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Bandwidth selection in kernel density estimation: oracle

inequalities and adaptive minimax optimality

Alexander Goldenshluger∗ Oleg Lepski†

Abstract

We address the problem of density estimation with Lp–loss by selection of kernel
estimators. We develop a selection procedure and derive corresponiding Lp–risk oracle
inequalities. It is shown that the proposed selection rule leads to the minimax estimator
that is adaptive over a scale of the anisotropic Nikol’ski classes. The main technical
tools used in our derivations are uniform bounds on the Lp–norms of empirical processes
developed recently in Goldenshluger and Lepski (2010).
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1 Introduction

Let X be a random variable in R
d having density f with respect to the Lebesgue measure.

We want to estimate f on the basis of the i.i.d. sample Xn = (X1, . . . ,Xn) drawn from f .
By an estimator f̂ we mean any measurable real function f̂(t) = f̂(Xn; t), t ∈ R

d. Accuracy
of an estimator f̂ is measured by the Ls–risk:

Rs[f̂ , f ] :=
[

Ef‖f̂ − f‖qs
]1/q

, s ∈ [1,∞), q ≥ 1,

where Ef is the expectation with respect to the probability measure Pf of the observations
Xn. The objective is to develop an estimator of f with small Ls–risk.

Kernel density estimates originate in Rosenblatt (1956) and Parzen (1962); this is one
of the most popular techniques for estimating densities [Silverman (1986), Devroye and
Györfi (1985)]. Let K : Rd → R be a fixed function such that

∫

K(x)dx = 1 (we call such
functions kernels). Given a bandwidth vector h = (h1, . . . , hd), hi > 0, the kernel estimator
f̂h of f is defined by

f̂h(t) =
1

nVh

n
∑

i=1

K

(

t−Xi

h

)

=
1

n

n
∑

i=1

Kh(t−Xi), (1)
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where Vh :=
∏d

i=1 hi, u/v for u, v ∈ R
d stands for the coordinate–wise division, and

Kh(·) := V −1
h K(·/h). It is well–known that accuracy properties of f̂h are determined

by the choice of the bandwidth h, and bandwidth selection is the central problem in kernel
density estimation. There are different approaches to the problem of bandwidth selection.

The minimax approach is based on the assumption that f belongs to a given class of
densities F, and accuracy of f̂h is measured by its maximal Ls–risk over the class F,

Rs[f̂h;F] := sup
f∈F

Rs[f̂h; f ].

Typically F is a class of smooth functions, e.g., the Hölder functional class. Then the
bandwidth h is selected so that the maximal risk Rs[f̂h;F] (or a reasonable upper bound
on it) is minimized with respect to h. Such a choice leads to a deterministic bandwidth h
depending on the sample size n, and on the underlying functional class F. In many cases the
resulting kernel estimator constructed in this way is rate optimal (or optimal in order) over
the class F. The minimax kernel density estimation with Ls–risks on R

d was considered
in Bretagnolle and Huber (1979), Ibragimov and Khasminskii (1980, 1981), Devroye and
Györfi (1985), Hasminskii and Ibragimov (1990), Donoho et al. (1996), Kerkyacharian,
Picard and Tribouley (1996), Juditsky and Lambert–Lacroix (2004), and Mason (2009)
where further references can be found.

The oracle approach considers a set of kernel estimators F(H) = {f̂h, h ∈ H}, and aims
at a measurable data-driven choice ĥ ∈ H such that for every f from a large functional
class the following Ls-risk oracle inequality holds

Rs[f̂ĥ; f ] ≤ C inf
h∈H

Rs[f̂h; f ] + δn. (2)

Here C is a constant independent of f and n, and the remainder δn does not depend on
f . Oracle inequalities with ”small” remainder term δn and constant C close to one are of
prime interest; they are key tools for establishing minimax and adaptive minimax results
in estimation problems. To the best of our knowledge, oracle inequalities of the type (2)
were established only in the cases s = 1 and s = 2. Devroye and Lugosi (1996, 1997, 2001)
established oracle inequalities for s = 1. The case s = 2 was studied by Massart (2007,
Chapter 7), Samarov and Tsybakov (2007), Rigollet and Tsybakov (2007) and Birgé (2008).
The last cited paper contains a detailed discussion of recent developments in this area.

The contribution of this paper is two–fold. First, we propose a selection procedure
for a set of kernel estimators, and establish the corresponding Ls–risk, s ∈ [1,∞), oracle
inequalies of the type (2). Second, we demonstrate that our selection rule leads to a minimax
adaptive estimator over a scale of the anisotropic Nikolski’s classes (see Section 3 below for
the class definition).

More specifically, let hmin =
(

hmin
1 , . . . , hmax

d

)

and hmax =
(

hmax
1 , . . . , hmax

d

)

be two fixed
vectors satisfying 0 < hmin

i ≤ hmax
i ≤ 1, ∀i, and let

H :=

d
⊗

i=1

[

hmin
i , hmax

i

]

. (3)

Consider the set of kernel estimators

F(H) = {f̂h, h ∈ H}, (4)
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where f̂h is given in (1). We propose a measurable choice ĥ ∈ H such that the resulting
estimator f̂ = f̂ĥ satisfies the following oracle inequality

Rs[f̂ĥ; f ] ≤ inf
h∈H

{

(

1 + 3‖K‖1
)

Rs[f̂h; f ] + Cs(nVh)
−γs
}

+ δn,s. (5)

The constants Cs, γs, and the remainder term δn,s admit different expressions depending
on the value of s.

• If s ∈ [1, 2) then (5) holds for all densities f with γs = 1 − 1
s , Cs depending on the

kernel K only, and with

δn,s = c1(lnn)
c2n1/s exp

{

− c3n
2/s−1

}

for some constants ci, i = 1, 2, 3.

• If s ∈ [2,∞) then (5) holds for all densities f uniformly bounded by a constant f∞
with γs =

1
2 , Cs depending on K and f∞ only, and with

δn,s = c1(ln n)
c2n1/2 exp

{

− c3V
−2/s
max

}

, Vmax := Vhmax ,

for some constants ci, i = 1, 2, 3. We emphasize that the proposed selection rule is
fully data-driven and does not use information on the value of f∞.

Thus the oracle inequality (5) holds with negligibly small (in terms of dependence on
n) remander δn,s (by choice of Vmax in the case s ∈ [2,∞)). We stress that explicit non–
asymptotic expressions for Cs, c1, c2 and c3 are available. It is important to realize that the
term Cs(nVh)

−γs is a tight upper bound on the stochastic error of the kernel estimator f̂h.
This fact allows to derive rate optimal estimators that adapt to unknown smoothness of the
density f . In particular, in Section 3 we apply our oracle inequalities in order to develop
a rate optimal adaptive kernel estimator for the anisotropic Nikol’ski classes. Minimax
estimation of densities from such classes was studied in Ibragimov and Khasminskii (1981),
while the problem of adaptive estimation was not considered in the literature.

The paper is structured as follows. In Section 2 we define our selection rule and prove
key oracle inequalities. Section 3 discusses adaptive rate optimal estimation of densitites
for a scale of anisotropic Nikol’skii classes. Proofs of all results are given in Section 4.

2 Selection rule and oracle inequalities

Let F(H) be the set of kernel density estimators defined in (4). We want to select an
estimator from the family F(H). For this purpose we need to impose some assumptions
and establish notation that will be used in definition of our selection procedure.

2.1 Assumptions

The following assumptions on the kernel K will be used throughout the paper.

(K1) The kernel K satisfies the Lipschitz condition

|K(x)−K(y)| ≤ LK |x− y|, ∀x, y ∈ R
d,

where | · | denotes the Euclidean distance. Moreover, K is compactly supported, and,
without loss of generality, supp(K) ⊆ [−1/2, 1/2]d .
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(K2) There exists a real number k∞ < ∞ such that ‖K‖∞ ≤ k∞.

Assumptions (K1) and (K2) are rather standard in kernel density estimation. We note
that Assumption (K1) can be weaken in several ways. For example, it suffices to assume
that K belongs to the isotropic Hölder ball of functions Hd(α,LK) with any α > 0 (in
Assumption (K1) α = 1).

Sometimes we will suppose that f ∈ F, where

F :=
{

p : Rd → R : p ≥ 0,

∫

p = 1, ‖p‖∞ ≤ f∞ < ∞
}

,

and f∞ is a fixed constant. Without loss of generality we assume that f∞ ≥ 1.

2.2 Notation

For any U : Rd → R and s ∈ [1,∞) define

ρs(U) :=

{

4n1/s−1‖U‖s, s ∈ [1, 2),

n−1/2 ‖U‖2, s = 2,

and if s ∈ (2,∞) then we set

ρs(U) := cs

{

n−1/2

(
∫
[
∫

U2(t− x)f(x)dx

]s/2

dt

)1/s

+ 2n1/s−1‖U‖s
}

,

where cs := 15s/ ln s is the best known constant in the Rosenthal inequality (Johnson,
Schechtman and Zinn 1985). Observe that ρs(U) depends on f when s ∈ (2,∞); hence we
will also consider the empirical counterpart of ρs(U):

ρ̂s(U) := cs

{

n−1/2

(
∫
[

1

n

n
∑

i=1

U2(t−Xi)

]s/2

dt

)1/s

+ 2n1/s−1‖U‖s
}

.

We put also

rs(U) := ρs(U) ∨ n−1/2‖U‖2, r̂s(U) := ρ̂s(U) ∨ n−1/2‖U‖2,

and

gs(U) :=















32ρs(U), s ∈ [1, 2),

25
3 ρ2(U), s = 2,

32r̂s(U), s > 2.

Armed with this notation we are ready to describe our selection rule.

2.3 Selection rule

The rule is based on auxiliary estimators {f̂h,η, h, η ∈ H} that are defined as follows: for
every pair h, η ∈ H we let

f̂h,η(t) :=
1

n

n
∑

i=1

[Kh ∗Kη](t−Xi),
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where ∗ stands for the convolution on R
d. Define also

ms(h, η) := gs(Kh) + gs(Kh ∗Kη), ∀h, η ∈ H,

m∗
s(h) := sup

η∈H
ms(η, h), ∀h ∈ H.

(6)

For every h ∈ H let

R̂h := sup
η∈H

[

‖f̂h,η − f̂η‖s −ms(h, η)
]

+
+m∗

s(h). (7)

Then the selected bandwidth ĥ and the corresponding kernel density estimator are defined
by

ĥ := arg inf
h∈H

R̂h, f̂ = f̂ĥ. (8)

The selection rule (6)–(8) is a refinement of the one introduced recently in Goldenshluger
and Lepski (2008, 2009) for the Gaussian white noise model.

Remarks.

1. It is easy to check that Assumption (K1) implies that R̂h and m∗
s(h) are continuous

random functions on the compact subset H ⊂ R
d. Thus, ĥ exists and measurable (Jennrich

1969).
2. We call function ms(·, ·) the majorant. In fact, if ξh and ξh,η denote the stochastic

errors of estimators f̂h and f̂h,η respectively, i.e., if

ξh(t) :=
1

n

n
∑

i=1

[

Kh(t−Xi)− EfKh(t−X)
]

,

ξh,η(t) :=
1

n

n
∑

i=1

{

[Kh ∗Kη](t−Xi)− Ef [Kh ∗Kη](t−X)
}

,

then it is seen from the proof of Theorems 1 and 2 below that ms(h, η) uniformly “majo-
rates” ‖ξh,η−ξη‖s in the sense that the expectation Ef sup(h,η)∈H×H

[

‖ξh,η−ξη‖s−ms(h, η)
]q

+
is “small.”

3. It is important to realize that majorant ms(h, η) does not depend on the density f to
be estimated. The majorant is completely determined by kernel K and observations, and
thus it is available to the statistician.

2.4 Oracle inequalities

Now we are in a position to establish oracle inequalities on the risk of the estimator f̂ = f̂ĥ
given by (7)–(8). Put

AH :=
d
∏

i=1

[

1 ∨ ln
(

hmax
i /hmin

i

)]

, BH :=
[

1 ∨ log2
(

Vmax/Vmin

)]

,

where from now on

Vmin :=
d
∏

i=1

hmin
i , Vmax :=

d
∏

i=1

hmax
i .

The next two statements, Theorem 1 and Theorem 2, provide oracle inequalities on the
Ls–risk of f̂ in the cases s ∈ [1, 2] and s ∈ (2,∞) respectively.
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Theorem 1. Let Assumptions (K1) and (K2) hold.

(i) If s ∈ [1, 2) then for all f and n ≥ 42s/(s−2)

Rs[f̂ ; f ] ≤ inf
h∈H

[

(1 + 3‖K‖1)Rs[f̂h, f ] +C1(nVh)
1/s−1

]

+ C2A
4/q
H n1/s exp

{

− 2n2/s−1

37q

}

. (9)

(ii) If s = 2 and f2∞Vmax + 4n−1/2 ≤ 1/8 then for all f ∈ F

Rs[f̂ ; f ] ≤ inf
h∈H

[

(1 + 3‖K‖1)Rs[f̂h, f ] + C3(nVh)
−1/2

]

+ C4A
4/q
H n1/2 exp

{

− 1

16q[f2∞Vmax + 4n−1/2]

}

. (10)

Here C1 and C3 are absolute constants, while C2 and C4 depend on LK , k∞, d and q only.

Theorem 2. Let Assumptions (K1) and (K2) hold, f ∈ F, s ∈ (2,∞), and assume that
for some C1 = C1(K, s, d) > 1

nVmin > C1, Vmax ≥ 1/
√
n.

If n ≥ C2 for some constant C2 depending on LK , k∞, f∞, d, and s only, then

Rs[f̂ ; f ] ≤ inf
h∈H

[

(1 + 3‖K‖1)Rs[f̂h, f ] + C3f
1/2
∞ (nVh)

−1/2
]

+ C4A
4/q
H B

1/q
H n1/2

[

exp{−C5bn,s}+ exp
{

− C6f
−1
∞ V −2/s

max

}]

, (11)

where bn,s := n4/s−1 if s ∈ (2, 4), and bn,s := [f∞V
4/s
max]−1 if s ≥ 4. The constants Ci,

i = 3, . . . , 6 depend on LK , k∞, d, q and s only.

Remarks.

1. All constants appearing in Theorems 1 and 2 can be expressed explicitly [see Lem-
mas 1 and 2 below and corresponding results in Goldenshluger and Lepski (2010) for details].

2. We will show that for given h the expected value of the stochastic error of the

estimator f̂h, i.e. (E‖ξh‖qs)1/q, admits the upper bound of the order O((nVh)
1/s−1) when

s ∈ [1, 2), and O((nVh)
−1/2) when s ∈ (2,∞). It is also obvious, that

Rs[f̂h; f ] ≤ ‖Bh‖s + (Ef‖ξh‖qs)1/q ,

where Bh(f, t) :=
∫

Kh(t − x)f(x)dx− f(t), t ∈ R
d. Thus, our estimator attains, up to a

constant and reminder term, the minimum of the sum of the bias and the upper bound on
the stochastic error. This form of the oracle inequality is convenient for deriving minimax
and minimax adaptive results [see Section 3]. Indeed, bounds on the bias and the stochastic
error are usually developed separately and require completely different techniques.

3. We note that AH ≤ O([lnn]d) and BH ≤ O(lnn) for any set H ⊂ [0, 1]d such that
hmin
i ≥ O(n−c), c > 0, ∀i = 1, . . . , d. If s ∈ (2,∞), and if the set of considered bandwidths

H is such that Vmax = [κ lnn]−s/2 for some κ > 0 then the second term on the right hand
side of (10) and (11) can be made negligibly small by choice of constant κ. Observe that
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conditions ensuring consistency of f̂h are nVh → ∞ and Vh → 0 as n → ∞; thus the
requirement Vmax = [κ lnn]−s/2 is not restrictive. Note also that in the case s ∈ [1, 2) the
second term on the right hand side of (9) is exponentially small in n for any H.

4. The condition Vmax ≥ 1/
√
n is imposed only for the sake of convenience in presen-

tation of our results. Clearly, we would like to have the set H as large as possible; hence
consideration of vectors hmax such that Vmax = Vhmax ≤ 1/

√
n has no much sense.

5. It should be also mentioned that if for s ∈ [1, 2) we impose additional conditions
on f [e.g., such as the domination condition in Donoho et al. (1996, p. 514)], then the
order of stochastic error of f̂h can be improved to O((nVh)

−1/2). It is well–known that
smoothness condition alone is not sufficient for consistent density estimation on R

d with
L1–losses (Ibragimov and Khasminskii 1981).

2.5 Ls–risk oracle inequalities

As it was mentioned above, the oracle inequalities of Theorems 1 and 2 are useful for
derivation of adaptive rate optimal estimators. Moreover, they are established under very
mild assumptions on the density f . However, traditionally oracle inequalities compare the
risk of a proposed estimator to the risk of the best estimator in the given family, cf. (2).
The natural question is whether an Ls–risk oracle inequality of the type (2) can be derived
from the results of Theorems 1 and 2. In this section we provide an answer to this question.
We will be mostly interested in finding minimal assumptions on the underlying density f
that are sufficient for establishing the Ls–risk oracle inequality. It will be shown that this

problem is directly related to establishing a lower bound on the term (Ef‖ξh‖qs)1/q.
Let µ ∈ (0, 1) and ν > 0 be fixed real numbers. Denote by Fµ,ν the set of all probability

densities p satisfying the following condition:

∃ B ∈ B(Rd) : mes(B) ≤ ν,

∫

B
p ≥ µ.

Here B(Rd) is the Borel σ–algebra on R
d, and mes(·) is the Lebesgue measure on R

d.
Below we will assume that f ∈ Fµ,ν for some µ and ν. This condition is very weak.

For example, if F is a set of densitites such that either (i) F is a totally bounded subset
of L1(R

d); or (ii) the family of probability measures {Pf , f ∈ F} is tight, then for any
µ ∈ (0, 1) there exists 0 < ν < ∞ such that F ⊆ Fµ,ν . The statement (i) is a consequence
of the Kolmogorov-Riesz compactness theorem.

Theorem 3. Let s ∈ [2,∞) and suppose that assumptions of Theorem 1(ii) and Theorem 2
are fulfilled. If s > 2 then assume additionally that f ∈ Fµ,ν for some µ and ν, and

Vmax ≤ 2−1µ

[ ||K||2
||K||1

]2

.

If n ≥ C1 = C1(LK , k∞, f∞, d, s) then there exist a constant C0 > 0 (C0 = C0(K) if s = 2,
and C0 = C0(K,µ, ν, s) if s > 2) such that

Rs[f̂ ; f ] ≤ C0 inf
h∈H

Rs[f̂ĥ; f ]

+ C2A
4/q
H B

1/q
H n1/2

[

exp{−C3bn,s}+ exp
{

− C4f
−1
∞ V −2/s

max

}]

,

where bn,s := n4/s−1 if s ∈ (2, 4), and bn,s := [f∞V
4/s
max]−1 if s ≥ 4. The constants Ci depend

on LK , k∞, d, q and s only.
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The proof indicates that Theorem 3 follows from the fact that for any s ∈ [2,∞) one
has

[Ef‖ξh‖qs]1/q ≥ c(nVh)
−1/2, ∀h, (12)

where c > 0 is a constant. This lower bound holds under very weak conditions on the
density f (for arbitrary f is s = 2 and f ∈ Fµ,ν if s > 2). In order to prove the similar Ls–
risk oracle inequality in the case s ∈ [1, 2) it would be sufficient to show that [Ef‖ξh‖qs]1/q ≥
c(nVh)

−1+1/s for any h. However, the last lower bound cannot hold in such generality as
(12). In particular, according to remark 5 after Theorem 2, [Ef‖ξh‖qs]1/q ≤ c(nVh)

−1/2 for all
h under a tail domination condition (e.g., for compactly supported densities). Under such a
domination condition the corresponding Ls–risk oracle inequality can be easily established
using the same arguments as in the proof of Theorem 3.

3 Adaptive estimation of densities with anisotropic smooth-

ness

In this section we illustrate the use of oracle inequalities of Theorems 1 and 2 for derivation
of adaptive rate optimal density estimators.

We start with the definition of the anisotropic Nikol’skii class of functions.

Definition 1. Let α = (α1, . . . , αd), αi > 0 and L > 0. We say that density f : Rd → R

belongs to the anisotropic Nikol’ski class Ns,d(α,L) of functions if

(i) ‖D⌊αi⌋
i f‖s ≤ L, for all i = 1, . . . , d;

(ii) for all i = 1, . . . , d, and all z ∈ R
1

{
∫

∣

∣D
⌊αi⌋
i f(t1, . . . , ti + z, . . . , td)−D

⌊αi⌋
i f(t1, . . . , ti, . . . , td)

∣

∣

s
dt

}1/s

≤ L|z|αi−⌊αi⌋.

Here Dk
i f denotes the kth order partial derivative of f with respect to the variable ti, and

⌊αi⌋ is the largest integer strictly less than αi.

The functional classes Ns,d(α,L) were considered in approximation theory by Nikol’skii;
see, e.g., Nikol’skii (1969). Minimax estimation of densities from the class Ns,d(α,L) was
considered in Ibragimov and Khasminskii (1981). We refer also to Kerkyacharian, Lepski
and Picard (2001) where the problem of adaptive estimation over a scale of classes Ns,d(α,L)
was treated for the Gaussian white noise model.

Consider the following family of kernel estyimators. Let u be an integrable, compactly
supported function on R such that

∫

u(y)dy = 1. As in Kerkyacharian, Lepski and Picard
(2001), for some integer number l we put

ul(y) :=
l
∑

k=1

(

l

k

)

(−1)k+1 1

k
u
(y

k

)

,

and define

K(t) :=

d
∏

i=1

ul(ti), t = (t1, . . . , td). (13)
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The kernel K constructed in this way is bounded and compactly supported, and it is easily
verified that

∫

K(t)dt = 1,

∫

K(t)tkdt = 0, ∀|k| = 1, . . . , l − 1,

where k = (k1, . . . , kd) is the multi–index, ki ≥ 0, |k| = k1 + · · ·+ kd, and tk = tk11 · · · tkdd for
t = (t1, . . . , td).

For fixed α = (α1, . . . , αd) let ᾱ be defined by the relation 1/ᾱ =
∑d

i=1(1/αi). Define
also

ϕn,s(ᾱ) := L−γs/(ᾱ+γs)n−γsᾱ/(ᾱ+γs), γs :=

{

1− 1/s, s ∈ (1, 2],
1/2, s ∈ (2,∞).

Theorem 4. Let F(H) be the family of kernel estimators defined in (1), (3) and (4) that
is associated with the kernel (13). Let f̂ denote the estimator given by selection according
to our rule (6)–(8) from the family F(H).

(i) Let s ∈ (1, 2), and assume that hmin
i = 1/n and hmax

i = 1, ∀i = 1, . . . , d. Then for
any class Ns,d(α,L) such that maxi=1,...,d⌊αi⌋ ≤ l − 1, L > 0 one has

lim sup
n→∞

{

[ϕn,s(ᾱ)]
−1 Rs[f̂ ;Ns,d(α,L)]

}

≤ C < ∞.

(ii) Let s ∈ [2,∞), and assume that hmin
i = κ1/n and hmax

i = [κ2 lnn]
−s/(2d), ∀i =

1, . . . , d for some constants κ1 and κ2. Then for any class Ns,d(α,L) such that
maxi=1,...,d⌊αi⌋ ≤ l − 1, L > 0 one has

lim sup
n→∞

{

[ϕn,s(ᾱ)]
−1 Rs[f̂ ;Ns,d(α,L)]

}

≤ C < ∞.

It is well–known that ϕn,s(ᾱ) is the minimax rate of convergence in estimation of densi-
tites from the class Ns,d(α,L) [see Ibragimov and Khasminskii (1981) and Hasminskii and

Ibragimov (1990)]. Therefore Theorem 4 shows that our estimator f̂ is adaptive minimax
over a scale of the classes Ns,d(α,L).

4 Proofs

First we recall that accuracy of estimators f̂h and f̂h,η, h, η ∈ H is characterized by the
bias and stochastic error given by

Bh(f, t) :=

∫

Kh(t− x)f(x)dx− f(t),

ξh(t) :=
1

n

n
∑

i=1

[

Kh(t−Xi)− EfKh(t−X)
]

,

and

Bh,η(f, t) :=

∫

[Kh ∗Kη](t− x)f(x)dx− f(t),

ξh,η(t) :=
1

n

n
∑

i=1

{

[Kh ∗Kη](t−Xi)− Ef [Kh ∗Kη](t−X)
}

.

respectively.
The proofs extensively use results from Goldenshluger and Lepski (2010); in what follows

for the sake of brevity we refer to this paper as GL (2010).
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4.1 Auxiliary results

We start with two auxiliary lemmas that establish probability and moment bounds on
Ls–norms of the processes ξh and ξh,η. Proofs of these results are given in Appendix.

Lemma 1. Let Assumptions (K1) and (K2) hold.

(i) If s ∈ [1, 2) then for all n ≥ 42s/(2−s) one has

{

Ef sup
h∈H

[

‖ξh‖s − 32ρs(Kh)
]q

+

}1/q
≤ δ(1)n,s := C1A

2/q
H n1/s exp

{

− 2n2/s−1

37q

}

, (14)

{

Ef sup
(h,η)∈H×H

[

‖ξh,η‖s − 32ρs(Kh ∗Kη)
]q

+

}1/q
≤ δ(2)n,s

:= C2A
4/q
H n1/s exp

{

− 2n2/s−1

37q

}

. (15)

(ii) Let f ∈ F, and assume that 8[f2∞Vmax + 4n−1/2] ≤ 1; then for all f ∈ F one has

{

Ef sup
h∈H

[

‖ξh‖2 −
25

3
ρ2(Kh)

]q

+

}1/q
≤ δ

(1)
n,2

:= C3A
2/q
H n1/2 exp

{

− 1

16q[Vmaxf2∞ + 4n−1/2]

}

, (16)

{

Ef sup
(h,η)∈H×H

[

‖ξh,η‖2 −
25

3
ρ2(Kh ∗Kη)

]q

+

}1/q
≤ δ

(2)
n,2

:= C4A
4/q
H n1/2 exp

{

− 1

16q[f2∞Vmax + 4n−1/2]

}

. (17)

The constants Ci, i = 1, . . . , 4 depend on LK , k∞, d and q only.

Lemma 2. Let Assumptions (K1) and (K2) hold, f ∈ F, s > 2, and assume that

n ≥ C1, nVmin > C2, Vmax ≥ 1/
√
n.

Then the following statements hold:

{

Ef sup
h∈H

[

‖ξh‖s − 32 r̂s(Kh)
]q

+

}1/q
≤ δ(1)n,s

:= C3A
2/q
H B

1/q
H n1/2 exp

{

− C4

f∞V
2/s
max

}

, (18)

{

Ef sup
(h,η)∈H×H

[

‖ξh,η‖s − 32 r̂s(Kh ∗Kη)
]q

+

}1/q
≤ δ(2)n,s

:= C5A
4/q
H B

1/q
H n1/2 exp

{

− C6

f∞V
2/s
max

}

. (19)
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In addition, for any H1 ⊆ H and H2 ⊆ H

Ef sup
h∈H1

[r̂s(Kh)]
q ≤ (1 + 8cs)

q sup
h∈H1

[rs(Kh)]
q

+ C7A
2
H BH nq(s−2)/(2s) exp

{

− C8bn,s
}

, (20)

Ef sup
(h,η)∈H1×H2

[r̂s(Kh ∗Kη)]
q ≤ (1 + 8cs)

q sup
(h,η)∈H1×H2

[rs(Kh ∗Kη)]
q

+ C9A
4
HBH nq(s−2)/(2s) exp

{

− C10bn,s}, (21)

where bn,s := n4/s−1 if s ∈ (2, 4), and bn,s := [f∞V
4/s
max]−1 if s ∈ [4,∞). The constants Ci,

i = 2, . . . , 10 depend on LK , k∞, d, q and s only, while C1 depends also on f∞.

4.2 Proof of Theorems 1 and 2

The proofs of both theorems (which we break in several steps) follow along the same lines.

10. First we show that for any h, η ∈ H

Bh,η(f, x) = Bη(f, x) +

∫

Kη(y − x)Bh(f, y)dy (22)

= Bh(f, x) +

∫

Kh(y − x)Bη(f, y)dy. (23)

Indeed, by the Fubini theorem

∫

[Kh ∗Kη](t− x)f(t)dt =

∫

[

∫

Kh(t− y)Kη(y − x)dy
]

f(t)dt

=

∫

[

∫

Kh(t− y)f(t)dt− f(y)
]

Kη(y − x)dy +

∫

Kη(y − x)f(y)dy

=

∫

Kη(y − x)f(y)dy +

∫

Kη(y − x)Bh(f, y)dy.

Subtracting f(x) from the both sides of the last equality we come to (22); (23) follows
similarly.

20. Let ms(·, ·) and m∗
s(·) be given by (6), and define

δn,s :=
{

Ef sup
(h,η)∈H×H

[

‖ξh,η − ξη‖s −ms(h, η)
]q

+

}1/q
. (24)

Let f̂ = f̂ĥ be the estimator defined in (7)-(8). Our first goal is to prove that

Rs[f̂ ; f ] ≤ inf
h∈H

{

(

1 + 3‖K‖1
)

Rs[f̂h; f ] + 2
(

Ef

[

m∗
s(h)

]q)1/q
}

+ 3δn,s. (25)

By the triangle inequality for any η ∈ H

‖f̂ĥ − f‖s ≤ ‖f̂ĥ − f̂ĥ,η‖s + ‖f̂ĥ,η − f̂η‖s + ‖f̂η − f‖s, (26)

and we are going to bound the first two terms on the right hand side.

11



Define

B̄h(f) := sup
η∈H

∥

∥

∥

∫

Kη(t− ·)Bh(f, t)dt
∥

∥

∥

s
, h ∈ H.

We have for any h ∈ H

R̂h −m∗
s(h) = sup

η∈H

[

‖f̂h,η − f̂η‖s −ms(h, η)
]

≤ sup
η∈H

[

‖Bh,η(f, ·)−Bη(f, ·)‖s + ‖ξh,η − ξη‖s −ms(h, η)
]

≤ B̄h(f) + sup
η∈H

[

‖ξh,η − ξη‖s −ms(h, η)
]

+
=: B̄h(f) + ζ.

Here the second line is by the triangle inequality and the third line is by (22) and definition
of B̄h(f). Therefore for any h ∈ H one has

R̂h ≤ B̄h(f) +m∗
s(h) + ζ. (27)

By (22), (23) for any h, η ∈ H

‖f̂h,η − f̂h‖s ≤ ‖Bh,η(f, ·)−Bh(f, ·)‖s + ‖ξh,η − ξh‖s
≤ B̄η(f) + ζ + sup

η∈H
ms(η, h)

= B̄η(f) +m∗
s(h) + ζ ≤ B̄η(f) + R̂h + ζ,

where the last inequality is by definition of R̂h. In particular, letting h = ĥ we have that
for any η ∈ H

‖f̂ĥ,η − f̂ĥ‖s ≤ B̄η(f) + R̂ĥ + ζ

≤ B̄η(f) + R̂η + ζ ≤ 2B̄η(f) +m∗
s(η) + 2ζ, (28)

where we have used that R̂ĥ ≤ R̂η, ∀η ∈ H and (27).
Furthermore, for any η ∈ H

‖f̂ĥ,η − f̂η‖s = ‖f̂ĥ,η − f̂η‖s −ms(ĥ, η) +ms(ĥ, η)

≤ R̂ĥ ≤ R̂η ≤ B̄η(f) +m∗
s(η) + ζ, (29)

where the first inequality is by definition of R̂h, the second inequality is by the definition
of ĥ, and the last inequality follows from (27).

Combining (26), (28) and (29) we get for any η ∈ H that

‖f̂ĥ − f‖s ≤ ‖f̂ĥ − f̂ĥ,η‖s + ‖f̂ĥ,η − f̂η‖s + ‖f̂η − f‖s
≤ ‖f̂η − f‖s + 3B̄η(f) + 2m∗

s(η) + 3ζ.

Taking this expression to the power q, computing the expectation and using the fact that
[Ef |ζ|q]1/q = δn,s we obtain

Rs[f̂ ; f ] ≤ inf
h∈H

{

Rs[f̂h; f ] + 3B̄h(f) + 2
(

Ef

[

m∗
s(h)

]q)1/q
}

+ 3δn,s. (30)

By the Young inequality ‖B̄h(f)‖s ≤
(

supη∈H ‖Kη‖1
)

‖Bh(·, f)‖s = ‖K‖1‖Bh(·, f)‖s. In
addition, see (36),

‖Bh(·, f)‖s ≤ Rs[f̂h; f ], ∀h ∈ H

12



Combining this with (30) we complete the proof of (25).

30. Lemmas 1 and 2 lead to an upper bound on the quantity δn,s given in (24). Indeed,
by definition of ms(·, ·) [see (6)] we have

δn,s =
{

Ef sup
(h,η)∈H×H

[

‖ξh,η − ξη‖s −ms(h, η)
]q

+

}1/q

≤
{

Ef sup
(h,η)∈H×H

[

‖ξh,η‖s − gs(Kh ∗Kη)
]q

+

}1/q
+
{

Ef sup
h∈H

[

‖ξh‖s − gs(Kh)
]q

+

}1/q

≤ δ(1)n,s + δ(2)n,s, (31)

where expressions for δ
(1)
n,s and δ

(2)
n,s depending on the value of s ∈ [1,∞) are given in (14)–

(15), (16)–(17), and (18)–(19).
In order to apply (25) it remains to to bound {Ef [m

∗
s(h)]

q}1/q.
40. We start with the case s ∈ [1, 2). Here, by definiton,

m∗
s(h) = sup

η∈H
ms(η, h) = gs(Kh) + sup

η∈H
gs(Kη ∗Kh)

= 128n1/s−1(‖Kh‖s + sup
η∈H

‖Kh ∗Kη‖s
)

≤ 128[1 + ‖K‖1](nVh)
1/s−1.

Therefore applying (25), and taking into account (31), (14) and (15) we come to the state-
ment (i) of Theorem 1.

The statement (ii) of Theorem 1 dealing with the case s = 2 follows similarly by appli-
cation of (25) and (31), (16) and (17). This completes the proof of Theorem 1.

50. Now consider the case s ∈ (2,∞). Because

m∗
s(h) = sup

η∈H
ms(η, h) = gs(Kh) + sup

η∈H
gs(Kη ∗Kh)

= 32r̂s(Kh) + 32 sup
η∈H

r̂s(Kη ∗Kh), (32)

it suffices to bound from above [Ef |r̂s(Kh)|q]1/q and [Ef supη∈H |r̂s(Kh ∗ Kη)|q]1/q. Using
(20) of Lemma 2 with H1 = {h} we have

[Ef |r̂s(Kh)|q]1/q ≤ c1rs(Kh) + c2A
2/q
H B

1/q
H n(s−2)/(2s) exp{−c3bn,s}.

In addition, by the Young inequality

ρs(Kh) = csn
−1/2‖K2

h ∗ f‖1/2s/2 + n1/s−1‖Kh‖s
≤ csn

−1/2‖Kh‖2‖
√

f‖s + (nVh)
−1+1/s‖K‖s

≤ csf
1/2
∞ ‖K‖2(nVh)

−1/2 + ‖K‖s(nVh)
−1+1/s ≤ c4f

1/2
∞ (nVh)

−1/2;

hence

[Ef |r̂s(Kh)|q]1/q ≤ c5f
1/2
∞ (nVh)

−1/2 + c2A
2/q
H B

1/q
H n(s−2)/(2s) exp{−c3bn,s}. (33)

Now, applying (21) with H1 = {h} and H2 = H we obtain

[

Ef sup
η∈H

|r̂s(Kh ∗Kη)|q
]1/q ≤ c6 sup

η∈H
rs(Kh ∗Kη) + c7A

4/q
H B

1/q
H n(s−2)/(2s) exp{−c8bn,s}.
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In addition, similarly to the above

sup
η∈H

ρs(Kh ∗Kη) ≤ sup
η∈H

{

csn
−1/2‖Kh ∗Kη‖2‖

√

f‖s + n−1+1/s‖Kh ∗Kη‖s
}

≤ c8f
1/2
∞ sup

η∈H
[n(Vh ∨ Vη)]

1/2 ≤ c9f
1/2
∞ (nVh)

−1/2.

Therefore the last two bounds yield

[

Ef sup
η∈H

|r̂s(Kh ∗Kη)|q
]1/q ≤ c10f

1/2
∞ (nVh)

−1/2 + c7A
4/q
H B

1/q
H n(s−2)/(2s) exp{−c8bn,s}.

This along with (33) and (32) results in

[Ef |m∗
s(Kh)|q]1/q ≤ c11f

1/2
∞ (nVh)

−1/2 + c12A
4/q
H B

1/q
H n(s−2)/(2s) exp{−c13bn,s}.

Combining this bound with (18), (19) and (31), and applying (25) we complete the proof
of Theorem 2.

4.3 Proof of Theorem 3

Throughout the proof we denote by c0, c1, . . . , the positive constants depending only on the
kernel K, the index s and the quantity f∞. We divide the proof in several steps.

10. Let us prove that for any q ≥ 1 and h ∈ H

3Rs[f̂h; f ] ≥ ‖Bh(f)‖s + Ef‖ξh‖s. (34)

Indeed, in view of the Jensen inequality for any q ≥ 1

Rs[f̂h; f ] ≥ Ef‖f̂h − f‖s = Ef‖Bh(f) + ξh‖s. (35)

Denote by Bp(1), 1 ≤ p ≤ ∞, the unit ball in Lp

(

R
d
)

. By the duality argument

Ef‖Bh(f) + ξh‖s = Ef sup
ℓ∈Br(1)

∫

ℓ(t)
[

Bh(f, t) + ξh(t)
]

dt, r =
s

s− 1
.

Let ℓ0 ∈ Br(1) be such that ||Bh(f)||s =
∫

ℓ0(t)Bh(f, t)dt; then

Ef‖Bh(f) + ξh‖s ≥ Ef

∫

ℓ0(t)
[

Bh(f, t) + ξh(t)
]

dt = ‖Bh(f)‖s. (36)

Here we have used that Efξh(t) = 0, ∀t ∈ R
d. We also have by the triangle inequality

Ef‖Bh(f) + ξh‖s ≥ Ef‖ξh‖s − ‖Bh(f)‖s. (37)

Summing up the inequalities in (36) and (37) we get

Ef‖Bh(f) + ξh‖s ≥ 2−1
Ef‖ξh‖s. (38)

Thus, in view of (36) and (38) for any α ∈ (0, 1)

Ef‖Bh(f) + ξh‖s ≥ (1− α)‖Bh(f)‖s + 2−1αEf‖ξh‖s. (39)

14



Choosing α = 2/3 we arrive to (34) in view of (35).
In view (34), the assertion of the theorem will follow from the statement of Theorem 2

if we will show that
Ef‖ξh‖s ≥ c0(nVh)

−1/2.

20. Let b > 0 be a constant to be specified, and put a = b−1
√
nVh. By duality

Ef‖ξh‖s = Ef sup
ℓ∈Br(1)

∫

ℓ(t)ξh(t)dt, r =
s

s− 1
. (40)

Define the random event A = {aξh ∈ B2(1)} , and note that if A occurs then by the Hölder
inequality

agξh ∈ Br(1), ∀g ∈ B 2r
2−r

(1). (41)

Remind that s ≥ 2 implies r ∈ [1, 2], and if r = s = 2 the we formally put 2r
2−r = ∞.

If the event A occurs then Br(1) ⊇ {agξh : g ∈ B 2r
2−r

(1)}. Therefore, by (40) and (41)

Ef‖ξh‖s ≥ aEf



I(A) sup
g∈B 2r

2−r
(1)

∫

g(t)ξ2h(t)dt



 ≥ a sup
g∈B 2r

2−r
(1)

Ef

[

I(A)

∫

g(t)ξ2h(t)dt

]

= a sup
g∈B 2r

2−r
(1)

∫

g(t)
[

Ef I(A)ξ2h(t)
]

dt = a
∥

∥

∥
Efξ

2
h(·) I(A)

∥

∥

∥

2s
s+2

≥ a

(

∥

∥

∥
Efξ

2
h(·)
∥

∥

∥

2s
s+2

−
∥

∥

∥
Efξ

2
h(·) I

(

Ā
)

∥

∥

∥

2s
s+2

)

, (42)

where Ā is the event complementary to A.
Now consider separately two cases: s = 2 and s > 2.

30. If s = 2 we get from (42)

Ef‖ξh‖2 ≥ a

[
∫

Efξ
2
h(t)dt− Ef

{

‖ξh‖22 I
(

‖ξh‖2 ≥
b√
nVh

)}]

. (43)

Note that

Efξ
2
h(t) = n−1

∫

K2
h(t− x)f(x)dx− n−1

[
∫

Kh(t− x)f(x)dx

]2

(44)

and, therefore,

∫

Efξ
2
h(t)dt =

‖K‖22
nVh

− n−1

∫
[
∫

Kh(t− x)f(x)dx

]2

dt.

The application of Young’s inequality yields

∫
[
∫

Kh(t− x)f(x)dx

]2

dt ≤ ‖Kh‖21 ‖f‖22 ≤ ‖K‖21 f∞. (45)

Here we have used that f ∈ F. Thus, we obtain, in view of Vh ≤ Vmax ≤ 1/8 [see assumption
of the part (ii) of Theorem 1]

∫

Efξ
2
h(t)dt ≥ ‖K‖22

nVh
− ‖K‖21 f∞

n
≥ c1(nVh)

−1. (46)
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It follows from Theorem 1 of GL (2010) that for any x ≥ 2

P

{

‖ξh‖2 ≥
x‖K‖2√

nVh

}

≤ ec2(1−x) (47)

and, therefore, putting b = y‖K‖2, y ≥ 2, we obtain

Ef

{

‖ξh‖22 I
(

‖ξh‖2 ≥
y‖K‖2√

nVh

)}

≤ 2‖K‖22(nVh)
−1

∫ ∞

y
xec2(1−x)dx. (48)

Choosing y sufficiently large in order to make latter integral less than c1/(4‖K‖22) we obtain
from (43), (46) and (48)

Ef‖ξh‖2 ≥ c3(nVh)
−1/2.

The theorem is proved in the case s = 2.

40. Return now to the case s > 2. Note first that

∥

∥

∥
Efξ

2
h(·)
∥

∥

∥

2s
s+2

≥
(
∫

B

∣

∣Efξ
2
h(t)

∣

∣

2s
s+2 dt

)
s+2
2s

≥ ν
2−s
2s

∫

B
Efξ

2
h(t)dt. (49)

The last relation is obtained by Hölder inequality. Taking into account that
∫

B f(t)dt ≥ µ,
we get, using (44) and (45),

∫

B
Efξ

2
h(t)dt ≥

µ‖K‖22
nVh

− ‖K‖21 f∞
n

≥ c4µ(nVh)
−1. (50)

Here we have used that Vh ≤ 2−1µ‖K‖22/‖K‖21. On the other hand

Efξ
2
h(·) I

(

Ā
)

≤
{

Ef [ξh(·)]
4s
s+2

}
s+2
2s
{

P(Ā)
}

s−2
2s

and, therefore,

∥

∥

∥
Efξ

2
h(·) I

(

Ā
)

∥

∥

∥

2s
s+2

≤
{

Ef

(

‖ξh‖ 4s
s+2

)
4s
s+2

}

s+2
2s {

P(Ā)
}

s−2
2s

. (51)

We derive from Theorem 1 in GL (2010) that there exists c5 such that

Ef

(

‖ξh‖ 4s
s+2

)
4s
s+2 ≤ c5(nVh)

− 2s
s+2 . (52)

Putting b = x||K||2, x ≥ 2, we have in view of (47)

{

P(Ā)
}

s−2
2s ≤ e

c2(1−x)(s−2)
2s .

It leads together with (51) and (52) to the following estimate.
∥

∥

∥
Efξ

2
h(·) I

(

Ā
)

∥

∥

∥

2s
s+2

≤ c6(nVh)
−1e

c2(1−x)(s−2)
2s . (53)

We obtain finally from (42), (49), (50) and (53)

Ef‖ξh‖s ≥ (x‖K‖2)−1
(

nVh

)−1/2
(

c4µ ν
2−s
2s − c6e

c2(1−x)(s−2)
2s

)

.

It remains to choose x sufficiently large and we come to the assertion of the theorem in the
case s > 2.
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4.4 Proof of Theorem 4

Let f ∈ Ns,d(α,L). It easily checked [see, e.g., Proposition 3 in Kerkyacharian, Lepski and

Picard (2001)] that bias of the estimator f̂h is bounded as follows

‖Bh(f, ·)‖s ≤ C1(u, d, s)L
d
∑

j=1

h
αj

j .

Moreover,
{

Ef‖ξh‖qs
}1/q ≤ C2(nVh)

−γs . If we set the “oracle bandwidth” h∗ := (h∗1, . . . , h
∗
d)

so that

[h∗j ]
αj :=

[

C2

C1

]ᾱ/(γs+ᾱ)

L−ᾱ/(γs+ᾱ)n−γsᾱ/(γs+ᾱ), j = 1, . . . , d

then h∗ ∈ H and f̂h∗ ∈ F(H) for large enough n. Hence, for any f ∈ Ns,d(α,L) we have that

Rs[f̂h∗ ; f ] ≤ C3ϕn,s(ᾱ). Then we apply oracle inequalities of Theorems 1 and 2. Observe
that by choice of constant κ2 in definition of hmax we guarantee that the remainder terms
are negligibly small in terms of dependence on n as compared with the first terms in (10)
and (11). This fact leads to the statement of the theorem.

5 Appendix

Proofs of Lemmas 1 and 2 follow directly from general uniform bounds on norms of empirical
processes established in GL (2010). In our proofs below we use notation and terminology
of the aforecited paper.

Proof of Lemma 1. The statement is a direct consequence of Theorem 4 of Section 3.3
in GL (2010).

To apply this theorem one should verify Assumptions (W1), (W4), and (L) for the
following classes of weights W(1) = {w = n−1Kh : h ∈ H} and W(2) = {w = n−1(Kh ∗Kη) :
(h, η) ∈ H×H}. The sets W(1) and W(2) are considered as images of H and H×H under
transformations h 7→ n−1Kh and (h, η) 7→ n−1(Kh∗Kη) respectively. The sets H and H×H
are equipped with the distances

d1(h, h
′) = c1 max

i=1,...,d
ln
(hi ∨ h′i
hi ∧ h′i

)

, d2[(h, h
′), (η, η′)] := c2{d1(h, h′) ∨ d1(η, η

′)},

where c1 and c2 are appropriate constants depending on k∞, LK and d only [see formulae
(9.1)-(9.2) in GL (2010)]. With this notation Lemma 9 of GL (2010) shows that Assump-
tion (L) holds for both W(1) and W(2). Moreover, Assumption (W1) holds trivially both for
W(1) and W(2) with µ∗ = Vmax and µ∗ = 2dVmax repsectively. Moreover, Assumption (W4)
for both W(1) and W(2) follows from formula (9.8) in GL (2010). Thus all conditions of
Theorem 4 are fulfilled.

(i). We apply this theorem with z = 1 and ǫ = 1. We need to evaluate the constant
T3,ǫ for W(1) and W(2). If NH,d1(ǫ) denotes the minimal number of balls in the metric d1
needed to cover H, then formula (9.8) from GL (2010) shows that NH,d1(1/8) ≤ c3AH,
where c3 depends on d only. Similarly, NH×H,d2(1/8) ≤ c4A

2
H. In addition, for

LH,d1(ǫ) :=

∞
∑

k=1

exp
{

2 lnNH,d1(ǫ2
−k)− (9/16)2kk−2

}
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we have LH,d1(1) ≤ c5AH. Similarly, LH×H,d2(1) ≤ c6A
2
H. Combining these bounds we

come to the statement (i).
(ii). The second statement follows exactly in the same way from the above considera-

tions. Theorem 4 of GL (2010) is again applied with z = 1 and ǫ = 1.

Proof of Lemma 2. The proof is by application of Theorem 7 from GL (2010). We need
to calculate several quantities.

We start with the class W(1). Here for ϑ
(1)
0 = 10csf∞(LK

√
d)d/2 we have

C∗
ξ,1(y) = 1 + 2ϑ

(1)
0

{√
y
(

V 1/s
max + n−1/(2s)

)

+ yn−1/s
}

≤ 1 + 2ϑ
(1)
0

{

2
√
yV 1/s

max + yV 2/s
max

}

,

where we have used that Vmax ≥ 1/
√
n. If we set y = ȳ := [4V

2/s
max(ϑ

(1)
0 ∨1)]−1 then C∗

ξ,1(ȳ) ≤
4. We apply Theorem 7 with ǫ = 1 and y = ȳ. Condition nVmin > C1 = [256c2s ]

(s∧4)/(s∧4−2)

implies that
ū1(γ) = 4

[

1− 8cs(nVmin)
1/(s∧4)−1/2

]−1 ≤ 8.

Moreover, we note that condition ȳ ≤ y
(1)
∗ follows from definition of ȳ and n ≥ C2. In

addition, T̃
(1)
1,ǫ ≤ cA2

HBH. These facts imply (18) and (20).

The bounds (19) and (21) for W(2) follow from similar computations.
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