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ABSTRACT. A set of positive integers is said to be primitive if no element of the set is a multiple of
another. IfS is a primitive set andS(x) is the number of elements ofS not exceedingx, then a result
of Erdős implies that

∫

∞

2
(S(t)/t2 log t) dt converges. We establish an approximate converse to this

theorem, showing that ifF satisfies some mild conditions and
∫

∞

2
(F (t)/t2 log t) dt converges, then

there is a primitive setS with S(x) ≍ F (x).

1. INTRODUCTION

A set of positive integers isprimitive if no element of the set is a multiple of another. In the
1930s Chowla, Davenport, and Erdős independently studieda special primitive set, namely the set
of primitive nondeficient numbers (numbersn such that the sum of the proper divisors ofn is at
leastn, but no proper divisor ofn has this property), which probably inspired the generalization
to general primitive sets around the same time. Besicovitch[2] showed, perhaps unexpectedly,
that the upper asymptotic density of a primitive set can be arbitrarily close to1/2; his construction
yields a set whose counting function is occasionally large but usually extremely small. In [3],
Erdős showed that the lower asymptotic density of a primitive set must be 0, and also that

sup
S primitive

∑

n∈S\{1}

1

n logn
< ∞. (1)

It is thought that this supremum is attained whenS is the set of primes, but this is still not known.
Further references to results on primitive sets can be foundin [6], [10, Section 5.1], and [11,
Section 5].

In this note we ask if there are primitive sets with consistently large counting functions (as
opposed to occasionally large counting functions, as in Besicovitch’s example). We show that
essentially any smoothly growing counting function that isconsistent with the necessary conver-
gence (1) can be the order of magnitude for the counting function of a primitive set.

A favorite problem of Erdős, as related in [5], is as follows: If 1 < b1 < b2 < . . . is a sequence
of numbers with

∑

1/bn log bn < ∞, must there exist a primitive sequence1 < a1 < a2 < . . .
with an ≪ bn? One may interpret our principal result as answering “yes” for smoothly growing
sequences{bn}.

For a setS of natural numbers, letS(x) denote its counting function; that is,S(x) is the number
of members ofS not exceendingx. Let log1 x = max{1, log x} andlogℓ x = log1(logℓ−1 x) for
every integerℓ ≥ 2.
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Theorem 1. Suppose thatL(x) is defined, positive, and increasing forx ≥ 2, thatL(2x) ∼ L(x)
asx → ∞, and that

∫ ∞

2

dt

t log t · L(t)
< ∞. (2)

Then there is a primitive setS such that

S(x) ≍
x

log2 x · log3 x · L(log2 x)
(3)

for all sufficiently largex. In particular, for any integerℓ ≥ 3 and every real numberε > 0, there
exists a primitive setS such that

S(x) ≍
x

log2 x · · · logℓ−1 x · (logℓ x)
1+ε

(4)

for all sufficiently largex.

By takingL(x) = (log2 x) · · · (logℓ−3 x)(logℓ−2 x)
1+ε, we see that (3) implies (4) forℓ ≥ 4, and

the caseℓ = 3 follows by takingL(x) = (log x)ε. By an argument somewhat similar to our proof
of Theorem 1, Ahlswede, Khachatrian, and Sárközy [1] gavea construction for the lower bound in
(4) in the caseℓ = 3. Like the paper [1], our proof depends heavily on a result of Sathe–Selberg
on the fine distribution of integers with a given number of prime factors.

It is not hard to see that the condition (2) is necessary in Theorem 1. Indeed, supposeS is a set
of natural numbers greater than 1 satisfying (3), and suppose that

∑

n∈S\{1} 1/(n logn) converges
(as it must, by equation (1), for primitive setsS). Since

∑

n∈S\{1}

1

n logn
=

∫ ∞

2

S(t)

(

1

t2 log t
+

1

t2 log2 t

)

dt,

it follows that
∫ ∞

2

S(t)

t2 log t
dt < ∞.

Then (3) implies that
∫ ∞

2

dt

t log t · log2 t · log3 t · L(log2 t)
dt < ∞.

Via a change of variables, we obtain (2).
Another question one might consider is what conditions on the distribution of a setA of natural

numbers forcesA to have a large primitive subset. It is not too difficult to seethat if an infinite set
A contains no primitive subset of sizek, thenA(x) ≪ k log x. Indeed, ifb1 < · · · < bk are anyk
consecutive elements inA, that they are not primitive forces somebi | bj for 1 ≤ i < j ≤ k, so
thatbk/b1 ≥ 2. On the other hand, the setA = {m2j : m < 2k−1, j ≥ 0} has no primitive subset
of sizek andA(x) ≫ k log x.

At the other extreme, it is also not difficult to see that ifA has positive upper density, then it
contains a primitive subset also with positive upper density. Indeed, any integer subset of a dyadic
interval [x, 2x) is primitive, and a set with positive upper density must contain a fixed positive
proportionδ of each dyadic interval[xi, 2xi) for some unbounded sequence{xi}. The Besicovitch
argument then goes over to show thatA contains a primitive subset of upper density arbitrarily
close toδ/2.

We address this subset question for a set of “intermediate” density, namely it has density 0, but
an infinite reciprocal sum. We prove the following result.
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Theorem 2. There is a setA of natural numbers of asymptotic density0 satisfying
∑

a∈A\{1}

1

a log a
< ∞ and

∑

a∈A

1

a
= ∞, (5)

such that for any primitive setS contained inA we have
∑

s∈S

1

s
< ∞. (6)

In particular, no primitive subset ofA has positive relative lower density inA, despite the
counting function ofA being small enough to allow the possibility. The setA that we exhibit has
the property that there is a primitive subset of relative positive upper density, so there remains a
perhaps interesting problem: Is there a setA with infinite reciprocal sum such that any primitive
subset has relative density 0 inA? Maybe the Besicovitch construction will show such a setA
does not exist.

2. CONSTRUCTING PRIMITIVE SETS FROM A SEQUENCE OF PRIMES

Let p1 < p2 < · · · be any infinite sequence of primes such that
∞
∑

j=1

1

pj
<

1

2
.

We need this sequence not to grow too quickly; for now we make only the restrictionpj ≪ j2.
Using the usual notationΩ(n) for the number of prime factors ofn counted with multiplicity,

we define for any positive integerk

Sk = {n ∈ N : Ω(n) = k, pk | n, (p1 · · · pk−1, n) = 1},

and we set

S =

∞
⋃

k=1

Sk.

We prove two results aboutS: the first is thatS is primitive and the second is a lower bound for
S(x) (see Proposition 6 below).

Lemma 3. The setS is primitive.

Proof. Note that ifm andn are distinct positive integers andm dividesn, thenΩ(m) < Ω(n).
Therefore ifS were not primitive, then there would exist positive integers j < k and integers
m ∈ Sj andn ∈ Sk such thatm | n. However, thenpj would dividem but notn, a contradiction.
(Indeed,S is an example of a homogeneous set, in the terminology of [12].) �

Let σj(x) denote the number of positive integersn ≤ x such thatΩ(n) = j.

Lemma 4 (Sathe–Selberg). For any positive integerj ≤ ⌊3
2
log2 x⌋,

σj(x) = Hj(x)

(

1 +O

(

1

log2 x

))

where

Hj(x) = G

(

j − 1

log log x

)

x

log x

(log log x)j−1

(j − 1)!
and G(z) =

1

Γ(z + 1)

∏

p

(

1−
z

p

)−1(

1−
1

p

)z

.
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For a proof, see [8, Theorem 7.19].

Lemma 5. Letx be a sufficiently large real number. For any integerk ∈ [2, 3
2
log2 x],

Sk(x) ≍
x

log x

(log log x)k−2

(k − 2)!

1

pk
,

where the implied constants are absolute.

Proof. The result follows immediately from the prime number theorem in the casek = 2, so
assume thatk ≥ 3. Since every element ofSk(x) is divisible bypk and is coprime top1 . . . pk−1,
we have the inequalities

σk−1

(

x

pk

)

≥ Sk(x) ≥ σk−1

(

x

pk

)

−

k−1
∑

j=1

σk−2

(

x

pjpk

)

.

By Lemma 4, this becomes

Hk−1

(

x

pk

)(

1 +O

(

1

log2(x/pk)

))

≥ Sk(x)

≥

(

Hk−1

(

x

pk

)

−
k−1
∑

j=1

Hk−2

(

x

pjpk

)

)

(

1 +O

(

1

log2(x/pjpk)

))

.

Becausek ≪ log2 x andpj ≪ j2, each occurrence oflog(x/pk) or log(x/pjpk) can be rewrit-
ten as(log x)(1 + O(1/ log2 x)), and similarly log2(x/pk) and log2(x/pjpk) can be rewritten
as (log2 x)(1 + O(1/ logx)). In addition, the expressionsG((k − 2)/ log2(x/pk)) andG((k −
3)/ log2(x/pjpk)) can be rewritten as

G

(

k − 2

log2 x
+O

(

1

log2 x

))

= G

(

k − 2

log2 x

)(

1 +O

(

1

log2 x

))

,

sincelogG(z) is analytic and hence has a bounded first derivative in a neighborhood of the interval
[0, 3/2]. Therefore

Hk−1

(

x

pk

)(

1 +O

(

1

log2 x

))

≥ Sk(x)

≥ Hk−1

(

x

pk

)

(

1−
k − 3

log2 x

k−1
∑

j=1

1

pj

)

(

1 +O

(

1

log2 x

))

.

Since the sum is less than1
2
, and sinceG(z) is bounded away from 0 and∞ on the interval[0, 3/2],

this becomes

Sk(x) ≍ Hk−1

(

x

pk

)

≍
x

log x

(log log x)k−2

(k − 2)!

1

pk
as claimed. �

Proposition 6. For x ≥ p1, we havex/pB ≫ S(x) ≫ x/pB′ , whereB = B(x) = ⌊1
2
log2 x⌋ and

B′ = B′(x) = ⌊3
2
log2 x⌋.
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Proof. SinceS =
⋃∞

k=1 Sk is a disjoint union, we have by Lemma 5,

S(x) ≥
B′

∑

k=2

Sk(x) ≫
B′

∑

k=2

x

log x

(log2 x)
k−2

(k − 2)!

1

pk
≥

x

log x

1

pB′

B′

∑

k=2

(log2 x)
k−2

(k − 2)!
≫

x

pB′

,

where we used the inequality
⌊y⌋
∑

j=0

yj

j!
≫ ey

(which follows from [9, equation 1.10] withβ = 0) for the last step. For the upper bound, we have

S(x) ≤

∞
∑

k=1

Sk(x) ≤

B′

∑

k=B+1

Sk(x) +
∑

n≤x
Ω(n)≤B

1 +
∑

n≤x
Ω(n)>B′

1.

There is a positive constantc such that the last two sums here areO(x/(log x)c). Indeed,Ω(n) ≤ B
implies thatω(n) ≤ B, whereω counts the number of distinct prime divisors, so the estimate for
Ω(n) ≤ B follows from the Hardy–Ramanujan inequality (see [4, Proposition 3]). If Ω(n) > B′,
a similar estimate holds using the Hardy–Ramanujan inequality plus an estimate for thosen with
Ω(n)− ω(n) large, or more directly from [7, Lemma 13].

By Lemma 5,

B′

∑

k=B+1

Sk(x) ≪

B′

∑

k=B+1

x

log x

(log2 x)
k−2

(k − 2)!

1

pB
≤

x

pB

∞
∑

j=0

(log2 x)
j

j! log x
=

x

pB
.

SincepB ≤ pB′ = O(B′2) = O((log2 x)
2), sets of sizeO(x/(log x)c) are negligible, and our result

follows. �

3. PROOF OFTHEOREM 1

Lemma 7. Suppose thatL(x) is defined, positive, and increasing forx ≥ 2 and thatL(2x) ∼ L(x)
asx → ∞. ThenL(x) ≪ε x

ε for anyε > 0.

Proof. Given ε > 0, we need to show thatL(x)/xε is bounded. SinceL(2x) ∼ L(x), we may
choosex1 such thatL(2x) < (1 + ε log 2)L(x) for all x ≥ x1. DefineMu = maxu≤x≤2u L(x)/x

ε.
Then for anyu ≥ x1,

M2u = max
2u≤x≤4u

L(x)

xε
= max

u≤y≤2u

L(2y)

(2y)ε
<

1 + ε log 2

2ε
max

u≤y≤2u

L(y)

yε
< 1 ·Mu,

since2ε > 1 + ε log 2. ThereforeMx1
> M2x1

> M4x1
> · · · , and soL(x)/xε is bounded byMx1

on [x1,∞). Since it is clearly bounded byL(x1) on [2, x1], the lemma is established. �

Proposition 8. Suppose thatL(x) is defined, positive, and increasing forx ≥ 2, thatL(2x) ∼
L(x) asx → ∞, and that

∫ ∞

2

dt

t log t · L(t)
< ∞.

Then there is a sequencep1 < p2 < · · · of primes with
∑∞

k=1 1/pk < 1/2 andpk ∼ k log k · L(k)
ask → ∞.
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Proof. Choosingy0 so thatL(y) ≥ 1 holds for ally ≥ y0, define

qk =

{

thekth prime, if k < y0,

the⌊kL(k)⌋th prime, if k ≥ y0.

Then{qk} is increasing since(k + 1)L(k + 1) ≥ (k + 1)L(k) ≥ kL(k) + 1 for k ≥ y0, so that
⌊(k + 1)L(k + 1)⌋ > ⌊kL(k)⌋. By the prime number theorem, whenk → ∞ we have

qk ∼ ⌊kL(k)⌋ log⌊kL(k)⌋ ∼ kL(k)(log k + logL(k)) ∼ kL(k) log k,

where the last asymptotic equality used Lemma 7. Further,
∑

k≥y0+1

1

qk
≪

∑

k≥y0+1

1

k log k · L(k)
<

∫ ∞

y0

dt

t log t · L(t)

which converges; thus there is some nonnegative integerk0 such that
∑

k>k0
1/qk < 1/2. Then the

sequence{pk} defined bypk = qk0+k has the required properties. �

Proof of Theorem 1. Note that ifc > 0 is fixed,

p⌊c log2 x⌋ ∼ c log2 x · log3 x · L
(

c log2 x
)

∼ c log2 x · log3 x · L(log2 x)

by the slowly varying property ofL. Applying this withc = 1
2

andc = 3
2
, together with Proposi-

tion 6, proves Theorem 1. �

4. PROOF OFTHEOREM 2

For every positive integerj, define

Aj =
{

a ∈ N : 22
j

< a ≤ 22
j+1

, 2j ‖ a
}

,

and defineA =
⋃∞

j=1Aj (a disjoint union). It is clear thatA(x) ≍ x/ log x, so thatA has density
0 and the two assertions in (5) hold. It remains to show that ifS is a primitive subset ofA, then
(6) holds.

Let S ⊂ A be primitive. For each natural numbers, defines◦ to be the largest odd divisor ofs,
and defineS◦ = {s◦ : s ∈ S}.

Lemma 9. If s1, s2 ∈ S are distinct, thens◦1 ∤ s
◦
2. In particular,S◦ is also primitive, and the map

s 7→ s◦ is a bijection betweenS andS◦.

Proof. Suppose, for the sake of contradiction, thats◦1 | s◦2. Choosej1, j2 ∈ N so thats1 ∈ Aj1

ands2 ∈ Aj2. Sinces1 = 2j1s◦1 ands2 = 2j2s◦2, the fact thats1 ∤ s2 (by primitivity of S) forces
j1 ≥ j2 + 1. But then

s◦1 =
s1
2j1

> 22
j1−j1

and
s◦2 =

s2
2j2

≤ 22
j2+1−j2 ≤ 22

j1−(j1−1),

since the expression2k − (k − 1) is an increasing function fork ≥ 1. In particular,s◦2 < 2s◦1, and
so the divisibility relations◦1 | s◦2 forcess◦1 = s◦2. But thens2 | s1, contradicting the primitivity
of S.

This shows thats◦1 ∤ s◦2. The symmetric argument shows thats◦2 ∤ s◦1, and soS◦ is indeed
primitive. Also, s◦1 ∤ s◦2 implies thats◦1 6= s◦2, which shows that the maps 7→ s◦ is a bijection
betweenS andS◦. �
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If s ∈ Aj thens◦ = s/2j, and also2j ≥ (log s)/(2 log 2) by the upper bound on elements of
Aj; these relations imply that

s◦ log s◦ =
s

2j
log

s

2j
≤

2s log 2

log s
log

2s log 2

log s
≪ s.

Therefore
∑

s∈S

1

s
≪
∑

s◦∈S◦

1

s◦ log s◦

(using the injectivity ofs 7→ s◦). However,S◦ is primitive, and so the last sum is convergent by
(1). This proves (6).
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