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Abstract

Using a recent result of Batson, Spielman and Srivastava, We ob-

tain a tight estimate on the dimension of ℓnp , p an even integer, needed

to almost isometrically contain all k-dimensional subspaces of Lp.

In a recent paper [BSS] Batson, Spielman and Srivastava introduced a new
method for sparsification of graphs which already proved to have functional
analytical applications. Here we bring one more such application. Improving
over a result of [BLM] (or see [JS] for a survey on this and related results),
we show that for even p and for k of order n2/p any k dimensional subspace
of Lp nicely embeds into ℓnp . This removes a log factor from the previously
known estimate. The result in Theorem 2 is actually sharper than stated
here and gives the best possible result in several respects, in particular in the
dependence of k on n.

The theorem of [BSS] we shall use is not specifically stated in [BSS], but
is stated as Theorem 1.6 in Srivastava’s thesis [Sr]:

Theorem 1 [BSS] Suppose 0 < ε < 1 and A =
∑m

i=1
viv

T
i are given, with vi

column vectors in R
k. Then there are nonnegative weights {si}

m
i=1, at most

⌈k/ε2⌉ of which are nonzero, such that, putting Ã =
∑m

i=1
siviv

T
i ,

(1− ε)−2xTAx ≤ xT Ãx ≤ (1 + ε)2xTAx

for all x ∈ R
k.
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Corollary 1 Let X be a k-dimensional subspace of ℓm2 and let 0 < ε < 1.
Then there is a set σ ⊂ {1, 2, . . . , m} of cardinality n ≤ Cε−2k (C an absolute
constant) and positive weights {si}i∈σ such that

‖x‖2 ≤ (
∑

i∈σ

six
2(i))1/2 ≤ (1 + ε)‖x‖2

for all x = (x(1), x(2), . . . , x(m)) ∈ X.

Proof: Let u1, u2, . . . , uk be an orthonormal basis forX ; uj = (u1,j, u2,j, . . . , um,j),
j = 1, . . . , k. Put vTi = (ui,1, ui,2, . . . , ui,k), i = 1, . . . , m. Then

∑m
i=1

viv
T
i =

Ik, the k×k identity matrix. Let si be the weights given by Theorem 1 (and
σ their support). Then, for all x =

∑k
i=1

aiui ∈ X ,

(1− ε)−2‖x‖2 = aT
m
∑

i=1

viv
T
i a ≤ aT

m
∑

i=1

siviv
T
i a ≤ (1 + ε)2‖x‖2.

Finally, notice that, for each i = 1, . . . , m, aTviv
T
i a = x(i)2, the square of the

i-th coordinate of x. Thus,

aT
m
∑

i=1

siviv
T
i a =

m
∑

i=1

six(i)
2.

We first prove a simpler version of the main result.

Proposition 1 Let X is a k dimensional subspace of Lp for some even p
and let 0 < ε < 1. Then X (1 + ε)-embeds in ℓnp for n = O((εp)−2kp/2).

Proof: Assume as we may thatX is a k dimensional subspace of ℓmp for some
finite m. Consider the set of all vectors which are coordinatewise products
of p/2 vectors from X ; i.e, of the form

(x1(1)x2(1) . . . xp/2(1), x1(2)x2(2) . . . xp/2(2), . . . , x1(m)x2(m) . . . xp/2(m))

where xj = (xj(1), xj(2), . . . , xj(m)), j = 1, 2, . . . , p/2, are elements of X .
We shall denote the vector above as x1 · x2 · · · · · xp/2. The span of this set
in R

m, which we denote by Xp/2, is clearly a linear space of dimension at
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most kp/2. Consequently, by Corollary 1, there is a set σ ⊂ {1, 2, . . . , m} of
cardinality at most C(εp)−2kp/2 and weights {si}i∈σ such that

‖y‖2 ≤ (
∑

i∈σ

siy
2(i))1/2 ≤ (1 +

εp

4
)‖y‖2

for all y ∈ Xp/2. Restricting to y-s of the form

y = (x(1)p/2, x(2)p/2, . . . , x(m)p/2)

with x = (x(1), x(2), . . . , x(m)) ∈ X , we get

‖x‖p/2p ≤ (
∑

i∈σ

six
p(i))1/2 ≤ (1 +

εp

4
)‖x‖p/2p .

Raising these inequalities to the power 2/p gives the result.

We now state and prove the main result.

Theorem 2 Let X be a k dimensional subspace of Lp for some even p ≤ k
and let 0 < ε < 1. Then X (1 + ε)-embeds in ℓnp for n = O(ε−2(10k

p
)p/2).

Equivalently, for some universal c > 0, for any n and any k ≤ cε4/ppn2/p,
any k-dimensional subspace of Lp (1 + ε)-embeds in ℓnp .

Proof: The only change from the previous proof is a better estimate of the
dimension of the auxiliary subspace involved. An examination of the proof
above shows that it is enough to apply Corollary 1 to any subspace containing
all the vectors xp/2 = x ·x · · · · ·x (p/2 times), x = (x(1), . . . , x(m)) ∈ X . The
smallest such subspace is the space of degree p/2 homogeneous polynomials
in elements of X . Its basis is the set of monomials of the form up1

j1
·up2

j2
· · · ··upl

jl
with p1 + · · ·+ pl = p/2, where u1, . . . , uk is a basis for X . The dimension of
this space, which is the number of such monomials, is

(

k+p/2−1

p/2

)

≤ (10k
p
)p/2.

Next we remark on the estimate k ≤ cε4/ppn2/p.
This estimate improves (unfortunately, only for even p) over the known es-
timates (the best of which is in [BLM]) by removing a logn factor that was
presented in the best estimate till now. Also, the p in front of the n2/p is a
nice feature. It is known that the dependence of k on p and n in this esti-
mate is best possible even if one restrict to subspaces of Lp isometric to ℓk2
(see [BDGJN]). Actually the result above indicates that ℓk2 are the “worse”
subspaces.
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As for the dependence on ε, the published proofs gives at best quadratic
dependence while here we get a quadratic dependence for p = 4 and better
ones as p grows. For the special case of X = ℓk2 and p = 4 a better result is
known: One can embed ℓk2 isometrically into ℓ4n

2

4 ([Ko]). But for p = 6, 8, . . .
we get better result here even for this special case than what was previously
known (The best I knew was a linear dependence on ε - this is unpublished.
Here we get ε2/3 for p = 6 and better for larger p-s.) It is not clear that this
is the best possible dependence on ε, but note that for some combinations of
ε and p and in particular for every ε and large enough p (p > c log 1/ε) the
dependence on ε becomes a constant and, up to universal constants, we get
the best possible result with respect to all parameters.
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