Tight embedding of subspaces of L_{p} in ℓ_{p}^{n} for even p^{*}

Gideon Schechtman ${ }^{\dagger}$

September 5, 2010

Abstract

Using a recent result of Batson, Spielman and Srivastava, We obtain a tight estimate on the dimension of ℓ_{p}^{n}, p an even integer, needed to almost isometrically contain all k-dimensional subspaces of L_{p}.

In a recent paper [BSS] Batson, Spielman and Srivastava introduced a new method for sparsification of graphs which already proved to have functional analytical applications. Here we bring one more such application. Improving over a result of [BLM] (or see [JS] for a survey on this and related results), we show that for even p and for k of order $n^{2 / p}$ any k dimensional subspace of L_{p} nicely embeds into ℓ_{p}^{n}. This removes a \log factor from the previously known estimate. The result in Theorem 2 is actually sharper than stated here and gives the best possible result in several respects, in particular in the dependence of k on n.

The theorem of [BSS] we shall use is not specifically stated in [BSS], but is stated as Theorem 1.6 in Srivastava's thesis [Sr]:

Theorem 1 [BSS] Suppose $0<\varepsilon<1$ and $A=\sum_{i=1}^{m} v_{i} v_{i}^{T}$ are given, with v_{i} column vectors in \mathbb{R}^{k}. Then there are nonnegative weights $\left\{s_{i}\right\}_{i=1}^{m}$, at most $\left\lceil k / \varepsilon^{2}\right\rceil$ of which are nonzero, such that, putting $\tilde{A}=\sum_{i=1}^{m} s_{i} v_{i} v_{i}^{T}$,

$$
(1-\varepsilon)^{-2} x^{T} A x \leq x^{T} \tilde{A} x \leq(1+\varepsilon)^{2} x^{T} A x
$$

for all $x \in \mathbb{R}^{k}$.

[^0]Corollary 1 Let X be a k-dimensional subspace of ℓ_{2}^{m} and let $0<\varepsilon<1$. Then there is a set $\sigma \subset\{1,2, \ldots, m\}$ of cardinality $n \leq C \varepsilon^{-2} k$ (C an absolute constant) and positive weights $\left\{s_{i}\right\}_{i \in \sigma}$ such that

$$
\|x\|_{2} \leq\left(\sum_{i \in \sigma} s_{i} x^{2}(i)\right)^{1 / 2} \leq(1+\varepsilon)\|x\|_{2}
$$

for all $x=(x(1), x(2), \ldots, x(m)) \in X$.
Proof: Let $u_{1}, u_{2}, \ldots, u_{k}$ be an orthonormal basis for $X ; u_{j}=\left(u_{1, j}, u_{2, j}, \ldots, u_{m, j}\right)$, $j=1, \ldots, k$. Put $v_{i}^{T}=\left(u_{i, 1}, u_{i, 2}, \ldots, u_{i, k}\right), i=1, \ldots, m$. Then $\sum_{i=1}^{m} v_{i} v_{i}^{T}=$ I_{k}, the $k \times k$ identity matrix. Let s_{i} be the weights given by Theorem 1 (and σ their support). Then, for all $x=\sum_{i=1}^{k} a_{i} u_{i} \in X$,

$$
(1-\varepsilon)^{-2}\|x\|_{2}=a^{T} \sum_{i=1}^{m} v_{i} v_{i}^{T} a \leq a^{T} \sum_{i=1}^{m} s_{i} v_{i} v_{i}^{T} a \leq(1+\varepsilon)^{2}\|x\|_{2} .
$$

Finally, notice that, for each $i=1, \ldots, m, a^{T} v_{i} v_{i}^{T} a=x(i)^{2}$, the square of the i-th coordinate of x. Thus,

$$
a^{T} \sum_{i=1}^{m} s_{i} v_{i} v_{i}^{T} a=\sum_{i=1}^{m} s_{i} x(i)^{2} .
$$

We first prove a simpler version of the main result.
Proposition 1 Let X is a k dimensional subspace of L_{p} for some even p and let $0<\varepsilon<1$. Then $X(1+\varepsilon)$-embeds in ℓ_{p}^{n} for $n=O\left((\varepsilon p)^{-2} k^{p / 2}\right)$.

Proof: Assume as we may that X is a k dimensional subspace of ℓ_{p}^{m} for some finite m. Consider the set of all vectors which are coordinatewise products of $p / 2$ vectors from X; i.e, of the form

$$
\left(x_{1}(1) x_{2}(1) \ldots x_{p / 2}(1), x_{1}(2) x_{2}(2) \ldots x_{p / 2}(2), \ldots, x_{1}(m) x_{2}(m) \ldots x_{p / 2}(m)\right)
$$

where $x_{j}=\left(x_{j}(1), x_{j}(2), \ldots, x_{j}(m)\right), j=1,2, \ldots, p / 2$, are elements of X. We shall denote the vector above as $x_{1} \cdot x_{2} \cdots x_{p / 2}$. The span of this set in \mathbb{R}^{m}, which we denote by $X^{p / 2}$, is clearly a linear space of dimension at
most $k^{p / 2}$. Consequently, by Corollary 1, there is a set $\sigma \subset\{1,2, \ldots, m\}$ of cardinality at most $C(\varepsilon p)^{-2} k^{p / 2}$ and weights $\left\{s_{i}\right\}_{i \in \sigma}$ such that

$$
\|y\|_{2} \leq\left(\sum_{i \in \sigma} s_{i} y^{2}(i)\right)^{1 / 2} \leq\left(1+\frac{\varepsilon p}{4}\right)\|y\|_{2}
$$

for all $y \in X^{p / 2}$. Restricting to y-s of the form

$$
y=\left(x(1)^{p / 2}, x(2)^{p / 2}, \ldots, x(m)^{p / 2}\right)
$$

with $x=(x(1), x(2), \ldots, x(m)) \in X$, we get

$$
\|x\|_{p}^{p / 2} \leq\left(\sum_{i \in \sigma} s_{i} x^{p}(i)\right)^{1 / 2} \leq\left(1+\frac{\varepsilon p}{4}\right)\|x\|_{p}^{p / 2}
$$

Raising these inequalities to the power $2 / p$ gives the result.
We now state and prove the main result.
Theorem 2 Let X be a k dimensional subspace of L_{p} for some even $p \leq k$ and let $0<\varepsilon<1$. Then $X(1+\varepsilon)$-embeds in ℓ_{p}^{n} for $n=O\left(\varepsilon^{-2}\left(\frac{10 k}{p}\right)^{p / 2}\right)$. Equivalently, for some universal $c>0$, for any n and any $k \leq c \varepsilon^{4 / p} p n^{2 / p}$, any k-dimensional subspace of $L_{p}(1+\varepsilon)$-embeds in ℓ_{p}^{n}.

Proof: The only change from the previous proof is a better estimate of the dimension of the auxiliary subspace involved. An examination of the proof above shows that it is enough to apply Corollary 1 to any subspace containing all the vectors $x^{p / 2}=x \cdot x \cdots \cdots x(p / 2$ times $), x=(x(1), \ldots, x(m)) \in X$. The smallest such subspace is the space of degree $p / 2$ homogeneous polynomials in elements of X. Its basis is the set of monomials of the form $u_{j_{1}}^{p_{1}} \cdot u_{j_{2}}^{p_{2}} \cdots \cdots u_{j_{l}}^{p_{l}}$ with $p_{1}+\cdots+p_{l}=p / 2$, where u_{1}, \ldots, u_{k} is a basis for X. The dimension of this space, which is the number of such monomials, is $\binom{k+p / 2-1}{p / 2} \leq\left(\frac{10 k}{p}\right)^{p / 2}$.

Next we remark on the estimate $k \leq c \varepsilon^{4 / p} p n^{2 / p}$. This estimate improves (unfortunately, only for even p) over the known estimates (the best of which is in [BLM]) by removing a $\log n$ factor that was presented in the best estimate till now. Also, the p in front of the $n^{2 / p}$ is a nice feature. It is known that the dependence of k on p and n in this estimate is best possible even if one restrict to subspaces of L_{p} isometric to ℓ_{2}^{k} (see [BDGJN]). Actually the result above indicates that ℓ_{2}^{k} are the "worse" subspaces.

As for the dependence on ε, the published proofs gives at best quadratic dependence while here we get a quadratic dependence for $p=4$ and better ones as p grows. For the special case of $X=\ell_{2}^{k}$ and $p=4$ a better result is known: One can embed ℓ_{2}^{k} isometrically into $\ell_{4}^{4 n^{2}}([\mathrm{KO}])$. But for $p=6,8, \ldots$ we get better result here even for this special case than what was previously known (The best I knew was a linear dependence on ε - this is unpublished. Here we get $\varepsilon^{2 / 3}$ for $p=6$ and better for larger p-s.) It is not clear that this is the best possible dependence on ε, but note that for some combinations of ε and p and in particular for every ε and large enough $p(p>c \log 1 / \varepsilon)$ the dependence on ε becomes a constant and, up to universal constants, we get the best possible result with respect to all parameters.

References

[BSS] Batson, J. D., Spielman, D. A., and Srivastava, N., Twice-Ramanujan sparsifiers. STOC 09: Proceedings of the 41st annual ACM symposium on Theory of computing (New York, NY, USA, 2009), ACM, pp. 255262.
[BDGJN] Bennett, G., Dor, L. E., Goodman, V., Johnson, W. B., Newman, C. M., On uncomplemented subspaces of $L_{p}, 1<p<2$. Israel J. Math. 26 (1977), no. 2, 178-187.
[BLM] Bourgain, J., Lindenstrauss, J., and Milman, V., Approximation of zonoids by zonotopes. Acta Math. 162 (1989), no. 1-2, 73-141.
[JS] Johnson, William B., Schechtman, Gideon, Finite dimensional subspaces of L_{p}. Handbook of the geometry of Banach spaces, Vol. I, 837870, North-Holland, Amsterdam, 2001.
[Ko] König, Hermann, Isometric imbeddings of Euclidean spaces into finitedimensional l_{p}-spaces. Panoramas of mathematics (Warsaw, 1992/1994), 79-87, Banach Center Publ., 34, Polish Acad. Sci., Warsaw, 1995.
[Sr] N. Srivastava, PhD dissertation, Yale 2010, http://www.cs.yale.edu/homes/srivastava/dissertation.pdf

Gideon Schechtman
Department of Mathematics
Weizmann Institute of Science
Rehovot, Israel
E-mail: gideon.schechtman@weizmann.ac.il

[^0]: *AMS subject classification: 46B07
 ${ }^{\dagger}$ Supported by the Israel Science Foundation

