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EIGENFUNCTION LOCALIZATION FOR THE

2D PERIODIC SCHRÖDINGER OPERATOR

W.-M. Wang

Abstract. We prove that for any fixed trigonometric polynomial potential satisfying a
genericity condition, the spectrum of the two dimension periodic Schrödinger operator

has finite multiplicity and the Fourier series of the eigenfunctions are uniformly expo-
nentially localized about a finite number of frequencies. As a corollary, the Lp norms

of the eigenfunctions are bounded for all p > 0, which answers a question of Toth and

Zelditch [TZ].
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1. Introduction and statement of the theorem

We consider the Schrödinger operator on the square 2-torus T2:

H = − ∂2

∂x2
− ∂2

∂y2
+ V (1.1)

on L2([−π, π]2) with periodic boundary condition, where V is real and as a function
on R

2 is 2π × 2π periodic.

Let V be a trigonometric polynomial of degree k. Assume V is generic satisfying
the genericity conditions (i, ii) at the end of this section. Here it suffices to remark that
the genericity condition is explicit, for example cosx cos y is generic. Moreover the non
generic set is of codimension at least 1. We postpone the discussion of generic potentials
until then, where we will also show that for V of the form V (x, y) = V1(x) + V2(y), H
always has uniformly bounded multiplicity.

Our main result is

Theorem. Let V be a generic trigonometric polynomial of degree k. The spectrum of

H is of multiplicity at most Ck4 and the Fourier series φ̂ of the eigenfunctions φ with
eigenvalues E satisfy

|φ̂(j)| ≤ C
∑

|ℓ|≤Ck4

e−|j−jℓ|, (1.2)

where C is uniform in E, while {jℓ} depends on E:

{jℓ} ⊂ {(m,n) ∈ Z
2| |m2 + n2 −E| ≤ ‖V ‖∞ + 1}. (1.3)

The above Theorem has the following consequences. Using (1.2),

‖φ̂‖ℓ1 ≤ C′, (1.4)

and we have
‖φ‖L∞ ≤ C′. (1.5)

So we obtain

Corollary. The eigenfunctions φ have bounded Lp norms for all p > 0:

‖φ‖Lp(T2) < Cp, ∀p > 0. (1.6)

Motivation for the Theorem.

Our motivation is threefold. The first comes from spectral theory. Consider the
Laplacian on the d-torus. When d = 1, the periodic Schrödinger operator is also
called the Hill operator. Its spectral properties are well known. There is an extensive
literature on the subject starting from the 1946 paper of Borg on Sturm-Liouville
problems [Bor]. The main point here is that the equation n2 = E (E 6= 0) has only
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two solutions. The spectrum is therefore of multiplicity at most two. When d > 1, the
number of solutions to

n2
1 + n2

2 + · · ·+ n2
d = E (1.7)

grows with E. The spectrum of the Laplacian has unbounded multiplicity. The prob-
lem here is therefore basic, namely how to do perturbation theory when there is un-
bounded degeneracy.

Using separation properties of integer solutions to (1.7) and more generally to the
inequality:

|n2
1 + n2

2 + · · ·+ n2
d − E| ≤ A,

we prove that when d = 2 for generic trigonometric polynomial potentials, the spec-
trum of the periodic Schrödinger operator in (1.1) has finite multiplicity and the Fourier
series of the eigenfunctions are uniformly exponentially localized about a finite number
of frequencies, hence solving a basic problem in spectral theory.

There are previous results on some related problems. For the integrated density
of states of the corresponding Schrödinger operator on L2(R2), see the recent paper
[PS], cf. also [So]. There are results on the Schrödinger operators when T

2 is replaced
by R

d/Γ, where Γ is a generic lattice. Hence the multiplicity of the spectrum of the
Laplacian is typically finite [FKT1, 2].

A related motivation is the Lp bounds of eigenfunctions on compact manifolds X .
Let λ be an eigenvalue of a self-adjoint operator H on X . Define

Mp
def
= sup

φ
Hφ=λφ

‖φ‖Lp

‖φ‖L2

. (1.8)

Assume λ has multiplicity µ(λ). Taking p = ∞, it is easy to see that

M∞ ≥
√

µ

vol X
. (1.9)

by taking the eigenfunction ψ(x) =
∑µ

j=1 φ̄j(x0)φj(x), where {φj}µj=1 is an orthonor-

mal basis for the eigenspace corresponding to λ and x0 is the point where
∑µ

j=1 |φj(x0)|2 ≥
µ/vol X . Such an x0 always exists, since

∫
∑µ

j=1 |φj(x)|2 = µ. On the other hand,

there is the general upper bound from [H, SS]:

M∞ ≤ λ
d−1

4 . (1.10)

On the sphere (1.9, 1.10) are of the same order, where there is maximal eigenfunction
growth.

On the flat torus Td = R
d/Zd, (1.10) is far from optimal. For example, when d = 2

simple number theory consideration gives

M∞ ≪ λǫ, ∀ǫ > 0, (1.11)
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and there are λ, where M∞(λ) are at least logarithmic in λ. When p = 4, Zygmund
[Zy] proved however that M4(λ) ≤ 51/4.

With the addition of a generic polynomial potential V to the Laplacian, the theorem
says that on T

2, the Schrödinger operator H has finite multiplicity and

M∞ ≤ C. (1.12)

The corollary answers a question in [TZ, conj. 4.4], where it is further stipulated that
minimal growth criterion similar to (1.12) characterize flat manifolds under classical
integrability conditions. In this context, see [Bou] for an example where (1.11) is
violated by a change of metric. For a general survey on the subject with connections
to number theory and quantum chaos, see [Sa].

Our motivation for the present problem also comes from parameter dependent situ-
ations, e.g., time dependent or nonlinear perturbations of linear Schrödinger equations,
where typically the frequency (of the perturbation in the linear case and of the quasi-
periodic solutions in the nonlinear case) is an essential parameter in order to exclude
resonances.

The situation in (1.1) roughly corresponds to the resonant case, where the Theorem
shows that there is uniform Fourier restriction and (1.2) hold. (cf. [W] for a related
result in the time dependent case.) The small divisors are overcome deterministically
using the separation property of integer solutions to |m2 + n2 − E| ≤ ‖V ‖∞ + 1.

Method of the proof and genericity

Using the Fourier basis, H is unitarily transformed to a matrix operator Ĥ:

Ĥ = diag (m2 + n2) + V̂ ∗

on ℓ2(Z2), where V̂ is the Fourier series of V . To prove the Theorem, it suffices to
control local eigenvalue spacing. For a given E in the spectrum of H: σ(H), we only
need to consider the level set L = {(m,n)| |m2 + n2 − E| ≤ ‖V ‖∞ + 1}, which is the
resonant set. Using the separation property of L over Z2, the local Hamiltonians can
be reduced to effective matrices M of rank at most κ, where κ is uniform in E.

To investigate M, we first exclude a geometric singular set:

{(m,n)| |mα+ nβ| < K, (0, 0) 6= (α, β) ∈ Z
2, |α|, |β| ≤ ck, Z ∋ c, K > 1},

which includes rays determined by the Fourier support of V : supp V̂ . For M which
do not involve resonant sites in the geometric singular set, the sites are at least at a
distance ck apart. So we can approximate M by a direct sum of scalar (1×1 matrices)
functions. These scalars M correspond to the same function, but at different angles
θ, which in turn enable us to make 1 variable polynomial approximations of detM
leading to the genericity conditions on V .

We define the geometric support of V̂ to be

gsupp V̂
def
= {(a, b) ∈ Z

2\{0}|∃s ≥ 1 such that (sa, sb) ∈ supp V̂ },
4



and

va,b
def
=

∑

1≤s≤k

|V̂ (sa, sb)|2(a2 + b2), (a, b) ∈ gsupp V̂ ,

ga,b;c,d
def
=

∑

−k≤s,s′≤k
s,s′ 6=0

V̂ (sa, sb)V̂ (s′c− sa, s′d− sb)V̂ (s′c, s′d)

4s2s′
, (a, b), (c, d) ∈ gsupp V̂ .

Let

f = (1 + x2)
(

∑

(a,b)∈gsupp V̂

va,b
ax− b

(a+ bx)3
+

∑

(a,b),(c,d)∈gsupp V̂

ga,b;c,d
ax− b

(a+ bx)2(c+ dx)

)

,

where a+ bx 6= 0, c+ dx 6= 0; (1.13)

or

f = (1 + x2)
(

∑

(a,b)∈gsupp V̂

va,b
a− bx

(ax+ b)3
+

∑

(a,b),(c,d)∈gsupp V̂

ga,b;c,d
a− bx

(ax+ b)2(cx+ d)

)

,

where ax+ b 6= 0, cx+ d 6= 0. (1.14)

Both f are rational functions and can be written as

f =
P1

P2
(1.15)

with P1, P2 polynomials in x of degrees at most O(k4) and whose coefficients only

depend on V̂ and supp V̂ .

Definition. V is generic, if

(i)

∑

1≤s≤k

|V̂ (sa, sb)|2(a2+b2)−
∑

1≤|s|,|s′|≤k

V̂ (sa, sb)V̂ (s′a, s′b)V̂ ((s− s′)a, (s− s′)b))

4s2s′
6= 0.

(ii) Resultant (P1, P
′
1) 6= 0 for both P1 defined from (1.13-1.15).

(i, ii) show that cosx cos y are indeed generic as claimed earlier.

The analysis of the derivative of the scalar functionM uses the resolvent expansion.
The generic condition (i) ensures that when θ is close to the angle of a ray in the

geometric support of V̂ , the first two terms dominate and the derivative is away from
zero, cf. (4.4, 4.5).

When θ is otherwise, we make polynomial approximations. The genericity condition
(ii) comes from requiring both P1 to have only simple zeroes so that the excised set
contains at most O(k4) sites. In studying these polynomials, we also used a second
separation property, namely, if v1 and v2 are two non colinear vectors in the Fourier
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support of V , then the angle between them is of order 1. (For more details, see sect.
4.)

Consequently we show that for generic V , there are at most O(k4) local eigenvalues
which are “close” to any given E. Using again the separation property of the resonant
sites in the level sets L over Z2 mentioned above, we prove the Theorem.

We note that when V has separation of variables, i.e., V (x, y) = V1(x) + V2(y), the

geometric support of V̂ is of dimension 2 and the relevant polynomials can be written
in terms of x = m2 only, where m is the horizintal coordinate, and are of uniformly
bounded degree independent of k, cf., (4.13, 4.19- 4.21). It is easy to show that the
multiplicity of the eigenvalues are uniformly bounded in R and hence agree with the
known results.

The scheme presented here to localize an individual eigenfunction is essentially the
general one. Moreover it is intrinsically independent of self-adjointness. Instead it
relies on the geometry of the Fourier support of V , which is more intrinsic. In higher
dimensions, there are counterparts to the techniques used here, which might be worth
pursuing.

I thank P. Sarnak for several stimulating conversations and helpful comments on
specific points.

2. Partition of the annuli and singular set

Let

H = − ∂2

∂x2
− ∂2

∂y2
+ V (2.1)

on L2([−π, π]2) with periodic boundary condition as in section 1. Since V is a real
trigonometric polynomial of degree k, the Fourier series satisfies

supp V̂ ⊂ {(a, b) ∈ Z
2||a|, |b| ≤ k}.

Without loss, we may assume V̂ (0, 0) = 0. Otherwise it attributes an overall constant.
So

supp V̂ ⊂ {(a, b) ∈ Z
2\{(0, 0)}||a|, |b| ≤ k}. (2.2)

H is unitarily equivalent to

Ĥ = diag (m2 + n2) + V̂ ∗ (2.3)

on ℓ2(Z2), which is the operator that we will work with in the rest of the paper. From

now on we write H for Ĥ and V̂ for V̂ ∗.
Assume E is an eigenvalue of H,

E ∈ R + [−1/2, 1/2] (2.4)

for some Z ∋ R ≥ −‖V ‖∞. To deduce localization properties of the eigenfunctions,
we only need to be concerned with the annulus:

S
def
= {(m,n) ∈ Z

2| |m2 + n2 −R| ≤ ‖V ‖∞ + 1}, (2.5)
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as
‖(HZ2\S − E)−1‖ ≤ 2, (2.6)

where for any set A, A ⊂ Z
2, HA denotes the restricted operator:

HA(i, j) = H(i, j) (i, j) ∈ A× A, (2.7)

= 0, otherwise. (2.8)

The following separation property plays a crucial role:

Lemma 2.1. Let S′ be the annulus over R2: |x2+y2−R| ≤ ‖V ‖∞+1, R ∈ N. There
exist N ∋ κ > 0 (uniform in R) and Π a partition of S′ such that if R2 ⊃ p ∈ Π, then

• |p ∩ S′| = O(R1/6), (2.9)

• #{p ∩ S} ≤ κ, (2.10)

• dist ({p ∩ S}, ∂p) = O(R1/6), (2.11)

where | | in (2.9) denotes the length.

Remark. It follows from (2.9, 2.10) that #S ≤ O(R1/3). Estimates on the divisor
function give a better bound #S ≪ Rǫ for all ǫ > 0 (leading in particular to (1.11)),
but with no geometric information on the integers (m,n).

Proof. We use the argument of Janick [J], which extends to all stritly convex annuli,
cf. [CW]. For completeness we reproduce the proof for the circular annuli.

We first let A1, A2 and A3 be 3 integers (in this order) on the circle S̃ over R
2

centered at O = (0, 0) of radius R1/2, A1 6= A2 6= A3. In view of (2.9), it suffices to
assume that max (|A1A2|, |A2A3|) ≤ O(R1/6). Since they are not colinear, the area
S1 of the triangle formed by A1, A2 and A3 satisfy

N/2 ∋ S1 ≥ 1/2. (2.12)

From convexity the area S2 formed by the arc A1A2A3 and the straight segment A1A3

satisfies
S2 ≥ S1 ≥ 1/2.

But

S2 =
θ

2π
· πR− 1

2
R sin θ ≍ Rθ3 ≥ 1

2
, (2.13)

where θ is the angle formed by OA1 and OA3. So θ ≥ O(1/R1/3) and

|A1A3| ≥ O(R1/6) (2.14)

using that the radius is R1/2.

We now let A1, A2 and A3 be any 3 non colinear integers in S′, A1 6= A2 6= A3 and
max (|A1A2|, |A2A3|) ≤ O(R1/6). (2.12) holds. Let A′

j = OAj ∩ S̃, j = 1, 2, 3. The
7



area S′
1 formed by A′

j satisfies: S′
1 ≥ 1/2− O(1)R1/6 · R−1/2 > 1/4 using bilinearity.

So (2.14) holds. Since the number of colinear integers in S′ is bounded (uniformly in
R), (2.9-2.11) follow by choosing the O(R1/6) smaller than that in (2.14). []

Assume p ∈ Π is such that p ∩ S 6= ∅. Let Hp be defined as in (2.8), where for
simplicity we also used p to denote p ∩ Z

2. In section 3, we reduce the study of
σ(Hp)∩R+ [−1/2, 1/2] to that of an effective matrix M, where M is at most a κ× κ
matrix.

To further the analysis, we need to examine the sets p ∈ Π.

Lemma 2.2. Let (x, y) ∈ R
2 satisfy

|xα+ yβ| ≤ K, (K > 0, independent of R) (2.15)

for some (α, β) ∈ Z
2\{0}, |α|, |β| ≤ ck, (N ∋ c > 1) and k is the degree of the

polynomial V . Let

Π′ = {p ∈ Π|(2.15) is violated on p ∩ S′}, (2.16)

where S′ is as defined in Lemma 2.1. Then

|Π\Π′| ≤ 17c2k2. (2.17)

Assume K > c2k2+‖V ‖∞+1, we have more over that for p ∈ Π′, if (m,n), (m′, n′) ∈
p ∩ S′ satisfying (m−m′, n− n′) ∈ Z

2\{0}, then
sup (|m−m′|, |n− n′|) > ck. (2.18)

Proof. Since α and β are integers, (2.15) contains at most (2ck+1)2 tubes T bounded
by the straight lines

xα + yβ = ±K. (2.19)

Since for each T , T ∩ S′ contains 2 “arcs” of length O(2K + 1) ≪ O(R1/6), it can
intersect at most 4 p ∈ Π in view of (2.9), which leads to (2.17).

To prove (2.18), write m′ −m = α, n′ − n = β, (α, β) 6= (0, 0). We have
{

m2 + n2 = R′′,

(m+ α)2 + (n+ β)2 = R′,
(2.20)

with |R′ −R′′| ≤ 2(‖V ‖∞ + 1). So

|mα+ nβ| = 1

2
|(R′ −R′′)− (α2 + β2)|. (2.21)

On the other hand, since p ∈ Π′, for all Z2 ∋ (α, β) 6= (0, 0), |α|, |β| ≤ ck,

|mα+ nβ| > K > c2k2 + ‖V ‖∞ + 1. (2.22)

(2.21, 2.22) imply that

sup (|α|, |β|) = sup (|m−m′|, |n− n′|) > ck.

[]

From now on, Π′ is to denote the set satisfying (2.16) with K > c2k2 + ‖V ‖∞ + 1.

Remark. It is important to note that (2.15, 2.17) are independent of R. They only de-
pend on the degree k of the trigonometric polynomial V . Π\Π′ contains the “singular”
set. The effective Hamiltonian reduction will only be used in Π′, where the resonant
sites are at least at a distance ck apart.
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3. Effective Hamiltonian and reduction to scalar

We now assume p ∈ Π′ and use the Schur complement reduction [Sc1, 2] to in-
vestigate σ(Hp) ∩ [R − 1/2, R + 1/2], R ∈ N, where Hp is as defined in (2.8). Let
S = {(m,n) ∈ Z

2| |m2 + n2 − R| ≤ ‖V ‖∞ + 1}. Assume p ∩ S 6= ∅. Let P be the
projection onto p ∩ S and Pc onto p\S.

We have the following equivalence relation:

E ∈ σ(Hp) ∩ [R− 1/2, R+ 1/2] ⇐⇒ 0 ∈ σ(M), (3.1)

where
M = E − PHpP + PHpPc(E − PcHpPc)

−1PcHpP, (3.2)

cf. [Sect. 2.3, SZ]. Since Rank P ≤ κ, M is at most rank κ, i.e., a κ × κ matrix.
Moreover M is analytic in E for E ∈ (R − 1/2, R + 1/2). Since p ∈ Π′, in view of
(2.18), the first two terms in (3.2) are diagonal. In the following, we view E as a
parameter.

Assume c > 8 in (2.18). For all i ∈ p ∩ S, define:

Λ0 = i+ [−4k − 1, 4k + 1]2, (So Λ0 ∩ S = {i}.) (3.3)

M0 = HΛ0\{i}, (3.4)

M ′
ii = E − |i|2 + [V̂ (E −M0)

−1V̂ ](i, i), (3.5)

M ′ =M ′
ii, if |p ∩ S| = 1,

= ⊕iM
′
ii, if |p ∩ S| ≥ 2. (3.6)

M ′ is analytic in E for E ∈ (R − 1/2, R+ 1/2).

Proposition 3.1. For p ∈ Π′,

‖(M−M ′)πi‖ℓ2→ℓ2 ≤ O(1)
∑

(aℓ,bℓ)∈supp V̂

1
∏8

ℓ=1 |maℓ + nbℓ +
a2

ℓ+b2ℓ
2 − λ

2 | (3.7)

< O(
k16

K8
), (3.8)

for all E ∈ [R− 1/2, R+ 1/2], where i ∈ p ∩ S, i = (m,n), λ = E − |i|2 and πi is the
projection onto δi, provided K > c2k2 + c‖V ‖∞ + 1 (N ∋ c > 8).

Remark. It is important to note that the right side of (3.7) only depends on i = (m,n)

and supp V̂ .

The following lemma is crucial to prove the proposition, in fact to all subsequent
analysis. We first define a few notions. For (m,n) ∈ S′ = {(x, y)| |x2 + y2 − R| ≤
‖V ‖∞ + 1}, write m̄ = (m,n). Let

Z
2
m̄

def
= m̄+ Z

2. (3.9)
9



For j ∈ Z
2
m̄\{m̄}, define

Djj = E − |j|2 (3.10)

D = diag Djj . (3.11)

Assume D−1 exists and define

F (ā) =V̂ D−1(m̄, m̄+ ā)

def
= V̂ D−1(·, ·+ ā), ā ∈ supp V̂ ; (3.12)

F (ā1, ā2) = V̂ D−1(·, ·+ ā1)V̂ D
−1(·+ ā1, ·+ ā1 + ā2)

+ V̂ D−1(·, ·+ ā2)V̂ D
−1(·+ ā1, ·+ ā1 + ā2)

def
=

∑

perm (ā1,ā2)

V̂ D−1(·, ·+ ā1)V̂ D
−1(·+ ā1, ·+ ā1 + ā2), ā1, ā2 ∈ supp V̂ .

(3.13)

...

F (ā1, ā2, · · · ās) =
∑

perm (ā1,ā2···ās)

V̂ D−1(·, ·+ ā1)V̂ D
−1(·+ ā1, ·+ ā1 + ā2)

· · · V̂ D−1(·+
s−1
∑

ℓ=1

āℓ, ·+
s

∑

ℓ=1

āℓ), ā1, ā2, · · · ās ∈ supp V̂ .
(3.14)

Lemma 3.2. Assume m̄ = (m,n) ∈ Π′∩S′ and increase K to K > c2k2+c‖V ‖∞+1
(N ∋ c > 8), so |mα + nβ| > K > c2k2 + c‖V ‖∞ + 1, for all (α, β) ∈ Z

2\{0}, |α|,
|β| ≤ ck. Then

|F (ā1, ā2, · · · ās)| ≤ O(1)
s
∏

ℓ=1

|V̂ (aℓ, bℓ)|
|maℓ + nbℓ +

a2

ℓ+b2ℓ
2

− λ
2
|
, (3.15)

where ā1, ā2, · · · ās ∈ supp V̂ , 1 ≤ s ≤ c and λ = E −m2 − n2 as in (3.7).

Proof. When s = 1, (3.15) follows from the definition (3.12). When s = 2

4F (ā1, ā2) =
V̂ (a1, b1)V̂ (a2, b2)

(ma1 + nb1 +
a2

1
+b2

1

2 − λ
2 )(m(a1 + a2) + n(b1 + b2) +

(a1+a2)2+(b1+b2)2

2 − λ
2 )

+
V̂ (a2, b2)V̂ (a1, b1)

(ma2 + nb2 +
a2

2
+b2

2

2 − λ
2 )(m(a1 + a2) + n(b1 + b2) +

(a1+a2)2+(b1+b2)2

2 − λ
2 )
.

(3.16)
To simplify notation, let

Aℓ = maℓ + nbℓ +
a2ℓ + b2ℓ

2
− λ

2
, (3.17)
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and more generally

Aℓ1···ℓs = m

s
∑

ℓ=1

aℓ + n

s
∑

ℓ=1

bℓ +
(
∑s

ℓ=1 aℓ)
2 + (

∑s
ℓ=1 bℓ)

2

2
− λ

2
. (3.18)

So

(3.16) = V̂ (a1, b1)V̂ (a2, b2)[
1

A1A12
+

1

A2A12
]

= V̂ (a1, b1)V̂ (a2, b2)[
1

A1A2
+

O(1)

A1A2A12
].

(3.19)

Taking the absolute value, we obtain (3.15) for s = 2.

We now make an induction on s. Assume

F (ā1, ā2, · · · , ās) =
s
∏

ℓ=1

V̂ (aℓ, bℓ) · [
1

A1A2 · · ·As
+

O(1)

A1A2 · · ·AsA1···s
] (3.20)

holds at s. To arrive at s+ 1, we write

F (ā1, ā2, · · · ās+1) =
∑

σ

F (σ)
V̂ (σc)

A1···s+1
, (3.21)

where σ ⊂ {ā1, ā2, · · · , ās+1}, |σ| = s, σc is the complement, which only has one
element. Using (3.20) for F (σ), we obtain

F (ā1, ā2, · · · , ās+1) =

s+1
∏

ℓ=1

V̂ (aℓ, bℓ)·

[
A1 + A2 + · · ·+ As+1

A1A2 · · ·AsAs+1A1···s+1
+

∑

σ

O(1)

(
∏

ℓs∈σ Aℓs)AσA1···s+1
].

(3.22)

A1 +A2 + · · ·+ As+1 = A1···s+1 +O(1) (3.23)

and since
1

AσA1···s+1
= [

1

Aσ
− 1

A1···s+1
] · O(1)

Aσc

, (3.24)

(3.22) gives

F (ā1, ā2, · · · , ās+1) =

s+1
∏

ℓ=1

V̂ (aℓ, bℓ) · [
1

A1A2 · · ·As+1
+

O(1)

A1A2 · · ·As+1A1···s+1
]. (3.25)

Increasing K to K > c2k2 + c‖V ‖∞ + 1 in view of the O(1) in (3.23) and taking the
absolute value, we obtain (3.15). []

Proof of Proposition 3.1. Assume |p ∩ S| ≥ 2, otherwise set Mij = 0 (i 6= j, i, j ∈
{p ∩ S}) in the argument below. Let

i ∈ p ∩ S, Λc
0 = p\{Λ0 ∪ {p ∩ S}},

M c = PcHpPc, M
c
0 = HΛc

0
,

Γ =M c − (M0 ⊕M c
0),

(3.26)
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where Λ0 and M0 as defined in (3.3, 3.4).

Using (3.2, 3.5, 3.26) and the resolvent equation, we have

Mii −M ′
ii = V̂ (E −M0)

−1Γ(E −M c)−1V̂

=
∑

i′,i′′

[V̂ D−1]4(i, i′)[V̂ (E −M0)
−1Γ(E −M c)−1V̂ ](i′, i′′)[D−1V̂ ]4(i′′, i), (3.27)

where we used the fact that (3.3) implies

dist (i, supp Γ) > 3k. (3.28)

Using (3.15) for s = 4 and

‖(E −M0)
−1‖ = O(1/K),

‖(E −M c)−1‖ = O(1),

‖Γ‖ = O(1),

we obtain

|Mii −M ′
ii| ≤ O(1/K) ·

[ (2k + 1)8

4!

]2 · sup (aℓ,bℓ)∈supp V̂

8
∏

ℓ=1

1

|maℓ + nbℓ +
a2

ℓ+b2ℓ
2 − λ

2 |
,

(3.29)
where (m,n) = i. Similarly,

Mij =
∑

i′

[V̂ D−1]8(i, i′)[V̂ (E −M c)−1V̂ ](i′, j), i 6= j, i, j ∈ {p ∩ S}, (3.30)

where we used |i− j|∞ > ck > 8k. So

|Mij | ≤
(2k + 1)16

8!
min (m,n)=i,j · sup (aℓ,bℓ)∈supp V̂

8
∏

ℓ=1

1

|maℓ + nbℓ +
a2

ℓ+b2ℓ
2 − λ

2 |
(3.31)

using (3.15) and Mij = Mji. (3.29, 3.31) imply (3.7, 3.8). []

The scalar Hamiltonian.

Let
Mii =M ′

ii −E + |i|2

=M ′
ii − λ

= [V̂ (E −M0)
−1V̂ ](i, i), i ∈ p ∩ S ⊂ Z

2,

(3.32)

from (3.3-3.5). Mii is the scalar Hamiltonian that we will study in detail in section 4.
Here it suffices to note that for fixed E and |i|, Mii is only a function of the angle θ:
Mii =Mii(θ). Moreover for i ∈ p∩S′ ⊂ R

2, defining Λ0 as in (3.3), Λ0 ⊂ Z
2
i = i+Z

2,
M0 defined in (3.4) extends to a matrix on ℓ2(Λ0).
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For i such that Λ0 ⊂ p ∈ Π′, (E −M0)
−1 is well defined for E ∈ [R− 1/2, R+ 1/2]

with
‖(E −M0)

−1‖ℓ2(Λ0\{i}) ≤ O(1/K). (3.33)

This is because for any two points (m′, n′), (m′′, n′′) ∈ Λ0, assuming (m′, n′) 6=
(m′′, n′′), one writes m′′ = m′ + α, n′′ = n′ + β with Z

2 ∋ (α, β) 6= 0. Assuming

m′2 + n′2 = R′,

m′′2 + n′′2 = R′′,
(3.34)

one obtains

|m′α + n′β| = 1

2
|R′ −R′′ − (α2 + β2)| > K > c2k2 + c‖V ‖∞ + 1, (3.35)

since p ∈ Π′and we used the larger K from Proposition 3.1.

From (3.3), sup (|α|, |β|) ≤ 8k+2, so (α2+β2)/2 ≤ (8k+2)2. Using this in (3.35) we
have |R′−R′′| > 2(K− (8k+2)2) > 2((c2−65)k2+ c‖V ‖∞+1). Since i ∈ Λ0 satisfies
||i|2−R| ≤ ‖V ‖∞+1 and N ∋ c > 8, this proves (3.33). We now viewMii as a function
of θ, defined on appropriate arcs of the circle S′

i = {(x, y)| |x2 + y2 = |i|2} ⊂ R
2.

4. Polynomial approximation and generic V

In this section, we investigate the scalar Hamiltonian

Mii = [V̂ (E −M0)
−1V̂ ](i, i) (4.1)

as defined in (3.32, 3.3-3.5). From (3.33), |Mii| ≤ O(1/K), whereK > c2k2+c‖V ‖∞+1
and N ∋ c > 8. Since E ∈ [R − 1/2, R+ 1/2], for the purpose of this section, we only

need to consider i such that i = (m,n) = (
√
R cos θ,

√
R sin θ). Let S̃ = {(m,n) ∈

R
2|m2 + n2 = R} and D the diagonal part of E −M0 as before:

Dℓℓ = E − |ℓ|2 = R+ λ− |ℓ|2, λ ∈ [−1/2, 1/2]. (4.2)

Writing ∂ for ∂θD and using the resolvent equation, we have

∂Mii

∂θ
=[V̂ (E −M0)

−1(∂)(E −M0)
−1V̂ ](i, i) (4.3)

=(V̂ D−1)∂(D−1V̂ ) (4.4)

+[(V̂ D−1)∂(D−1V̂ )2 + (V̂ D−1)2∂(D−1V̂ )] (4.5)

+[(V̂ D−1)2∂(D−1V̂ )2 + (V̂ D−1)∂(D−1V̂ )3 + (V̂ D−1)3∂(D−1V̂ )] (4.6)

+[(V̂ D−1)∂((E −M0)
−1V̂ )(D−1V̂ )3 + (V̂ D−1)3(V̂ (E −M0)

−1)∂(D−1V̂ )

+ (V̂ D−1)2∂(D−1V̂ )3 + (V̂ D−1)3∂(D−1V̂ )2] (4.7)

+[(V̂ D−1)2∂((E −M0)
−1V̂ )(D−1V̂ )3 + (V̂ D−1)3(V̂ (E −M0)

−1)∂(D−1V̂ )2

+ (V̂ D−1)3∂(D−1V̂ )3] (4.8)

+[(V̂ D−1)3∂((E −M0)
−1V̂ )(D−1V̂ )3 + (V̂ D−1)3(V̂ (E −M0)

−1)∂(D−1V̂ )3]
(4.9)

+[(V̂ D−1)3(V̂ (E −M0)
−1)∂((E −M0)

−1V̂ )(D−1V̂ )3], (4.10)

where it is understood that (4.4-4.10) pertain to the (i, i) entry. It follows immediately

from Lemma 3.2 and ‖∂θD‖ = O(
√
R):
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Lemma 4.1.

1√
R
|[(4.6)+ · · ·+ (4.10)]| ≤ O(1)

∑

(aℓ,bℓ)∈supp V̂

1
∏4

ℓ=1 |maℓ + nbℓ +
a2

ℓ+b2ℓ
2 − λ

2 |
, (4.11)

where (m,n) = i.

The rest of this section is devoted to estimate the main terms (4.4, 4.5). Before
that we first estimate (4.1), which gives an appoximation to λ.

Lemma 4.2.

|Mii| ≤ O(1)
[

∑

(aℓ,bℓ)∈supp V̂

1

|maℓ + nbℓ|
]2
, (4.12)

where (m,n) = i and |maℓ + nbℓ| > K > c2k2 + c‖V ‖∞ + 1 (N ∋ c > 8).

Proof. Using the resolvent equation, we have

Mii = V̂ D−1V̂ + V̂ D−1V̂ D−1V̂ + V̂ D−1V̂ (E −M0)
−1V̂ D−1V̂ , (4.13)

where the right side only refers to the (i, i) entry.

For any (a, b), (a′, b′) ∈ Z
2\{0}, we say (a, b) ∼ (a′, b′) if (a, b) = s(a′, b′) or (a′, b′) =

s(a, b), s ∈ Z\{0}. We call this equivalent class Ca,b if (a, b) is such that a ≥ 0, a+b ≥ 0
and |(a, b)| ≤ |(a′, b′)| for all (a′, b′) such that (a, b) ∼ (a′, b′). We define the geometric

support of V̂ to be

gsupp V̂
def
= {(a, b) ∈ Z

2\{0}|∃s ≥ 1 such that (sa, sb) ∈ supp V̂ }. (4.14)

Assume (a, b) ∈ gsupp V̂ , we define

λa,b =
∑

(a′b′)∈Ca,b

V̂ (a′, b′)D−1(i+ (a′, b′), i+ (a′, b′))V̂ (−a′,−b′) (4.15)

=
∑

s≥1

(sa,sb)∈supp V̂

V̂ (sa, sb)D−1(i+ (sa, sb), i+ (sa, sb))V̂ (−sa,−sb)
(4.16)

+ V̂ (−sa,−sb)D−1(i− (sa, sb), i− (sa, sb))V̂ (sa, sb)
(4.17)

Using the above, we have

V̂ D−1V̂ =
∑

(a,b)∈gsupp V̂

λa,b, (4.18)

where

λa,b =
∑

s≥1

|V̂ (sa, sb)|2[− 1

2sam+ 2sbn+ s2a2 + s2b2 − λ
+

1

2sam+ 2sbn− (s2a2 + s2b2 − λ)
]

=
∑

s≥1

|V̂ (sa, sb)|2 · (s2a2 + s2b2 − λ)

2s2
· 1

(ma+ nb)2 − ( s
2a2+s2b2−λ

2s )2
,

(4.19)
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|a|, |b| ≤ k, (a, b) 6= (0, 0) and λ ∈ [−1/2, 1/2]. So

V̂ D−1V̂ = O(1)
∑

(aℓ,bℓ)∈gsupp V̂

1

(maℓ + nbℓ)2
, (4.20)

if |maℓ + nbℓ| > K > c2k2 + c‖V ‖∞ + 1 (N ∋ c > 8).

The second and third terms in the right side of (4.13) are bounded above by

O(1)
[

∑

(aℓ,bℓ)∈supp V̂

1

|maℓ + nbℓ|
]2

and O(1/K)
[

∑

(aℓ,bℓ)∈supp V̂

1

|maℓ + nbℓ|
]2
. (4.21)

(4.20, 4.21) imply (4.12). []

Since (4.4) = ∂
∂θ (4.18), we take the derivative of (4.19) and have

1√
R

∂

∂θ
λa,b = −

∑

1≤s≤k

|V̂ (sa, sb)|2(s2a2 + s2b2 − λ)

s2

(a sin θ − b cos θ) · (ma+ nb)

[(ma+ nb)2 − ( s
2a2+s2b2−λ

2s )2]2
,

(4.22)

|a|, |b| ≤ k, (a, b) 6= (0, 0).

For a fixed (a, b) ∈ gsupp V̂ , (4.22) have a sign. More precisely, the vectors (a, b) and
(−b, a) divide R2 into four quadrants. If (m,n) is in the first and third, 1√

R
∂
∂θ
λa,b > 0,

otherwise 1√
R

∂
∂θλa,b < 0. But the quadrants vary according to (a, b) leading to can-

cellations in the sum:
1√
R

∑

(a,b)∈gsupp V̂

∂

∂θ
λa,b =

(4.4)√
R
. (4.23)

The following separation property of gsupp V̂ plays an essential role in determining
zeroes of (4.23).

Lemma 4.3. Let (m,n) ∈ S̃, the circle centered at (0, 0) of radius
√
R in R

2. If there

exists (a, b) ∈ gsupp V̂ , N ∋ |a|, |b| ≤ k, such that

|ma+ nb| < ǫ
√
R, ǫ > 0, (4.24)

then for all
(a′, b′) ∈ gsupp V̂ \{(a, b)} (4.25)

|ma′ + nb′| > [O(1/k)− ǫ]
√
R. (4.26)

Proof.

ma+ nb = (m,n) · (a, b) =
√
R ·

√

a2 + b2 · cos θ =
√
R ·

√

a2 + b2 · sinφ, (4.27)

where θ is the angle between (m,n) and (a, b), φ = π/2− θ.

ma′ + nb′ =
√
R ·

√

a′2 + b′2 · cos θ′ =
√
R ·

√

a′2 + b′2 · sinφ′

=
√
R ·

√

a′2 + b′2 · sin(φ′ − φ+ φ),
(4.28)

where θ′ is the angle between (m,n) and (a′, b′), φ′ = π/2− θ′. Since min |φ′ ± φ| =
O(1/k) for (a′b′) satisfying (4.25), using (4.24) in (4.26, 4.27), we obtain (4.26). []

Using Lemma 4.3 in (4.12), we obtain that λ ∈ [−O(1/K2),O(1/K2)] in (4.22).
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Lemma 4.4. Let (m,n) ∈ S̃, the circle centered at (0, 0) of radius
√
R in R

2. If there

exists (a, b) ∈ gsupp V̂ such that

|ma+ nb| < ǫ
√
R, (0 < ǫ < 1/k3), (4.29)

then
|(4.4) + (4.5)|√

R
> O(1)

1

|ma+ nb|3

> O(
1

ǫ3
)

1

R3/2
,

(4.30)

if

∑

1≤s≤k

|V̂ (sa, sb)|2(a2+ b2)−
∑

1≤|s|,|s′|≤k

V̂ (sa, sb)V̂ (s′a, s′b)V̂ ((s− s′)a, (s− s′)b))

4s2s′
6= 0.

(4.31)

Proof. We first assume a ≥ 0 and b ≥ 0. Write m =
√
R cos θ and n =

√
R sin θ. We

distinguish in (4.5) the terms only involve V̂ (sa, sb) with (a, b) ∈ gsupp V̂ satisfying
(4.29), 1 ≤ |s| ≤ k and call the sum µa,b. We have

µa,b =
∑

1≤|s|,|s′|≤k

V̂ (sa, sb)V̂ (s′a, s′b)V̂ ((s− s′)a, (s− s′)b))

4s2s′

(a sin θ − b cos θ) · 1

(ma+ nb)3
+O(

1

(ma+ nb)5
).

(4.32)

There are three cases: a > 0, b > 0; a = 0, b > 0 and a > 0, b = 0.

(i) a > 0, b > 0, (4.29) implies cos θ sin θ ≤ 0. Otherwise |ma+ nb| > |m|+ |n| >
√
R.

So |a sin θ − b cos θ| ≥ 1 and

1√
R
| ∂
∂θ
λa,b + µa,b| > O(1) · 1

|ma+ nb|3

from (4.22, 4.32), where we used (4.31, 4.12).

(ii) a = 0, b > 0, (4.29) reduces to

|nb| < ǫ
√
R.

So
| sin θ| < O(ǫ), | cos θ| > 1−O(ǫ). (4.33)

Using (4.29, 4.33) in (4.22, 4.32), we obtain

1√
R
| ∂
∂θ
λ0,b + µ0,b| > O(1) · 1

|ma+ nb|3 (4.34)

(ii) a = 0, b > 0, similarly,

1√
R
| ∂
∂θ
λa,0 + µa,0| > O(1) · 1

|ma+ nb|3 (4.35)
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Clearly, same estimates hold for a ≥ 0 and b ≤ 0. So we have

1√
R
| ∂
∂θ
λa,b + µa,b| > O(1)

1

|ma+ nb|3

> O(
1

ǫ3
) · 1

R3/2
> O(

1

ǫ3
) ·

∑

(a′b′)6=(a,b)

(a′b′)∈gsupp V̂

1

|ma′ + nb′|3

> O(
1

ǫ3
)

1√
R

∑

(a′b′)6=(a,b)

(a′b′)∈gsupp V̂

| ∂
∂θ
λa′,b′ |,

(4.36)

where we used (4.29, 4.32-4.35, 4.22) and Lemma 4.3.

So

|(4.4) + µa,b|
δ2
√
R

>
1√
R

[

| ∂
∂θ
λa,b + µa,b| −

∑

(a′b′)6=(a,b)

(a′b′)∈gsupp V̂

| ∂
∂θ
λa′,b′ |

]

> (1−O(ǫ3k2))
1√
R
| ∂
∂θ
λa,b + µa,b|

> O(1)
1

|ma+ nb|3

> O(
1

ǫ3
)

1

R3/2
.

(4.37)

Since each term in (4.5) aside from µa,b is third order in D−1 involving at least one

(a′, b′) ∈ gsupp V̂ , (a′, b′) 6= (a, b), (4.24, 4.26) imply

| (4.5)− µa,b√
R

| < O(k2)
1

|ma+ nb|2|ma′ + nb′| < O(ǫk3)
1

|ma+ nb|3 .

Combining with (4.37), this proves the lemma for 0 < ǫ < 1/k3. []

Combining Lemme 4.1 and 4.4, we have

Proposition 4.5. Let (m,n) ∈ S̃ ∩Π′. If there exists (a, b) 6= (0, 0), (a, b) ∈ gsupp V̂
such that

|ma+ nb| < ǫ
√
R, (0 < ǫ < 1/k3), (4.38)

then

1√
R
|∂Mii

∂θ
| > O(1)

|ma+ nb|3 >
O(1)

R3/2
, (|ma+nb| > K > c2k2 + c‖V ‖∞ +1,N ∋ c > 8),

(4.39)
provided (4.31) holds.

Proof. This follows immediately from (4.30, 4.11, 4.3). []
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Polynomial approximation.

It follows from Proposition 4.5 that in order to control the zeroes of ∂Mii

∂θ
, we only

need to restrict to (m,n) such that

|ma+ nb| ≥ ǫ
√
R (4.40)

for all (a, b) ∈ gsupp V̂ . More precisely, in view of Lemma 4.1, we want to exclude θ
satisfying (4.40) such that

1√
R

∣

∣

∑

(a,b)∈gsupp V̂

∂

∂θ
λa,b + (4.5)

∣

∣ = | (4.4) + (4.5)√
R

| ≤ O(1)

R2
. (4.41)

Let

Λ
def
=

1√
R

(

∑

(a,b)∈gsupp V̂

∂

∂θ
λa,b + (4.5)

)

, (4.42)

va,b
def
=

∑

1≤s≤k

|V̂ (sa, sb)|2(a2 + b2), (a, b) ∈ gsupp V̂ , (4.43)

ga,b;c,d
def
=

∑

−k≤s,s′≤k
s,s′ 6=0

V̂ (sa, sb)V̂ (s′c− sa, s′d− sb)V̂ (s′c, s′d)

4s2s′
, (a, b), (c, d) ∈ gsupp V̂ .

(4.44)

Assume (m,n) such that (4.40) hold for all (a, b) ∈ gsupp V̂ and λ = O(1/R), then

Λ =
1

R3/2

(

∑

(a,b)∈gsupp V̂

va,b
a sin θ − b cos θ

(a cos θ + b sin θ)3

+
∑

(a,b),(c,d)∈gsupp V̂

ga,b;c,d
a sin θ − b cos θ

(a cos θ + b sin θ)2(c cos θ + d sin θ)

)

(4.45)

+O(
1

R2
) +O(

1

R5/2
)

def
=

1

R3/2
Λ1 +O(

1

R2
) +O(

1

R5/2
), (4.46)

where va,b and ga,b;c,d as in (4.43).

Let ν = |gsupp V̂ | ≤ O(k2), (4.40) define 2ν arcs Γ′ of the circle S̃. Let (a, b)⊥
be the ray perpendicular to (a, b) ∈ gsupp V̂ : (a, b)⊥ · (a, b) = 0. Then for all Γ′,
Γ′ ∩ (a, b)⊥ = ∅, for all (a, b) ∈ gsupp V̂ , and Λ1 is well defined on Γ′.

Let
x = tan θ, when | tan θ| ≤ 1,

x = coth θ, when | coth θ| < 1.
(4.47)
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Rewrite Λ1 in terms of x and call the resulting function f . We have

f = (1 + x2)
(

∑

(a,b)∈gsupp V̂

va,b
ax− b

(a+ bx)3
+

∑

(a,b),(c,d)∈gsupp V̂

ga,b;c,d
ax− b

(a+ bx)2(c+ dx)

)

,

| tan θ| ≤ 1, x = tan θ, |x| ≤ 1, (4.48)

f = (1 + x2)
(

∑

(a,b)∈gsupp V̂

va,b
a− bx

(ax+ b)3
+

∑

(a,b),(c,d)∈gsupp V̂

ga,b;c,d
a− bx

(ax+ b)2(cx+ d)

)

,

| coth θ| ≤ 1, x = coth θ, |x| < 1. (4.49)

Both f are rational functions and can be written as

f =
P1

P2
, (4.50)

where P1 and P2 are polynomials in x of degrees at most 3(ν2 + ν) < 4ν2 and

0 < |P2| < O(1) (4.51)

on arcs Γ′, defined above (4.47). Moreover P1 is a polynomial whose coefficients only

depends on V̂ and supp V̂ in view of (4.43, 4.48, 4.49). It is of the form

P1 = Apx
p + Ap−1x

p−1 + · · ·+ A0, Ap 6= 0, 0 < p < 4ν2, (4.52)

and
Aj = Aj(V̂ , supp V̂ ). (4.53)

From (4.51), the set

I
def
= {x||f(x)| < 1√

R
} ⊆ I1

def
= {x||P1(x)| <

O(1)√
R

}. (4.54)

To bound the measure of I1, we use the resultant. From (4.52),

P ′
1 = pApx

p−1 + (p− 1)Ap−1x
p−2 + · · ·+A1. (4.55)

By definition,

Resultant (P1, P
′
1) = det













Ap Ap−1 Ap−2 · · · A1 A0 · · · · · ·
0 Ap Ap−1 · · · · · · A1 A0 · · ·
...

... Ap Ap−1 · · · A0

pAp (p− 1)Ap−1 (p− 2)Ap−2 · · · A1 0 · · · · · ·
0 · · · 0 · · · · · · pAp · · · A1













,

(4.56)

and let D(V̂ ) denote the above resultant. (4.57)

If D(V̂ ) 6= 0, P1 and P ′
1 have no common roots. Let Γ ⊂ S̃ be the largest set such

that on Γ, (4.40) hold for all (a, b) ∈ gsupp V̂ . Since R is fixed, we also use Γ to denote
the corresponding set of angles θ ∈ [0, 2π).
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Lemma 4.6. Assume V is such that D(V̂ ) 6= 0 for both P1 defined from (4.48-4.50),
and λ = O(1/R), then

mes {θ ∈ Γ||Λ(θ)| ≤ γ

R2
} ≤ γCV√

R
, (4.58)

where Λ is as defined in (4.42). Moreover the set in (4.58) has at most O(k4) connected
components.

Proof. P1 is of degree at most 4ν2, with ν = |gsupp V̂ | = O(k2). So P1 has at most

4ν2 zeroes. Since D(V̂ ) 6= 0,

min {|P ′
1(x)|P1(x) = 0} > 1

CV
> 0. (4.59)

So

mes {x|P1(x)| ≤
γ√
R
} ≤ γCV√

R
, (4.60)

(4.59, 4.48-4.50, 4.45) and the fact that

dθ = ± 1

1 + x2
dx

imply (4.58). []

5. Proof of the Theorem

Assume V is a generic trigonometric polynomial of degree k satisfying the genericity
conditions (i, ii) in sect. 1, so that Lemmas 4.4 and 4.6 are available. Let S̃ be the

circle over R2 of radius
√
R, R ∈ N as before. Take c = 9 in Lemma 2.2 and define the

geometric singular set

Θg
def
= {θ ∈ [0, 2π)||α cos θ + β sin θ| ≤ K√

R
for some (α, β) ∈ [−9k, 9k]2\{0}, (5.1)

where
K > c2k2 + c‖V ‖∞ + 1 = 81k2 + 9‖V ‖∞ + 1. (5.2)

Θg has at most O(k2) connected components and

mes Θg =
O(1)√
R

on [0, 2π). (5.3)

We also use Θg to denote the corresponding arcs of S̃, As before, let

Γ = {(m,n) ∈ S̃||ma+ nb| ≥ ǫ
√
R, ∀(a, b) ∈ gsupp V̂ }, (5.4)

where 0 < ǫ < 1/k3.
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Assume λ = O(1/R) and let Θa ⊂ Γ be the algebraic singular set defined in (4.58)
with γ > k10/ǫ4 > k22 in view of (4.11) and (4.40),

mes Θa ≤ O(1)√
R

on [0, 2π), (5.5)

where O(1) = γCV . Define
Θ = Θg ∪Θa (5.6)

and let Θ also denote the corresponding set on S̃. Θ has at most O(k4) connected
components,

mes Θ = O(1) on S̃. (5.7)

Let p ∈ Π, Π as defined in Lemma 2.1 and S̄ = S̃ ∩ Z
2. Assume

p ∩Θ = ∅, p ∩ S̄ 6= ∅. (5.8)

Define

Mdef
= Mp (5.9)

as in (3.2), M ′ as in (3.3-3.6) and Mii as in (4.1) first for i ∈ p∩ S̄, then for i ∈ S̃\Θg.

Lemma 5.1. Assume
λ′ +Mii(λ

′) = 0, (5.10)

where λ′ = E − |i|2 = E −R. Then on Γ defined in (5.4),

λ′ = O(
1

R
); (5.11)

and on each connected component of

S′′def= S̃\Θ (5.12)

either
1√
R

dλ′

dθ
≥ O(1)

∑

(aℓ,bℓ)∈gsupp V̂

1
∏4

ℓ=1 |maℓ + nbℓ|
, (5.13)

or
1√
R

dλ′

dθ
≤ −O(1)

∑

(aℓ,bℓ)∈gsupp V̂

1
∏4

ℓ=1 |maℓ + nbℓ|
, (5.14)

where i = (m,n) =
√
R(cos θ, sin θ).

Proof. (5.11) follows from Lemma 4.2. Using (4.30) or (4.58) in (4.4, 4.5), Lemma 4.1
in (4.6-4.10), we obtain

1√
R

∣

∣

∂Mii

∂θ
‖ ≥ O(1)

∑

(aℓ,bℓ)∈gsupp V̂

1
∏4

ℓ=1 |maℓ + nbℓ|
, (5.15)

R
2 ∋ i = (m,n) on S̃\Θ. Here we also used (5.11), when θ ∈ Γ. Moreover it is sign

definite on each connected component of S̃\Θ = S′′. From (5.10)

−dλ
′

dθ
=
∂Mii

∂θ
+
∂Mii

∂λ′
· dλ

′

dθ
. (5.16)

So
dλ′

dθ
= (−1 +O(1/K2)) · ∂Mii

∂θ
, (5.17)

where we used (3.33). Using (5.15), we obtain the lemma. []
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Proposition 5.2. The set S′′ = S̃\Θ has at most O(k4) connected components. Let
Γ′′ ⊂ S′′ be a connected component. Assume p, p′ ∈ Π and p, p′ ∩ S̄ 6= ∅ be such that
p, p′ ∩ S̃ ⊂ Γ′′. Let i ∈ {p, p′ ∩ S̄}, λi = E − |i|2 = E −R ∈ [−1/2, 1/2] be such that

0 ∈ σ(M(λi)), (5.18)

where M = Mp or Mp′. Let λ′i = E′ − |i|2 = E′ −R ∈ [−1/2, 1/2] be such that

0 = λ′i +Mii(λ
′
i). (5.19)

Then

|λi − λ′i| = O(1)
∑

(aℓ,bℓ)∈gsupp V̂

1
∏8

ℓ=1 |maℓ + nbℓ|
, (m,n) = i, (5.20)

and

|λi − λj′ | > sup
(m,n)=i,j′

∑

(aℓ,bℓ)∈gsupp V̂

O(1)
∏4

ℓ=1 |maℓ + nbℓ|
, i, j′ ∈ {p, p′ ∩ S̄}, i 6= j′.

(5.21)

Proof. The number of connected components follow from the definition of Θ in (5.1,
4.58, 5.6). Assume M = Mp has rank ≥ 2. Write the right side of (3.29) as Oi. We
have

F (E) = det(M(E))

=
∏

j

(E − |j|2 +Mjj(E) +Oj) +O(
∑∏

Mij), (5.22)

where the second product contains at least two off diagonal elements. So

F ′(E) =
∑

j

∏

j′ 6=j

(E − |j′|2 +Mjj(E) +Oj′)(1 +
∂Mjj

∂E
(E) +Oj)

+Oij ,

(5.23)

where we used Oij to denote the right side of (3.31) and analyticity in E to reach
(5.23).

Let E = |i|2 + λ′i and write F (λ′i), F
′(λ′i) for F (|i|2 + λ′i), F

′(|i|2 + λ′i) respectively.

Since
∂Mjj

∂E = O(1/K2), (5.23) gives

|F ′(λ′i)| ≥ (1−O(1/K2))

{ |λ′i − λ′j′ | −maxij Oij , if ∃j′ ∈ p, j′ 6= i, |j′|2 = R,

O(1), otherwise,
(5.24)

where we also used (4.12). Using (5.13) or (5.14), we have for any j̃ ∈ Γ′′, |j̃ − i| ≥ 1
and

|λ′i − λ′
j̃
| = |

∫ i

j̃

(
dλ′

dθ
)dθ| ≥ max

(m,n)=i,j̃

∑

(aℓ,bℓ)∈gsupp V̂

1
∏4

ℓ=1 |maℓ + nbℓ|
≫ max

ij̃
Oij̃ .

(5.25)
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So

|F ′(λ′i)| ≥ (1−O(1/K2))

{ |λ′i − λ′j′ |, if ∃j′ ∈ p, j′ 6= i, |j′|2 = R,

O(1), otherwise.
(5.26)

From (5.22),

|F (λ′i)| ≤ Oi

{ |λ′i − λ′j′ |, if ∃j′ ∈ p, j′ 6= i, |j′|2 = R,

O(1), otherwise.
(5.27)

Let 0 < a≪ 1.

F (λ′i ± a) = F (λ′i)± aF ′(λ′i) +O(a2) = F ′(λ′i)(
F (λ′i)

F ′(λ′i)
± a) +O(a2). (5.28)

Since

| F (λ
′
i)

F ′(λ′i)
| ≤ Oi

def
= O(1)

∑

(aℓ,bℓ)∈gsupp V̂

1
∏8

ℓ=1 |maℓ + nbℓ|
(5.29)

from (3.29), for a > 10Oi, F (λ
′ + a) and F (λ′ − a) have opposite signs. Since F is

analytic, this implies F (λi) = 0 for some

λi ∈ λ′i + (−11Oi, 11Oi), (5.30)

which proves (5.20). Since similar statements hold for λj′ , we obtain

|λi − λj′ | >
1

2
|λ′i − λ′j′ |, (5.31)

implying (5.21) by using (5.25).

Clearly simpler arguments apply when M is a scalar as F ′(λ′i) = (1−O(1/K2)) >
1/2 and F ′(λ′i) = Oi. Combining the two cases, we obtain the proposition. []

Proof of the Theorem.

σ(H) = σ(Ĥ) ⊆ ∪R∈Z[R − 1/2, R+ 1/2]. (5.32)

In the following lines, we go back to the convention of writing H for Ĥ. Since R ≥
−‖V ‖∞ and for −‖V ‖∞ < R ≤ 0, (1,2, 1.3) are obvious, we only need to be concerned
with R ∈ N. From Proposition 5.2, given E ∈ [R − 1/2, R + 1/2], R ∈ N, there exist
at most O(k4) p ∈ Π, such that

dist (E, σ(Hp)) ≤ o(
1

R2
). (5.33)

First recall

S′ = {(x, y) ∈ R
2| |x2 + y2 −R| ≤ ‖V ‖∞ + 1}, S = S′ ∩ Z

2,

S̃ = {(x, y) ∈ R
2| x2 + y2 = R}, S̄ = S̃ ∩ Z

2
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and Θ as defined in (5.1, 4.58, 5.6). This is because

• if p ∩Θ = ∅ and p ∩ S̄ = ∅, then

dist (σ(Hp), [R− 1/2, R+ 1/2]) ≥ O(1),

from Proposition 3.1, Lemma 4.2 and analyticity of Mp in E,

• S′′ = S̃\Θ has at most O(k4) connected components Γ′′. On each Γ′′, (5.21) hold,

• Θ has at most O(k4) connected components and mes Θ = O(1) on S̃,

• for all p ∈ Π, |p ∩ S̃| = O(R1/6)|, |p ∩ S| ≤ κ.

Assume p ∩ S 6= ∅. Since

dist ({p ∩ S}, ∂p) = O(R1/6) (5.34)

by construction (Lemma 2.1), this implies

dist (σ(Hp), σ(H)) = O(e−R1/6

). (5.35)

This is because if φ̂ is an eigenfunction of Hp with eigenvalue E, then (H − E)φ̂ =

O(e−R1/6

), which implies (5.35).

In fact more generally, for all Λ such that either Λ ⊂ p or Λ ⊇ p:

dist (σ(Hp), σ(HΛ)) = O(e−min (d1,d2)). (5.36)

where

d1 = dist ({p ∩ S}, ∂Λ}, (5.37)

d2 = dist ({p ∩ S}, ∂p}. (5.38)

Let E ∈ σ(H), since each Hp has at most κ eigenvalues in [R− 1/2, R+1/2], (5.33,
5.35) give that σ(H) is of multiplicity at most O(k4).

To prove localization of the Fourier series φ̂ of the eigenfunction φ, we proceed as
follows. Let p ∈ Π be such that dist (E, σ(Hp)) ≤ o( 1

R2 ). Let S be this set of singular

p. From the argument above, there are only O(k4) such p. Let

R = {(m,n) ∈ S ∩ S}. (5.39)

Then |R| = O(k4), since |p∩S| ≤ κ. (Note that |R| ≥ 1 from (5.35). So the following
construction is not empty.)

Since φ̂ ∈ ℓ2, we may assume ‖φ̂‖∞ ≤ 1 by normalization: ‖φ̂‖2 = 1. So

|φ̂(j)| ≤ 1 for j ∈ R. (5.40)

To prove decay of φ̂(j) for j /∈ R, we let i1 ∈ R be such that

|i1 − j| = min i∈R|i− j|. (5.41)
24



(If there are two sites which are minimal, choose one and name it i1.) Let Λ be a
square of size O(|j − i1|) such that i1 ∈ Λ, j ∈ Λ and

dist (j, ∂Λ) = 2|j − i1|. (5.42)

Let
Λ̃ = Λ\R. (5.43)

(i) If |j − i1| ≤ R1/7, then
‖(HΛ̃ − E)−1‖ ≤ O(1), (5.44)

since Λ̃ ∩ S = ∅.
(ii) Otherwise

‖(HΛ̃ − E)−1‖ ≤ O(R2) (5.45)

from (5.21, 5.36).

Define
V = H − (HΛ̃ ⊕H

Z2\Λ̃). (5.46)

Since
(H − E)φ̂ = 0, (5.47)

we have
ΠΛ̃φ̂ = ΠΛ̃(HΛ̃ − E)−1Vφ̂. (5.48)

(i)

|φ̂(j)| ≤ C
∑

jℓ∈R∩Λ

e−|j−jℓ| (5.49)

follows from Neumann series expansion about the diagonal.

(ii) Let R′ = Λ̃∩S. For i′ ∈ R′, let Λ′ be the square centered at i′ of size L′ = (logR)2.
There are two possibilities: dist ({Λ′∩S}, ∂Λ′) = O((logR)2) or dist ({Λ′∩S}, ∂Λ′) <
O((logR)2). In the latter case, let L′′ = 100L′ and Λ′′ be the square centered at i′

of size L′′. By construction

dist ({Λ′′ ∩ S}, ∂Λ′′) = O((logR)2), (5.50)

this is because from Lemma 2.1, for a given integer in S there is at most 1 other
integer in S which is at distance ≍ O((logR)2) apart. Rename Λ′′ as Λ′.

We have from (5.36, 5.21)

dist (E, σ(HΛ′)) ≥ O(
1

R2
) (5.51)

and moreover
|(HΛ′ − E)−1(x, y)| ≤ e−|x−y| (5.52)

for |x−y| ≥ L′/10 by using Neumann series, (5.51) and the fact that |x1−x2| ≤ L′/100
for all x1, x2 ∈ {Λ′∩S}. Clearly (5.51, 5.52) hold for all Λ′ of size O((logR)2), Λ′ ⊂ Λ̃,
Λ′ ∩ S = ∅.
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Expanding (HΛ̃ − E)−1 repeatedly in (HΛ′ −E)−1 using the resolvent equation:

(HΛ̃ −E)−1 = (HΛ′ − E)−1Γ̃(HΛ̃ − E)−1,

where Γ̃
def
= HΛ̃ − (HΛ′ ⊕HΛ̃\Λ′), (5.51, 5.52, 5.45) give

|φ̂(j)| ≤ C
∑

jℓ∈R∩Λ

e−|j−jℓ|.

Combining cases (i,ii), we obtain (1.2, 1.3) and hence the Theorem. []
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