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SPECTRAL ASYMPTOTICS FOR ROBIN PROBLEMS

WITH A DISCONTINUOUS COEFFICIENT

Gerd Grubb

Department of Mathematical Sciences, Copenhagen University, Universitetsparken
5, DK-2100 Copenhagen, Denmark. E-mail grubb@math.ku.dk

Abstract. The spectral behavior of the difference between the resolvents of two realizations
of a second-order strongly elliptic symmetric differential operator A defined by different Robin

conditions χu = b1γ0u and χu = b2γ0u, can in the case where all coefficients are C∞ be

determined by use of a general result by the author in 1984 on singular Green operators. We
here treat the problem for nonsmooth bi, showing that if b1 and b2 are in L∞, the s-numbers

sj satisfy sjj
3/(n−1) ≤ C for all j. This improves a recent result for A = −∆ by Behrndt et

al., that
∑

j s
p
j < ∞ for p > (n− 1)/3, under a hypothesis of boundedness of b−1

i . Moreover,

we show that if b1 and b2 are in Cε for some ε > 0, with jumps at a smooth hypersurface,

then sjj
3/(n−1) → c for j → ∞, with a constant defined from the principal symbol of A and

b2 − b1.
We also show that the usual principal spectral asymptotic estimate for pseudodifferential

operators of negative order on a closed manifold extends to products of pseudodifferential
operators of negative order interspersed with piecewise continuous functions.

Introduction.

Consider a second-order strongly elliptic symmetric operator

(0.1) A = −
n∑

j,k=1

∂j(ajk∂ku) + a0u

on a bounded smooth domain Ω ⊂ Rn, and denote by Aγ, Aν , resp. Ã, the realizations in
L2(Ω) defined by the Dirichlet condition γ0u = 0, the Neumann condition νAu = 0, resp.
a Robin condition νAu − bu = 0 with b real. (Here γ0u = u|∂Ω, and νA is the conormal
derivative νAu =

∑n
j,k=1 njγ0(ajk∂ku), with ~n = (n1, . . . , nn) denoting the interior normal

to ∂Ω.) It is a classical result of Birman [B62], shown also for exterior domains, that the
difference between the resolvents of the Robin realization and the Dirichlet realization is
compact and has the spectral behavior, for large negative λ,

(0.2) sj
(
(Ã− λ)−1 − (Aγ − λ)−1

)
j2/(n−1) ≤ C for all j;
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2 GERD GRUBB

here sj(T ) denotes the j-th eigenvalue of (T ∗T )
1
2 (the j-th s-number or singular value

of T ), counted with multiplicities. This was shown assuming merely that b ∈ L∞(∂Ω).
For the situation where all coefficients are C∞, the estimate was later improved to an
asymptotic estimate

(0.3) sj
(
(Ã− λ)−1 − (Aγ − λ)−1

)
j2/(n−1) → c for j → ∞;

this follows from Grubb [G74], Sect. 8 (with generalizations to higher-order operators), and
Birman and Solomiak [BS80] (including exterior domains). The paper [G84] gave tools to
extend (0.3) to nonselfadjoint situations (also for exterior domains by a cutoff technique),
by showing that for any singular Green operator G on Ω of order −t < 0 and class 0,

(0.4) sj(G)j
t/(n−1) → c for j → ∞;

here G belongs to the calculus of pseudodifferential boundary operators, introduced by
Boutet de Monvel [B71] and further developed in [G84], [G96]. In fact, the resolvent
differences considered above are singular Green operators of order −2 and class 0, when
all coefficients are smooth.

Considering another resolvent difference, J. Behrndt, M. Langer, I. Lobanov, V. Lo-
toreichik and I. Popov showed in a recent paper [BLLLP10], on the basis of a theory of
quasi-boundary triples by J. Behrndt and M. Langer [BL07], that when A = −∆ and b is

a real function in L∞(∂Ω) with b−1 ∈ L∞(∂Ω), the difference between the resolvent of Ã
and the resolvent of the Neumann realization Aν satisfies an estimate with 2 replaced by

3, for λ in the intersection of resolvent sets ̺(Ã) ∩ ̺(Aν):

(0.5) (Ã− λ)−1 − (Aν − λ)−1 ∈ Cp for p > 3/(n− 1);

here Cp denotes the space of compact operators T with singular value sequences (sj(T ))j∈N ∈
ℓp; the Schatten class of order p. (Besides real b, also cases with a fixed sign on Im b were
treated.)

In the smooth case this follows for arbitrary b ∈ C∞(∂Ω) from (0.4) with a more precise
estimate:

(0.6) sj
(
(Ã− λ)−1 − (Aν − λ)−1

)
j3/(n−1) → c for j → ∞;

as noted also in [G10], Cor. 8.4 and Ex. 8.5.
The result of [BLLLP10] is more general by treating nonsmooth b, but has an assump-

tion of boundedness of b−1 that excludes many C∞-functions. The authors have informed
us of a forthcoming work removing that assumption.

We shall give a proof in this paper without the hypothesis of boundedness of b−1, that
an upper bound

(0.7) sj
(
(Ã− λ)−1 − (Aν − λ)−1

)
j3/(n−1) ≤ C for all j,

holds for any complex b ∈ L∞(∂Ω) (this implies (0.5)).
Moreover, we shall show that when b has a little smoothness, e.g. is in a Hölder space

Cε for some ε > 0, then the singular values satisfy the asymptotic estimate (0.6), where
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c is a constant determined from b and the principal symbol of A. Finally, we show that
such asymptotic estimates hold even when b has jumps at smooth hypersurfaces of ∂Ω.

For the results leading to (0.7), the method is, as in [BLLLP10], an application of func-
tional analysis, building on a theory of extensions (here Grubb [G68]) together with a
general knowledge of elliptic boundary value problems. The extension of (0.6) to the non-
smooth situations draws on methods and results for pseudodifferential boundary operators
in [G84] and a result on operators with restricted kernels by Laptev [L77, L81]. As an aux-
iliary result of independent interest we show that a product of classical pseudodifferential
operators of negative order on a closed manifold, interspersed with piecewise continuous
functions having jumps at a smooth hypersurface, has a principal spectral asymptotics
estimate as in the smooth case.

We consider a slightly more general operator A than in (0.1) including first-order terms,
assuming that it is associated with a symmetric sesquilinear form that is coercive onH1(Ω).

There exist sophisticated methods for piecewise smooth boundary conditions, see e.g.
Peetre [P61, P63], Shamir [S63], Eskin [E81], Rempel and Schulze [RS83], Harutyunyan
and Schulze [HS08], giving microlocal treatments, but they are not needed for the present
results. Let us also mention that we do not here address the question of nonsmooth
domains, as e.g. in Gesztesy and Mitrea [GM09, GM10] and [AGW10], and their references.

To keep the paper short, some introductory material found in other sources will not be
repeated here.

The main details of the extension theory [G68]–[G74] have been recalled and explained
in several recent papers [BGW09], [G08], [G10]; resulting Krein-type resolvent formulas
are shown in [BMW09].

Sobolev spaces are recalled in numerous places. The basic facts we shall need on these
and other function spaces such as Besov and Bessel-potential spaces, are recalled e.g. in
[AGW10], Sect. 2.

The calculus of pseudodifferential boundary operators is explained in Boutet de Monvel
[B71] and in [G84], [G96], [G09].

1. The Robin realization.

Let Ω be a bounded smooth subset of Rn with boundary ∂Ω = Σ, and let

(1.1) a(u, v) =
n∑

j,k=1

(ajk∂ku, ∂jv) +
n∑

j=1

((aj∂ju, v) + (a′ju, ∂jv)) + (a0u, v),

be a sesquilinear form with coeficients in C∞(Ω) such that the associated second-order
operator

(1.2) Au = −
n∑

j,k=1

∂j(ajk∂ku) +

n∑

j=1

(aj∂ju− ∂j(a
′
ju)) + a0u,

is formally selfadjoint and strongly elliptic. We assume moreover that a(u, u) is real for
u ∈ H1(Ω) and (with c > 0, k ≥ 0)

(1.3) a(u, u) ≥ c‖u‖21 − k‖u‖20, for u ∈ H1(Ω).
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This holds if the matrix (ajk)
n
j,k=1 is real, symmetric and positive definite, a′j = aj , and

a0 is real, at each x ∈ Ω.
Let b ∈ L∞(Σ), and define the sesquilinear form ab by

(1.4) ab(u, v) = a(u, v) + (bγ0u, γ0v)L2(Σ).

Since ‖γ0u‖
2
L2(Σ) ≤ c′‖u‖23

4

≤ ε‖u‖21 + C(ε)‖u‖20 for any ε, we infer from (1.3) that

(1.5) Re ab(u, u) ≥ c1‖u‖
2
1 − k1‖u‖

2
0, for u ∈ H1(Ω),

where c1 < c is close to c and k1 ≥ k is a large constant.

The sesquilinear form ab on V = H1(Ω) in H = L2(Ω) defines a realization Ã of A by
Lions’ version of the Lax-Milgram lemma (as recalled e.g. in [G09], Ch. 12), with domain

D(Ã) = {u ∈ H1(Ω) ∩D(Amax) | (Au, v) = ab(u, v) for all v ∈ H1(Ω)}.

The operator Ã is closed, densely defined with spectrum in a sectorial region in {Reλ ≥

−k1}, and its adjoint Ã∗ is the analogous operator defined from

(1.6) a∗b(u, v) = a(v, u) + (bγ0u, γ0v)L2(Σ).

In particular, when b is real, Ã is selfadjoint.
It will be useful to observe:

Lemma 1.1. For any small θ > 0 there is an α ≥ 0 such that the spectrum of Ã is
contained in the region

(1.7) Mθ,α,k1
= {z ∈ C | | Im z| ≤ θ(Re z + α), Re z ≥ −k1}.

Proof. Let K = ‖ Im b‖L∞(Σ). From the inequalities for ab(u, u) we see that for u ∈ H1(Ω),

| Im ab(u, u)| = | Im(bγ0u, γ0u)| ≤ K(ε‖u‖21 + C(ε)‖u‖20)

≤ Kεc−1
1 (Re ab(u, u) + k1‖u‖

2
0) +KC(ε)‖u‖20

= Kεc−1
1 Re ab(u, u) + (Kεc−1

1 k1 +KC(ε))‖u‖20.

This (together with (1.5)) shows that for u 6= 0, ab(u, u)/‖u‖
2
0 has its values in Mθ,α,k1

,

where θ = Kεc−1
1 can be taken arbitrarily small, α = Kεc−1

1 k1 +KC(ε). The numerical

ranges of Ã and Ã∗ are contained in this set, which then also contains the spectra. (More
details for this kind of argument can be found in [G09], Sect. 12.4.) �

We denote
∑

j njγ0∂ju = γ1u. The Neumann-type boundary operator

(1.8) χu =

n∑

j,k=1

njγ0ajk∂ku+

n∑

j=1

njγ0a
′
ju,
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enters in the “halfways Green’s formula”

(1.9) (Au, v)− a(u, v) = (χu, γ0v)L2(Σ),

for smooth u and v. It is known e.g. from [LM68] that γ1 and χ extend to continuous

mappings from H1(Ω) ∩ D(Amax) to H− 1
2 (Σ), such that for u ∈ H1(Ω) ∩ D(Amax), v ∈

H1(Ω), (1.9) holds with the scalar product over Σ replaced by the sesquilinear duality

between H− 1
2 (Σ) and H

1
2 (Σ). Then

(Au, v)− ab(u, v) = (χu, γ0v)
H−

1
2 (Σ),H

1
2 (Σ)

− (bγ0u, γ0u)L2(Σ),

and hence

D(Ã) = {u ∈ H1(Ω) ∩D(Amax) | χu = bγ0u in H− 1
2 (Σ)}.

Note that χu = νAu + sγ0u for a smooth function s, so the more traditional Robin
conditions νAu− b′γ0u = 0 can be written in the form χu− bγ0u = 0 by taking b = b′ + s.
(We also have that νAu = s0γ1u + A1γ0u with an invertible smooth function s0 and a
first-order tangential differential operator A1.)

For b = 0, the condition is χu = 0, defining what we shall call the Neumann realization
Aχ; it is selfadjoint with D(Aχ) ⊂ H2(Ω). It is well-known that when b is smooth, then

D(Ã) ⊂ H2(Σ).

Lemma 1.2. When b ∈ L∞(Σ), the domain of Ã satisfies

D(Ã) ⊂ H
3
2 (Ω) ∩D(Amax).

Proof. When u ∈ D(Ã), then u ∈ H1(Ω) implies γ0u ∈ H
1
2 (Σ) ⊂ L2(Σ). Multiplication

by b is continuous on L2(Σ), so bγ0u ∈ L2(Σ). Then also χu = bγ0u is in L2(Σ). By the

ellipticity of the Neumann problem, Au ∈ L2(Ω) with χu ∈ L2(Σ) imply u ∈ H
3
2 (Ω). �

When b has more smoothness or piecewise smoothness, we can get more regularity: It is
known that when b is in the Bessel potential space Hr

p(Σ) with r > (n− 1)/p, p ≥ 2, then
multiplication by b is continuous in Hs(Σ) for |s| ≤ r (cf. e.g. Johnsen [J95]). In relation
to Hölder spaces Cr and Besov spaces Br

p.q there are inclusions

(1.10) Cr+2ε(Σ) →֒ Br+ε
∞,2(Σ) →֒ Bα+ε

p,2 (Σ) →֒ Hr
p(Σ), ε > 0,

so also functions in these spaces preserve Hs(Ω) for |s| ≤ r. (A summary of the relevant
facts on function spaces is given e.g. in [AGW10], Sect. 2.)

When X(Σ) is a function space over Σ, we say that b is piecewise in X , when the
(n−1)-dimensional manifold Σ is a union Σ1∪· · ·∪ΣJ of smooth subsets Σj with disjount
interiors (such that the interfaces are smooth (n−2)-dimensional manifolds), and b equals
a function bj ∈ X(Σ) on each of the interiors.

It is well-known that multiplication by 1Σj
is continuous on Hs(Σ) for all |s| < 1

2
.
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Proposition 1.3.

1◦ Let b ∈ Hr
p(Σ) with r > (n − 1)/p, p ≥ 2 (it holds if b is in one of the spaces in

(1.10)). Then D(Ã) ⊂ H
3
2
+r(Ω) if r < 1

2 , D(Ã) ⊂ H2(Ω) if r ≥ 1
2 .

2◦ Let b be piecewise in Hr
p(Σ) with r > (n − 1)/p, p ≥ 2. Then D(Ã) ⊂ H

3
2
+r(Ω) if

r < 1
2 , D(Ã) ⊂ H2−ε(Ω) for any ε > 0 if r ≥ 1

2 .

Proof. As already noted, u ∈ H1(Ω) implies γ0u ∈ H
1
2 (Σ). In the case 1◦, multiplication

by b preserves Hs(Σ) for |s| ≤ r, so bγ0u ∈ Hmin{r, 1
2
}(Σ). Then also χu = bγ0u is in

Hmin{r, 1
2
}(Σ), and now Au ∈ L2(Ω) with χu ∈ Hmin{r, 1

2
}(Σ) imply u ∈ H

3
2
+r(Ω) if r < 1

2 ,

u ∈ H2(Ω) if r ≥ 1
2
, by the ellipticity of the Neumann problem.

In the case 2◦, since b =
∑J

j=1 bj1Σj
, multiplication by b maps Hr(Σ) into itself if

r < 1
2
, and into H

1
2
−ε, any ε > 0, if r ≥ 1

2
. Completing the proof as under 1◦, we find

that u ∈ H
3
2
+r(Ω) if r < 1

2 , u ∈ H2−ε(Ω) if r ≥ 1
2 . �

Let us regard Ã from the point of view of the general extension theory of [G68], as
recalled in [BGW09], [G08], [G10].

We take the Dirichlet realizationAγ as the reference operator, assumed to have a positive
lower bound. (Seen from the point of view of [G68], [BL07] uses instead the Neumann

realization Aχ as the reference operator.) The operator Ã corresponds, by the general
theory, to a closed densely defined operator T :V →W , where V and W are closed subsets
of Z = kerAmax and D(T ) is dense in V ; and this in turn is carried over by use of the

homeomorphism γ0 : Z
∼
→ H− 1

2 (Σ), to a closed operator L : X → Y ∗, with domain D(L)

dense in X , where X and Y are closed subspaces of H− 1
2 (Σ). Here X = γ0V , Y = γ0W

and D(L) = γ0D(T ) = γ0D(Ã).

Proposition 1.4. The operator L : X → Y corresponding to Ã by [G68] has X = Y =

H− 1
2 (Σ), and acts like b − P 0

γ,χ with a domain contained in H1(Σ). When b is real, L is

selfadjoint as an unbounded operator from H− 1
2 (Σ) to H

1
2 (Σ).

Proof. Besides the description in [BGW09], we shall use the observations on operators
defined by sesquilinear forms worked out in [G70] (and partly recalled in [G09], Ch. 13.2,
see in particular Th. 13.19). Since the domain of ab(u, v) equals H

1(Ω), T is defined from
a sesquilinear form t(z, w) with domain H1(Ω)∩Z dense in Z, and hence V = W = Z. It

follows that X = Y = H− 1
2 (Σ), and L is densely defined and closed as an operator from

H− 1
2 (Σ) to H

1
2 (Σ). The adjoint L∗ is of the same type and corresponds to Ã∗. When b is

real, Ã is selfadjoint as noted above; then L is selfadjoint.

In the interpretation of the extension theory, Ã represents the boundary condition

γ0u ∈ D(L), Γu = Lγ0u;

where Γu = χu − P 0
γ,χγ0u, so Lγ0u = χu − P 0

γ,χγ0u when u ∈ D(Ã). (Pλ
γ,χ is the

operator mapping Dirichlet boundary values to Neumann boundary values for solutions of

(A − λ)u = 0; more on this below.) Since the functions in D(Ã) also satisfy χu = bγ0u,
we see that L acts like

Lϕ = (b− P 0
γ,χ)ϕ.
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By Lemma 1.2, D(Ã) ⊂ H
3
2 (Σ), so D(L) = γ0D(Ã) ⊂ H1(Σ). �

When we replace A by A − λ, where λ is in the resolvent set ̺(Aγ) of Aγ , we get for
the corresponding operator Lλ:

Lλ acts like b− Pλ
γ,χ, with D(Lλ) = D(L) ⊂ H1(Σ).

For λ ∈ ̺(Aγ) ∩ ̺(Ã), there holds a Krein resolvent formula (shown in [BGW09], Th.
3.4):

(1.11) (Ã− λ)−1 = (Aγ − λ)−1 +Kλ
γ (L

λ)−1(K λ̄
γ )

∗.

Here Kλ
γ is the Poisson operator for the Dirichlet problem, i.e. the solution operator

Kλ
γ :ϕ 7→ u for the problem

(A− λ)u = 0 on Ω, γ0u = ϕ on Σ;

it maps Hs− 1
2 (Σ) → Hs(Ω) continuously for all s, and the adjoint maps e.g. L2(Ω) to

H
1
2 (Σ).

We can use this to show a spectral estimate for (Ã − λ)−1 − (Aχ − λ)−1, going via
differences with the Dirichlet resolvent. The argumentation is not the same as that of
[BLLLP10], which uses a Krein formula based on the Poisson operator for the Neumann
problem, and needs to assume essentially that b has a bounded inverse.

The spectrum of Aγ is contained in a positive halfline [c0,∞[ , and the spectrum of Aχ

is contained in a larger halfline ] − k,∞[ , cf. (1.3). For λ ∈ C\ ] − k,∞[ , the Dirichlet-
to-Neumann operator Pλ

γ,χ = χKλ
γ is a homeomorphism from Hs(Σ) to Hs−1(Σ) for all

s ∈ R, with inverse Pλ
χ,γ , the Neumann-to-Dirichlet operator. Then we can write

(1.12) Lλϕ = (b− Pλ
γ,χ)ϕ = (bPλ

χ,γ − 1)Pλ
γ,χϕ, for ϕ ∈ D(L).

Since Pλ
χ,γ is of order −1, it is compact in L2(Σ). Then bP

λ
χ,γ − 1 is a Fredholm operator

in L2(Σ), as noted also in [BLLLP10]. If λ is such that: (1) Lλ is invertible (from D(L)

to H
1
2 (Σ)), (2) bPλ

χ,γ − 1 is invertible in L2(Σ), then the two inverses must coincide on

H
1
2 (Σ).
For bPλ

χ,γ − 1, we get invertibility as follows: We have as a simple application of the
principles in [G96] (cf. Th. 2.5.6, (A.25–26)) that

‖Pλ
γ,χϕ‖Hs,µ(Σ) ≃ ‖ϕ‖Hs+1,µ(Σ), ‖ϕ‖Hs−1,µ(Σ) ≃ ‖Pλ

χ,γϕ‖Hs,µ(Σ),

uniformly in µ = |λ|
1
2 for λ → ∞ on rays in C \ R+; this holds since Pλ

γ,χ is parameter-
elliptic of order 1 and regularity +∞ on the rays in C \R+. In particular, one has on such
a ray {λ = µ2eiη} with η ∈ ]0, 2π[ , for s ∈ [0, 1] and µ ≥ 1,

‖Pλ
χ,γϕ‖Hs(Σ) + 〈µ〉s‖Pλ

χ,γϕ‖L2(Σ) ≤ cmin{‖ϕ‖Hs−1(Σ), 〈µ〉
s−1‖ϕ‖L2(Σ)},
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so the norm of Pλ
χ,γ in L2(Σ) is O(〈µ〉−1) on the ray. Take µ0 so large that ‖bP

λ
χ,γ‖L(L2(Σ) ≤

δ < 1 for µ ≥ µ0, then bP
λ
χ,γ − 1 is invertible as an operator in L2(Σ) for µ ≥ µ0, with a

bounded inverse (bPλ
χ,γ − 1)−1:

(1.13) (bPλ
χ,γ − 1)−1 = −1−

∞∑

k=1

(bPλ
χ,γ)

k, converging in L(L2(Σ)).

Then b− Pλ
γ,χ has an inverse

(1.14) (b− Pλ
γ,χ)

−1 = Pλ
χ,γ(bP

λ
χ,γ − 1)−1.

For Lλ we know from the extension theory that Lλ is bijective from D(L) to H
1
2 (Σ) if

and only if λ ∈ ̺(Ã). It follows from Lemma 1.1 by a simple geometric consideration that

for each ray {λ = µ2eiη} with η ∈ ]0, 2π[ , there is a µ1 such that such that λ ∈ ̺(Ã) for
µ ≥ µ1.

For µ ≥ max{µ0, µ1}, both (1) and (2) are satisfied, so then

(1.15) (Lλ)−1 = (b− Pλ
γ,χ)

−1 = Pλ
χ,γ(bP

λ
χ,γ − 1)−1 on H

1
2 (Σ).

We note in particular that

(1.16) D(Lλ) = {ϕ ∈ H1(Σ) | (b− Pλ
γ,χ)ϕ ∈ H

1
2 (Σ)},

for such λ. Now D(L) = D(Lλ), and P 0
γ,χ − Pλ

γ,χ is bounded from H− 1
2 (Σ) to H

1
2 (Σ) (cf.

[BGW09], Rem. 3.2), so we conclude that

(1.17) D(L) = {ϕ ∈ H1(Σ) | (b− P 0
γ,χ)ϕ ∈ H

1
2 (Σ)}.

It follows moreover that (1.16) holds for all λ ∈ ̺(Aγ).

This shows the main part of:

Theorem 1.5. The domain of L satisfies (1.17), and it is also described by (1.16) for any
λ ∈ ̺(Aγ).

On each ray in C \R+, λ is in ̺(Ã) and (1.15) holds for |λ| sufficiently large. For such
λ,

(1.18) (Ã− λ)−1 − (Aγ − λ)−1 = Kλ
γPχ,γ(bP

λ
χ,γ − 1)−1K λ̄

γ

∗
.

Proof. The statements before formula (1.18) were accounted for above, and the formula
follows by insertion of (1.15) in (1.11). �
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2. Spectral estimates.

Spectral estimates for resolvent differences will now be studied. A classical reference for
the basic concepts is the book of Gohberg and Krein [GK69]; some particularly relevant
facts were collected in [G84], supplied with additional results. We shall include a short
summary here:

For p > 0, the space Cp is the Schatten class of compact linear operators T (in a Hilbert
space H) with singular value sequences (sj(T ))j∈N ∈ ℓp, and Sp denotes the quasi-normed

space of compact operators T with sj(T ) = O(j−1/p); here Sp ⊂ Cp+ε for all ε > 0.
The rules shown by Ky Fan [F51]

(2.1) sj+k−1(T + T ′) ≤ sj(T ) + sk(T
′), sj+k−1(TT

′) ≤ sj(T )sk(T
′),

imply that Cp and Sp are vector spaces, and that a product rule holds:

(2.2) Sp ·Sq ⊂ S1/(1/p+1/q), Cp · Cq ⊂ C1/(1/p+1/q).

Moreover, the rule

(2.3) sj(ATB) ≤ ‖A‖sj(T )‖B‖

implies that Sp and Cp are preserved under compositions with bounded operators. We
mention two perturbation results:

Lemma 2.1.

1◦ If sj(T )j
1/p → C0 and sj(T

′)j1/p → 0 for j → ∞, then sj(T + T ′)j1/p → C0 for
j → ∞.

2◦ If T = TM + T ′
M for each M ∈ N, where sj(TM )j1/p → CM for j → ∞ and

sj(T
′
M )j1/p ≤ εM for j ∈ N, with CM → C0 and εM → 0 for M → ∞, then sj(T )j

1/p →
C0 for j → ∞.

The statement in 1◦ is the Weyl-Ky Fan theorem (cf. e.g. [GK69] Th. II 2.3), and 2◦ is
a refinement shown in [G84], Lemma 4.2.2◦.

We also recall that when Ξ is a compact n-dimensional smooth manifold (possibly with
boundary) and T is a bounded linear operator from L2(Ξ) to H

t(Ξ) for some t > 0, then
T ∈ Sn/t as an operator in L2(Ξ), with

(2.4) sj(T )j
t/n ≤ C‖T‖L(L2,Ht),

C depending only on Ξ and t. See [G84], Lemma 4.4ff. for references.

The Poisson operator Kλ
γ is continuous from Hs− 1

2 (Σ) to Hs(Ω) for all s ∈ R, and its

adjoint Kλ
γ
∗
is a trace operator of class 0 and order −1 in the pseudodifferential boundary

operator calculus, hence is continuous from Hs(Ω) to Hs+ 1
2 (Σ) for s > −1

2
. Then the

composition Kλ
γ
∗
Kλ

γ is continuous from L2(Σ) to H1(Σ), so in view of (2.4), Kλ
γ
∗
Kλ

γ ∈

Sn−1 and hence Kλ
γ ∈ S(n−1)/(1/2), as operators in L2(Σ). The singular numbers of Kλ

γ
∗

have the same behavior. Moreover, since Pλ
χ,γ is a pseudodifferential operator of order −1

on Σ, it lies in Sn−1 when considered as an operator in L2(Σ). .
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Theorem 2.2. Let b ∈ L∞(Σ). For any λ ∈ ̺(Ã) ∩ ̺(Aχ),

(2.5) (Ã− λ)−1 − (Aχ − λ)−1 ∈ S(n−1)/3.

Proof. First assume that λ lies so far out on a ray in C\R+ that the statements in Theorem
1.5 are valid.

Applying (1.18) to our Ã and also to the case b = 0 (the Neumann realization), we find
by subtraction:

(2.6)

(Ã− λ)−1 − (Aχ − λ)−1 = (Ã− λ)−1 − (Aγ − λ)−1 − ((Aχ − λ)−1 − (Aγ − λ)−1)

= Kλ
γP

λ
χ,γ [(bP

λ
χ,γ − 1)−1 + 1]K λ̄

γ

∗

= Kλ
γP

λ
χ,γ(bP

λ
χ,γ − 1)−1bPλ

χ,γK
λ̄
γ

∗
.

The last expression is composed of the operator Kλ
γ in S(n−1)/(1/2), the adjoint of K

λ̄
γ with

the same property, two factors Pλ
χ,γ in Sn−1 and the bounded operators (bPλ

χ,γ −1)−1 and
b, so it belongs to S(n−1)/3, by (2.2).

Now let λ′ be an arbitrary number in ̺(Ã) ∩ ̺(Aχ). We use the following refined
resolvent identity as in [BLLLP10]:

(2.7) (S − λ′)−1 − (T − λ′)−1

= (1 + (λ′ − λ)(T − λ′)−1)((S − λ)−1 − (T − λ)−1)(1 + (λ′ − λ)(S − λ′)−1),

valid for λ, λ′ ∈ ̺(T ) ∩ ̺(S). Applying it to S = Ã and T = Aχ for λ as above and

λ′ ∈ ̺(Ã) ∩ ̺(Aχ), we find that (Ã− λ′)−1 − (Aχ − λ′)−1 is a composition of an operator
in S(n−1)/3 with two bounded operators, hence lies in S(n−1)/3, as was to be shown. �

The authors of [BLLLP10] have informed us that they can obtain the result of that paper
without assuming that b−1 ∈ L∞(Σ); details of proof will be included in a forthcoming
paper.

There is an obvious corollary:

Corollary 2.3. Let b1, b2 ∈ L∞(Σ), and denote the corresponding realizations of Robin

conditions χu = b1γ0u resp. χu = b2γ0u by Ã1 resp. Ã2. For any λ ∈ ̺(Ã1) ∩ ̺(Ã2),

(2.8) (Ã1 − λ)−1 − (Ã2 − λ)−1 ∈ S(n−1)/3.

Proof. Write (Ã1 − λ)−1 − (Ã2 − λ)−1 as the difference between (Ã1 − λ)−1 − (Aχ − λ)−1

and (Ã2−λ)
−1−(Aγ−λ)

−1, then the result follows from Theorem 2.2 since Sp is a vector
space. �

Formula (1.18) also allows us to show a spectral asymptotics estimate for (Ã − λ)−1 −
(Aγ − λ)−1 that was obtained in the smooth case for selfadjoint realizations and negative
λ in Grubb [G74], Sect. 8, and Birman and Solomiak [BS80]. In the former paper it
is shown, also for 2m-order problems, that the operator is, on the complement of its
nullspace, isometric to an elliptic pseudodifferential operator on Σ of order −2m (which
has the asserted spectral asymptotics); in the latter paper exterior domains are included.
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Theorem 2.4. Let b ∈ L∞(Σ). For any λ ∈ ̺(Ã) ∩ ̺(Aγ),

(2.9) sj((Ã− λ)−1 − (Aγ − λ)−1)j2/(n−1) → C0 for j → ∞,

where C0 is the same constant as in the case b = 0 (where Ã = Aχ).

Proof. For large λ on rays in C \ R+ as in Theorem 1.5 we write formula (1.13) as

(2.10) (bPλ
χ,γ − 1)−1 = −1− bPλ

χ,γS, where S =

∞∑

k=0

(bPλ
χ,γ)

k ∈ L(L2(Σ)).

Then we have from (1.18):

(2.11)
(Ã− λ)−1 − (Aγ − λ)−1 = Kλ

γPχ,γ(−1− bPλ
χ,γS)K

λ̄
γ

∗

= −Kλ
γPχ,γK

λ̄
γ

∗
−Kλ

γPχ,γbP
λ
χ,γSK

λ̄
γ

∗
.

The first term equals (Aχ−λ)
−1−(Aγ−λ)

−1 and is known to satisfy a spectral asymptotics
estimate (2.9). The second term is in S(n−1)/3, in view of the mapping properties of its
factors, as in the proof of Theorem 2.2. By Lemma 2.1.1◦, it follows that the sum of the
two terms has the asymptotic behavior (2.9).

General λ ∈ ̺(Ã) ∩ ̺(Aγ) are included by use of the resolvent identity (2.7), which
gives the operator as a sum of a term with the behavior (2.9) and terms in S(n−1)/(2+t)

with t > 0, using that (Aγ − λ)−1 ∈ Sn/2 and (Ã− λ)−1 ∈ Sn/(3/2). Then Lemma 2.1.1◦

applies to show (2.9) for the sum. �

Spectral asymptotics estimates for the resolvent difference (2.5) are harder to get at,
since b here enters in the principal part of the operator. However, with a little smoothness
of b we can obtain the spectral estimate by reduction to a case that allows an approximation
procedure.

We consider the resolvent difference of two Robin problems from the start, since the
asymptotic property is not in general additive.

Theorem 2.5. Assume that b1, b2 ∈ Hr
p(Σ) with r > (n− 1)/p, p ≥ 2; this holds if the bi

are in one of the spaces in (1.10), where r can be taken arbitrarily small positive. Define

Ãi as in Corollary 2.3. Then for λ ∈ ̺(Ã1) ∩ ̺(Ã2),

(2.12) sj((Ã1 − λ)−1 − (Ã2 − λ)−1)j3/(n−1) → C(g0)3/(n−1) for j → ∞,

where C(g0) is a constant defined from b2 − b1 and the principal symbols of Kλ
γ and Pλ

χ,γ ,
described in detail in (2.18)–(2.19) below.

Proof. First let λ be large on a ray in C \ R+ such that Theorem 1.5 applies to Ã1 and

Ã2. Using (2.10) in the form

(biP
λ
χ,γ − 1)−1 = −1− biP

λ
χ,γ − (biP

λ
χ,γ)

2Si

we have that

(b1P
λ
χ,γ − 1)−1 − (b2P

λ
χ,γ − 1)−1 = (b2 − b1)P

λ
χ,γ − (b1P

λ
χ,γ)

2S1 − (b2P
λ
χ,γ)

2S2.
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Then we get using (2.6):
(2.13)

(Ã1 − λ)−1 − (Ã2 − λ)−1 = (Ã1 − λ)−1 − (Aχ − λ)−1 − ((Ã2 − λ)−1 − (Aχ − λ)−1)

= Kλ
γP

λ
χ,γ [(b1P

λ
χ,γ − 1)−1 + 1]K λ̄

γ

∗
−Kλ

γP
λ
χ,γ [(b2P

λ
χ,γ − 1)−1 + 1]K λ̄

γ

∗

= Kλ
γP

λ
χ,γ(b2 − b1)P

λ
χ,γK

λ̄
γ

∗
−Kλ

γP
λ
χ,γ(b1P

λ
χ,γ)

2S1K
λ̄
γ

∗
+Kλ

γP
λ
χ,γ(b2P

λ
χ,γ)

2S2K
λ̄
γ

∗

= G+ F1 + F2.

In the terms Fi we use for one of the factors biP
λ
χ,γ that bi preserves H

s(Σ) for |s| ≤ r (see

the text before Proposition 1.3), so that biP
λ
χ,γ maps L2(Σ) continuously into Hr′(Σ), r′ =

min{r, 1}. So this factor is in S(n−1)/r′ , together with the usual two factors in S(n−1)/(1/2)

and two factors in Sn−1, whereby the full composed operator Fi is in S(n−1)/(3+r′). It
will not influence the spectral asymptotics.

In the term G, let us denote b2 − b1 = b. We write b for each M ∈ N as a sum

(2.14) b = bM + b′M ,

where bM ∈ C∞(Σ) and supx′∈Σ |b′M (x′)| ≤ 1/M ; this is possible since b is continuous on
the smooth compact manifold Σ. Accordingly, we write G = GM +G′

M with

GM = −Kλ
γP

λ
χ,γbMP

λ
χ,γK

λ̄
γ

∗
, G′

M = −Kλ
γP

λ
χ,γb

′
MP

λ
χ,γK

λ̄
γ

∗
.

Here G′
M is a composition of fixed operators with the usual Sp-properties and a factor

b′M whose norm in L(L2(Σ)) is ≤ 1/M ; this implies that

(2.15) sup
j
sj(G

′
M )j3/(n−1) ≤ C/M, all M,

for a suitable constant C, in view of (2.3).
The term GM is treated by a more serious application of the tools in [G84]. Since

bM ∈ C∞, GM is a genuine singular Green operator of order −3 and class 0, with poly-
homogeneous symbol. The principal symbol g0M is the symbol of the boundary symbol
operator (in local coordinates)

g0M (x′, ξ′, Dn) = k0(x′, ξ′, Dn)p
0(x′, ξ′)bM(x′)p0(x′, ξ′)k0(x′, ξ′, Dn)

∗

(where we have omitted some indexations and used that λ does not enter in the principal
symbols). It follows from [G84], Th. 4.10, that

(2.16) sj(GM )j3/(n−1) → C(g0M )3/(n−1) for j → ∞,

where
(2.17)

C(g0M ) = 1
(n−1)(2π)n−1

∫

Σ

∫

|ξ′|=1

tr
[(
g0M (x′, ξ′, Dn)

∗g0M (x′, ξ′, Dn)
)(n−1)/6]

dω(ξ′)dx′.
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(See [G84] for further explanation.) Notice here that bM (x′) and its conjugate enter as
pointwise multiplication factors in g0M and in (g0M )∗. When M → ∞, bM (x′) → b(x′)
uniformly in x′, so

(2.18) C(g0M ) → C(g0) =:

1
(n−1)(2π)n−1

∫

Σ

∫

|ξ′|=1

tr
[(
k0(p0)∗ b̄ (p0)∗(k0)∗k0p0 b p0(k0)∗

)(n−1)/6]
dω(ξ′)dx′,

with b = b2 − b1.

Now we first apply Lemma 2.1.2◦ to the decompositions G = GM + G′
M ; this shows

that G has the spectral behavior in (2.12). When F1 and F2 are added to G, we can use
Lemma 2.1.1◦ to conclude that also G+ F1 + F2 has the spectral behavior in (2.12).

Finally, general λ ∈ ̺(Ã) ∩ ̺(Aχ) are included by use of the resolvent formula (2.7) as
in the preceding proof. �

Remark 2.6. Formula (2.18) can be considerably simplified, when we observe that

k0(x′, ξ′, Dn):C → L2(R+) maps v ∈ C to k̃0(x′, xn, ξ
′)v, where k̃0(x′, xn, ξ

′) ∈ S(R+)

is the symbol-kernel. In the case A = −∆ it equals e−|ξ′|xn , and it has a similar struc-
ture for general A (cf. e.g. [GS01], Sect. 2.d). The operator k0(x′, ξ′, Dn)

∗:L2(R+) → C

maps u(xn) to (u, k̃0)L2(R+). Thus k0(x′, ξ′, Dn)
∗k0(x′, ξ′, Dn) is the multiplication by

‖k̃0‖2L2(R+), and k
0(x′, ξ′, Dn)k

0(x′, ξ′, Dn)
∗ is the rank 1 operator mapping u to (u, k̃0)k̃0.

The latter operator has the sole eigenvector k̃01 = k̃0/‖k̃0‖ with a positive eigenvalue ‖k̃0‖2

(besides eigenvectors in the nullspace), so its trace equals the eigenvalue. The other factors
p0, (p0)∗ = p̄0, b and b̄ are multiplication operators. Thus k0(p0)∗ b̄ (p0)∗(k0)∗k0p0 b p0(k0)∗

is the rank 1 operator in L2(R+):

u 7→ ‖k̃0‖4|p0|4|b|2(u, k̃01)k̃
0
1 ;

the trace equals the eigenvalue, and the trace of a power equals the power of the eigenvalue.
Therefore the formula for the constant C(g0) reduces to

(2.19) C(g0) = 1
(n−1)(2π)n−1

∫

Σ

∫

|ξ′|=1

(‖k̃0‖2L2(R+)|p
0|2|b|)(n−1)/3 dω(ξ′)dx′, b = b2 − b1.

3. Coefficients with jumps.

It possible to extend the result of Theorem 2.5 to cases where b has jump discontinuities,
by use of special results for pseudodifferential operators (from now on abbreviated to
ψdo’s). In showing this, we also supply the general knowledge on spectral asymptotics for
ψdo’s multiplied with nonsmooth functions.

Let Ξ be a compact n′-dimensionl C∞-manifold without boundary, and assume that
it is divided by a smooth (n′ − 1)-dimensional hypersurface into two subsets Ξ+ and Ξ−

(n′-dimensional C∞-manifolds with boundary) such that Ξ = Ξ+ ∪ Ξ−, Ξ
◦
+ ∩ Ξ◦

− = ∅,
∂Ξ+ = ∂Ξ−. (Since the sets need not be connected, this covers the situation of J smooth
subsets described before Proposition 1.3.) We denote by r± the restrictions from Ξ to Ξ±,
and by e± the extension-by-zero operators from functions on Ξ± to functions on Ξ:

e±u =

{
u on Ξ±

0 on Ξ∓.
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Multiplication by the characteristic function 1Ξ+
for Ξ+ can also be written e+r+; similarly

1Ξ−
= e−r−.

It is well-known (as recalled e.g. in [G84], Lemma 4.5) that when P is an N ×N -matrix
formed classical ψdo on Ξ of negative order −t, then it satisfies the spectral asymptotics
formula

(3.1) sj(P )j
t/n′

→ C(p0)t/n
′

for j → ∞,

where

(3.2) C(p0) = 1
n′(2π)n

′

∫

Ξ

∫

|ξ|=1

tr
[(
p0(x, ξ)∗p0(x, ξ)

)n′/2t]
dω(ξ)dx.

Let us also recall the result of Laptev [L77, L81]:

Proposition 3.1. Let P be a classical pseudodifferential operator on Ξ of negative order
−t. Then 1Ξ+

P1Ξ−
∈ S(n′−1)/t.

(Expressed in local coordinates, this means that the operator whose kernel is the re-
striction of the kernel of P to the second or fourth quadrant, picks up the boundary
dimension in its spectral behavior. For ψdo’s having the transmission property at ∂Ξ+,
this is confirmed by the results of [G84].)

The rules in the following are valid also for N × N -matrix formed operators P and
factors b, and would then need a trace indication tr in the integrals; we leave this aspect
out here for simplicity.

Theorem 3.2. Let P be a classical pseudodifferential operator of negative order −t, such
that (Pu, u) ≥ 0 for u ∈ L2(Ξ). Then P(+) = 1Ξ+

P1Ξ+
satisfies the spectral asymptotics

formula

(3.3) sj(P(+))j
t/n′

→ c(P(+))
t/n′

for j → ∞,

where

(3.4)

c(P(+)) =
1

n′(2π)n
′

∫

Ξ+

∫

|ξ|=1

(
p0(x, ξ)∗p0(x, ξ)

)n′/2t
dω(ξ)dx

= 1
n′(2π)n

′

∫

Ξ+

∫

|ξ|=1

p0(x, ξ)n
′/t dω(ξ)dx.

Proof. The principal symbol p0 is ≥ 0; which explains the second identity in (3.4). Intro-
duce two C∞ cutoff functions ζ1 and ζ2 taking values in [0, 1] such that ζ1 = 1 on Ξ+ and
vanishes outside a neighborhood of Ξ+, and ζ2 = 0 on Ξ− and is 1 outside a neighborhood
of Ξ−. We shall then compare P(+) with the operators

P1 = ζ1Pζ1 and P2 = ζ2Pζ2.

When u ∈ L2(Ξ), denote e
±r±u = u±. We have for P1:

(P1u, u) = (P1u+, u+) + (P1u+, u−) + (P1u−, u+) + (P1u−, u−)

= (P(+)u, u) + (Ru, u) + (Pζ1u−, ζ1u−),
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where R = 1Ξ−
P1IΞ+

+1Ξ+
P1IΞ−

. Since P1 is a classical ψdo of order −t on Ξ, it has the

spectral behavior in (3.1)–(3.2) with the limit C(p01)
t/n′

; here

C(p01) =
1

n′(2π)n
′

∫

supp ζ1

∫

|ξ|=1

(ζ1p
0(x, ξ)ζ1)

n′/t dω(ξ)dx.

Moreover, R is of the type considered in Proposition 3.1, hence lies in S(n′−1)/t. Then
by Lemma 2.1.1◦, P1 − R likewise has the spectral behavior in (3.1)–(3.2) with the limit

C(p01)
t/n′

. Now observe that since P is nonnegative, (Pζ1u−, ζ1u−) ≥ 0 for all u ∈ L2(Ξ).
Thus we have:

(3.5) (P(+)u, u) ≤ ((P1 −R)u, u), for all u ∈ L2(Ξ).

Both operators P(+) and P1−R are selfadjoint nonnegative, so the s-numbers are the same
as the eigenvalues, and the minimum-maximum principle implies in view of (3.5) that

(3.6) sj(P(+)) ≤ sj(P1 −R), for all j.

It then follows from the limit property of the sj(P1 −R) that

(3.7) lim supj→∞sj(P(+))j
t/n′

≤ C(p01)
t/n′

.

There is a similar proof that

(3.8) lim infj→∞sj(P(+))j
t/n′

≥ C(p02)
t/n′

.

Since C(p01) and C(p02) come arbitrarily close to c(P(+)) when the support of ζ1 shrinks
towards Ξ+ and the support of 1 − ζ2 shrinks towards Ξ−, we conclude that (3.3) with
(3.4) holds. �

This leads to a result on compositions of ψdo’s with discontinuous factors, which seems
to have an interest in itself:

Theorem 3.3. Let P be an operator composed of l classical pseudodifferential operators
P1, . . . , Pl of negative orders −t1, . . . ,−tl and l+1 functions b1, . . . , bl+1 that are piecewise
continuous on Ξ with possible jumps at ∂Ξ+ (so the bk extend to continous funcxtions on
Ξ+ and on Ξ−);

(3.9) P = b1P1 . . . blPlbl+1.

Let t = t1 + · · ·+ tl. Then P has the spectral behavior:

(3.9) sj(P )j
t/n′

→ c(P )t/n
′

for j → ∞,

where

(3.10)

c(P ) = 1
n′(2π)n

′

∫

Ξ

∫

|ξ|=1

(
b̄l+1(x)p

0
l (x, ξ)

∗ . . . p01(x, ξ)
∗b̄1(x)·

· b1(x)p
0
1(x, ξ) . . . p

0
l (x, ξ)bl+1(x)

)n′/2t
dω(ξ)dx

= 1
n′(2π)n

′

∫

Ξ

∫

|ξ|=1

|b1 . . . bl+1p
0
1 . . . p

0
l |

n′/t dω(ξ)dx.
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Proof. We can write

P ∗P = b̄l+1P
∗
l . . . P

∗
1 b̄1b1P1 . . . Plbl

= 1Ξ+
b̄l+1P

∗
l . . . P

∗
1 b̄1b1P1 . . . Plbl1Ξ+

+ 1Ξ−
b̄l+1P

∗
l . . . P

∗
1 b̄1b1P1 . . . Plbl1Ξ−

+R,

where R is a sum of terms of order −t, each containing at least one factor of the type in
Proposition 3.1. Thus R ∈ Sn′/(t+δ) with a δ > 0. For the term 1Ξ+

P ∗P1Ξ+
, we proceed

as in Theorem 2.5. We can assume that bk is extended from Ξ+ to a continuous function bk
on Ξ. Each bk is approximated by a uniformly convergent sequence bkM of C∞-functions
on Ξ. For each M ,

P ∗
MPM = b̄l+1,MP

∗
l . . . P

∗
1 b̄1Mb1MP1 . . . blMPlbl+1,M

is a classical nonnegative ψdo of order −t, so Theorem 3.2 applies to the operator with
1Ξ+

before and after, and gives the corresponding spectral asymptotics formula. Since
P ∗
MPM − P ∗P can be written as a sum of terms where each has a factor bkM − bk or
b̄kM − b̄k, we have for M → ∞ that

sup
j
sj(1Ξ+

P ∗
MPM1Ξ+

− 1Ξ+
P ∗P1Ξ+

)jt/n
′

→ 0.

Then Lemma 2.1.2◦ implies a spectral asymptotics formula for 1Ξ+
P ∗P1Ξ+

, with the
constant as in (3.10) but integrated over Ξ+. — There is a similar result for 1Ξ−

P ∗P1Ξ−
,

relative to Ξ−.
Now since L2(Ξ) identifies with the orthogonal sum of L2(Ξ+) and L2(Ξ−), the spectra

are simply superposed when the operators are added together. The statement λj(T )j
t/n′

→

c(T )t/n
′

for j → ∞ is equivalent with N ′(a;T )an
′/t → c(T ) for a → ∞, where N ′(a;T )

counts the number of eigenvalues in [1/a,∞[ ; superposition of the spectra means addition
of the counting functions. (More on counting functions e.g. in [G96], Sect. A.6.) Thus
1Ξ+

P ∗P1Ξ+
+ 1Ξ−

P ∗P1Ξ−
has a spectral asymptotics behavior where the constant is

obtained by adding the integrals for 1Ξ+
P ∗P1Ξ+

and 1Ξ−
P ∗P1Ξ−

, so it is as described
in (3.9)–(3.10). By Lemma 2.1.1◦, the behavior keeps this form when we add R to the
operator. �

A similar theorem holds for matrix formed operators Pk and factors bk, with c(P )
defined by the first expression in (3.10); here of course it cannot be reduced to the second
expression unless all the factors commute.

A special case of the situation in Theorem 3.3 is the case of bP , where P is a classical
ψdo and b is a piecewise continuous functios. We need a case with interspersed factors bk
in our application below.

We can now show:

Theorem 3.4. The conclusion of Theorem 2.5 holds also when b1 and b2 are piecewise in
Hr

p(Σ) for some r > 0, b2 − b1 having jumps at a smooth hypersurface.

Proof. We use again the decomposition in (2.13)

(Ã1 − λ)−1 − (Ã2 − λ)−1

= Kλ
γP

λ
χ,γ(b2 − b1)P

λ
χ,γK

λ̄
γ

∗
−Kλ

γP
λ
χ,γ(b1P

λ
χ,γ)

2S1K
λ̄
γ

∗
+Kλ

γP
λ
χ,γ(b2P

λ
χ,γ)

2S2K
λ̄
γ

∗

= G+ F1 + F2,
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and F1 and F2 are handled as after (2.13), using that biP
λ
χ,γ maps L2(Σ) into Hr′ , r′ =

min{r, 12 − ε}. Then they are in S(n−1)/(3+r′). We denote again b2 − b1 = b.
For G we proceed as follows: Let λ be large negative, so that Theorem 1.5 holds; since

λ ∈ R, K λ̄
γ = Kλ

γ , and P
λ
χ,γ is selfadjoint. The j-th eigenvalue of G∗G satisfies

λj(G
∗G) = λj(K

λ
γP

λ
χ,γ b̄P

λ
χ,γK

λ
γ

∗
Kλ

γP
λ
χ,γbP

λ
χ,γK

λ
γ

∗
).

Here Kλ
γ
∗
Kλ

γ equals a selfadjoint ψdo P1 of order −1; it is nonnegative on L2(Σ) and

injective, since Kλ
γ is injective:

(P1ϕ, ϕ) = (Kλ
γ

∗
Kλ

γϕ, ϕ) = ‖Kλ
γϕ‖

2
1
2

≥ c‖ϕ‖2− 1
2

,

hence elliptic. It follows from Seeley [S67] that P1 has a squareroot P2 = P
1
2

1 which is a
classical elliptic ψdo of order −1

2
. Then we find using

(3.13) λj(TT
′) = λj(T

′T ),

that
λj(G

∗G) = λj(K
λ
γP

λ
χ,γ b̄P

λ
χ,γP2P2P

λ
χ,γbP

λ
χ,γK

λ
γ

∗
)

= λj(P2P
λ
χ,γbP

λ
χ,γK

λ
γ

∗
Kλ

γP
λ
χ,γ b̄P

λ
χ,γP2)

= λj(P2P
λ
χ,γbP

λ
χ,γP1P

λ
χ,γ b̄P

λ
χ,γP2).

The operator Q = P2P
λ
χ,γbP

λ
χ,γP1P

λ
χ,γ b̄P

λ
χ,γP2 is an operator to which Theorem 3.4 applies,

and it gives a spectral asymptotics formula with the constant defined as in (3.10), with
n′ = n− 1. In view of Remark 2.6, it can be rewritten as (2.19).

The proof is now completed in the same way as in the proof of Theorem 2.5. �

The results can be extended to exterior domains by the method of [G10a].
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