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ABSTRACT. A set of positive integers is said to be primitive if no elerhef the set is a multiple of
another. IfS is a primitive set and (x) is the number of elements Sfnot exceeding;, then a result

of Erdds implies thaf;o(S(t)/t2 log t) dt converges. We establish an approximate converse to this
theorem, showing that if’ satisfies some mild conditions arfd” (F(t) /t* log t) dt converges, then
there is a primitive sef with S(z) < F(z).

1. INTRODUCTION

A set of positive integers iprimitive if no element of the set is a multiple of another. In the
1930s Chowla, Davenport, and Erdés independently studggabcial primitive set, namely the set
of primitive nondeficient numbers (hnumbetssuch that the sum of the proper divisorsrofs at
leastn, but no proper divisor ofi has this property), which probably inspired the genertbna
to general primitive sets around the same time. Besico\2Elshowed, perhaps unexpectedly,
that the upper asymptotic density of a primitive set can bérarily close tol /2; his construction
yields a set whose counting function is occasionally largeusually extremely small. In_[3],
Erdds showed that the lower asymptotic density of a primisiet must be 0, and also that

1

< 0. 1)
nlogn

sup
S primitive nes\{1}

It is thought that this supremum is attained witeis the set of primes, but this is still not known.
Further references to results on primitive sets can be fonri@], [10, Section 5.1], and [11,
Section 5].

In this note we ask if there are primitive sets with considyelarge counting functions (as
opposed to occasionally large counting functions, as ind@ggch’s example). We show that
essentially any smoothly growing counting function thatasisistent with the necessary conver-
gencel[(ll) can be the order of magnitude for the counting fomatf a primitive set.

A favorite problem of Erdds, as related in [5], is as followfsl < b; < b, < ... is a sequence
of numbers with) ~1/b,, logb,, < oo, must there exist a primitive sequentce< a; < as < ...
with a,, < b,? One may interpret our principal result as answering “yes’'simoothly growing
sequence$b,, }.

For a setS of natural numbers, lef(z) denote its counting function; that iS(x) is the number
of members ofS not exceending. Letlog, * = max{1,logz} andlog, z = log, (log,_, ) for
every integer > 2.
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Theorem 1. Suppose thak(x) is defined, positive, and increasing fer> 2, that L(2z) ~ L(x)

asz — oo, and that
o dt
- ) 2
/2 tlogt-L(t) = @

Then there is a primitive s& such that

S(x)

T

= 3
log, = - logy = - L(log, x) @)

for all sufficiently largez. In particular, for any intege¥ > 3 and every real number > 0, there
exists a primitive sef such that

S(zr) <

" logyw---logy_y @ - (log, x) 1+

T

(4)
for all sufficiently largez.

By taking L(z) = (log, x) - - - (log,_5 x)(log,_, x)'*=, we see thaf{3) implie§l(4) fér> 4, and
the case = 3 follows by takingZL(z) = (log ). By an argument somewhat similar to our proof
of Theoreni_l, Ahlswede, Khachatrian, and Sarkdzy [1] gagenstruction for the lower bound in
(@) in the case¢ = 3. Like the paperl[l], our proof depends heavily on a resultath&-Selberg
on the fine distribution of integers with a given number ohpifactors.

It is not hard to see that the conditidd (2) is necessary irofdra[1. Indeed, supposkis a set
of natural numbers greater than 1 satisfying (3), and supfia) _, s (,, 1/(nlogn) converges
(as it must, by equatiofnl(1), for primitive sef3. Since

1 & 1 1
= S(t dt
Z nlogn /2 (*) (t2 logt + 12 log2t> ’

nes\{1}
St
/ 5 ®) dt < oo.
5 t?logt

it follows that

Then [3) implies that
0 dt
o tlogt-logyt-logst- L(log,t)
Via a change of variables, we obtaln (2).

Another question one might consider is what conditions emdiktribution of a se# of natural
numbers forcesl to have a large primitive subset. It is not too difficult to sleat if an infinite set
A contains no primitive subset of sizethenA(x) < klogz. Indeed, ift; < --- < b, are anyk
consecutive elements id, that they are not primitive forces sorbe| b, for 1 < i < j < k, so
thatby, /b; > 2. On the other hand, the sdt= {m2/ : m < 2k —1,j > 0} has no primitive subset
of sizek andA(z) > klogz.

At the other extreme, it is also not difficult to see thagdithas positive upper density, then it
contains a primitive subset also with positive upper dgnsitdeed, any integer subset of a dyadic
interval [z, 2z) is primitive, and a set with positive upper density must eont fixed positive
proportiond of each dyadic intervdk:;, 2z;) for some unbounded sequeniee }. The Besicovitch
argument then goes over to show thdicontains a primitive subset of upper density arbitrarily
close tod/2.

We address this subset question for a set of “intermediaesity, namely it has density 0, but

an infinite reciprocal sum. We prove the following result.
2

dt < oo.




Theorem 2. There is a setd of natural numbers of asymptotic denditgatisfying

1 1
E < oo and E — = 00, (5)
aloga a
ac A\{1} acA
such that for any primitive s&f contained in4 we have
1
E — < o0. (6)
seS 5

In particular, no primitive subset ofl has positive relative lower density id, despite the
counting function of4 being small enough to allow the possibility. The gethat we exhibit has
the property that there is a primitive subset of relativeifp@supper density, so there remains a
perhaps interesting problem: Is there a.dewith infinite reciprocal sum such that any primitive
subset has relative density O #? Maybe the Besicovitch construction will show such a.4et
does not exist.

2. CONSTRUCTING PRIMITIVE SETS FROM A SEQUENCE OF PRIMES

Letp; < p2 < --- be any infinite sequence of primes such that
L
b2

We need this sequence not to grow too quickly; for now we make the restrictiorp; < ;2.
Using the usual notatiof2(n) for the number of prime factors of counted with multiplicity,
we define for any positive integér

Se={neN:Qn)==Fk, pr|n, (pr-- pr—1,n) =1},

S= G S.
k=1

We prove two results abou: the first is thatS Ts primitive and the second is a lower bound for
S(x) (see Propositionl 6 below).

and we set

Lemma 3. The setS is primitive.

Proof. Note that ifm andn are distinct positive integers and dividesn, thenQ2(m) < Q(n).
Therefore ifS were not primitive, then there would exist positive integgr< k& and integers
m € S§; andn € S, such thatn | n. However, therp; would dividem but notn, a contradiction.
(Indeed,S is an example of a homogeneous set, in the terminology 0f)[12] O

Leto;(z) denote the number of positive integers< = such that)(n) = j.
L emma 4 (Sathe—Selberg)or any positive integef < |2 log, z],

0;(v) = Hy(x) (1 O Q;))
where

R (]
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For a proof, see [8, Theorem 7.19].

Lemma5. Letz be a sufficiently large real number. For any intedee |2, % log, 7],
k—2 1

_ x (loglogx)
() = logz  (k—2)! pi’

where the implied constants are absolute.

Proof. The result follows immediately from the prime number theona the case: = 2, so
assume that > 3. Since every element &, () is divisible byp, and is coprime t; . ..px_1,
we have the inequalities

k-1
T T T
o1 | — ) > Selx) > 01| — | — O .
kl(pk)_ (o) > kl(pk) 3 “<pjpk)

By Lemmd 4, this becomes

e (1) (0 ) 25
(1) S ) 0 st

Because: < log, x andp; < j?, each occurrence dbg(x/py) or log(x/p;pr) can be rewrit-
ten as(logz)(1 + O(1/log, z)), and similarlylog,(z/p;) andlog,(x/p;p;) can be rewritten
as (log, z)(1 + O(1/logx)). In addition, the expressions((k — 2)/logy(x/px)) and G((k —
3)/ log,(x/p;px)) can be rewritten as

a(i=2 0! —a(i 22 (1o :
log, log, log, log,

sincelog G(z) is analytic and hence has a bounded first derivative in a beirtiilood of the interval
[0,3/2]. Therefore

e (2) (-0 k) =5
() (25 (0 )

Since the sum is less thgnand since7(z) is bounded away from 0 ang on the interval0, 3/2],
this becomes

T r (loglogz)*2 1
S =H,|— | = —
() = (pk) logz (k—=2)! p
as claimed. 0

Proposition 6. For z > p;, we haver/pg > S(z) > x/pp, whereB = B(z) = |5 log, z] and
B' = B'(z) = |2log, z].
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Proof. SinceS = J;—,; Sris a disjoint union, we have by Lemrha 5,

(logy z)F2 1 r 1 & (logy z)F2 T
) > > e t) o
Zsk >>Zlogx k—2)! logxpBrZ (k—2)! .
k=2

Pk

where we used the inequality
ly] j
I
=0

(which follows from [9, equation 1.10] with = 0) for the last step. For the upper bound, we have

SICICE SICTERED RS DI}

k=1 k=B+1 n<x n<x
Q(n)<B Q(n)>B’
There is a positive constansuch that the last two sums here ére:/(log z)¢). Indeed2(n) < B
implies thatu(n) < B, wherew counts the number of distinct prime divisors, so the estnfiait
Q(n) < B follows from the Hardy—Ramanujan inequality (see [4, Psifion 3]). If Q(n) > B’,
a similar estimate holds using the Hardy—Ramanujan ing@gyaus an estimate for thosewith
Q(n) —w(n) large, or more directly from [7, Lemma 13].

By Lemma5,
B . .
r (log,z)*2 1 T (logyz)! =
<=
2 Sile) < Z logz (k—2)! pp BZ jllogz — pp’

=0
Sincepp < ppr = O(B™?) = O((log, x)?), sets of siz&(x/(log z)°) are negligible, and our result
follows. u

3. PROOF OFTHEOREM[I]

Lemma7. Suppose thak(x) is defined, positive, and increasing for> 2 and thatL(2x) ~ L(x)
asx — oo. ThenL(z) <. «° for anye > 0.

Proof. Givene > 0, we need to show that(x)/z° is bounded. Sincé (2z) ~ L(z), we may
chooser; such thatZ(2x) < (1 + elog2)L(x) for all x > z,. DefineM,, = max,<,<o, L(x)/z".
Then for anyu > x4,

L(x) L(2y) 1+4clog2 L(y)

Ms, = max = max < max ———= < 1-M,,
u<r<du u<y<2u (2y)° e u<y<2u <

since2® > 1+ ¢log 2. ThereforeM,, > My, > My,, > ---, and soL(x)/z° is bounded by\/,,
on [z, 00). Since it is clearly bounded b¥(z,) on [2, 1], the lemma is established. O

Proposition 8. Suppose thaL(z) is defined, positive, and increasing for> 2, that L(2z) ~

L(z) asz — oo, and that
/°° _da
, tlogt- L(t)

Then there is a sequenpe < py < --- of primes withy.° | 1/p, < 1/2 andpy, ~ klogk - L(k)
ask — oo.
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Proof. Choosingy, so thatZL(y) > 1 holds for ally > y,, define

) thekth prime if k&< yo,
%= the |[kL(k)|th prime  if k > y.

Then{q} is increasing sincék + 1)L(k + 1) > (k+ 1)L(k) > kL(k) + 1 for k > yo, So that
|(k+1)L(k+1)] > |kL(k)|. By the prime number theorem, whén- oo we have

e ~ |kL(k)|log|kL(k)| ~ kL(k)(log k + log L(k)) ~ kL(k)log k,
where the last asymptotic equality used Lenfrna 7. Further,

Zi<< Z—l </m7dt
qr " klogk - L(k) s tlogt- L(t)

which converges; thus there is some nonnegative integauch thad -, _, 1/g. < 1/2. Then the
sequencd p; } defined byp, = g+« has the required properties. O

Proof of Theorerhl1Note that ifc > 0 is fixed,
Plelogyz) ~ clogy x - logs - L(c log, x) ~ clog, = - logs = - L(log, x)

by the slowly varying property of.. Applying this withc = % andc = % together with Proposi-
tion[G, proves Theorefd 1. O

4. PROOF OFTHEOREM 2
For every positive integef, define
A;j={aeN:2¥ <a<2?" 27 a},

and defined = (J;Z, A; (a disjoint union). Itis clear that(z) < z/log z, so thatA has density
0 and the two assertions inl (5) hold. It remains to show th&tig a primitive subset of4, then
(6) holds.

LetS C A be primitive. For each natural numberdefines® to be the largest odd divisor ef
and defineS° = {s°: s € S}.

Lemma . If s1, s, € S are distinct, thensS { s3. In particular, S° is also primitive, and the map
s — s° Is a bijection betweey andS°.

Proof. Suppose, for the sake of contradiction, tkat| s5. Choosej;,j» € N so thats; € A;,
ands, € Aj,. Sinces; = 2715 ands, = 27253, the fact thats; 1 s, (by primitivity of S) forces

j1 > j2+ 1. But then
o __ i 271 —jp
51= 95 > 2

and

_ 52 < 922t —js < 921 =(j1-1)

2= 55, <

272
since the expressiaf — (k — 1) is an increasing function for > 1. In particular,s; < 2s5, and
so the divisibility relations; | s5 forcess] = s5. But thens, | s;, contradicting the primitivity
of S.

This shows that§ 1 s5. The symmetric argument shows thgt{ s}, and soS° is indeed
primitive. Also, s{ 1 s5 implies thats; # s5, which shows that the map — s° is a bijection

betweenS andS°. ]
6
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If s € A, thens® = s/27, and als@’ > (log s)/(2log2) by the upper bound on elements of
A;; these relations imply that

e s° — S log > <2310g2 2slog2<<
S 10gs = — 10g — (0] S.
& 27 g23 — logs log s
Therefore . .

25 Flow

ses 0 soeso ® log s

(using the injectivity ofs — s°). However,S° is primitive, and so the last sum is convergent by

(@). This proves(6).
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