < 1/2.

So the torus of revolution provides the geometric obstruction for going below H1/2

and 1/2 is the critical Sobolev exponents for local well-posedness on general surfaces.

A sketch of the proof

The Laplace-Beltrami operator decomposes into a direct sum of one dimensional
Schrödinger operators indexed by the Fourier variable k in the y direction. We take
as initial data the ground state ψ of such a Schrödinger operator when k is large. Let
λ be its eigenvalue, the proof hinges on the equivalence estimate on the L∞ norm of
ψ, namely

‖ψ‖∞ ≍ λ1/8 (4.2)

The proof of (4.2) uses Fourier and Hermite series analysis and a lemma of Bourgain
[Bo2, D], which relates L2 and L∞ estimates. Afterwards one uses standard short time
nonlinear analysis to complete the proof. (For the analysis details see [Cat].)

We note that the above instability is in the sense of derivatives by exploiting the fact
that in the linearized equation for u, there is ū, and there is growth of L∞ norm. On
the flat torus, the exponentials have Lp norm 1 for all p, which prevent this instablity.

The above instability is uniquely infinite dimensional as it relies on non-equivalence
of norms. However it is rooted in classical mechanics, namely the existence of lower di-
mensional tori, which leads to eigenfunction concentration phenomenon. The Hermite
series precisely represents the missing dimension in this picture.

Remark. Using the same type of construction, 2/3 [BSS] should be optimal for surfaces
with boundary.

5. Appendix: the cubic nonlinearity on Td

For simplicity we write u for u(0) and ω for ω(0), the solutions and frequencies of
the linear equation. The symbols of convolution for the cubic nonlinearity are |u|2,
u2 and ū2. Assume (n, j) ∈ C+ ((n, j) ∈ C− works similarly). In order that (n, j) is
connected to (n′j′) ∈ C, it is necessary that either

(a) [u ∗ v](n, j;n′j′) 6= 0 or

(b) [u ∗ u](n, j;n′j′) 6= 0.

Case (a): Since
n · ω + j2 = 0,

n′ · ω + j′
2
= 0,

11



subtracting the two equations gives immediately

(jk − j′k) · (j + jk) = 0, (5.1)

where jk, jk′ ∈ Zd (k, k′ = 1, ..., b) and jk 6= jk′ if k 6= k′, are the b Fourier components
of u.

Case (b): Since
n · ω + j2 = 0,

−n′ · ω + j′
2
= 0,

adding the two equations gives immediately

(j + jk) · (j + jk′) = 0, (5.2)

where jk, jk′ ∈ Zd (k, k′ = 1, ..., b) and jk 6= jk′ if k 6= k′, are the b Fourier components
of u.

(5.1, 5.2) are precisely the well known resonant set for the partial Birkhoff normal
form transform in [Bo4, GXY, KP]. (5.1, 5.2) describe rectangular type of geometry.

supp F0(u, v) ∩ {C\S} = ∅

for the cubic nonlinearity in any d. When d = 1, (5.1, 5.2) reduce to a finite set of 2b
lattice points in Z: {j = ±jk, k = 1, ..., b} and Ω = ∅ in the theorems and corollaries.
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