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SMOOTH REPRESENTATIONS OF GLm(D)

VI : SEMISIMPLE TYPES

by

V. Sécherre & S. Stevens

Abstract. — We give a complete description of the category of smooth complex repre-
sentations of the multiplicative group of a central simple algebra over a locally compact
nonarchimedean local field. More precisely, for each inertial class in the Bernstein spec-
trum, we construct a type and compute its Hecke algebra. The Hecke algebras that arise
are all naturally isomorphic to products of affine Hecke algebras of type A. We also prove
that, for cuspidal classes, the simple type is unique up to conjugacy.
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Introduction

In [12], Bushnell and Kutzko described a general approach to understanding the cat-

egory of smooth (complex) representations of a reductive p-adic group G: the theory of

types. This is based on the Bernstein decomposition of the category [1] into indecompos-

able full subcategories, indexed by pairs (L, π), with L a Levi subgroup of G and π an

irreducible cuspidal representation of L, up to a certain equivalence relation. A type for

such a subcategory is a pair (K, ρ), with K a compact open subgroup of G and ρ an irre-

ducible representation of K, such that the irreducible representations in the subcategory

are precisely those irreducible representations of G which contain ρ. In this case, there

is an equivalence of categories between the subcategory and the category of left modules

over the spherical Hecke algebra H (G, ρ). Thus one can classify the representations of G

by first constructing a type for each subcategory, and then computing the spherical Hecke

algebras.

This programme has been completed for general linear groups over a p-adic field

(Bushnell–Kutzko [8, 13]), for special linear groups over a p-adic field (Bushnell–

Kutzko [9, 10], Goldberg–Roche [14, 15]) up to the computation of a two-cocycle in the

description of the Hecke algebra, and for three-dimensional unitary groups in odd residual

characteristic (Blasco [2]). In this paper, following previous work in [19, 20, 21, 23, 6],

we complete the programme for inner forms of general linear groups. The Hecke algebras

that arise are all naturally isomorphic to products of affine Hecke algebras of type A.

Let D be a division algebra over a locally compact nonarchimedean local field F, and

let G = GLm(D), with m a positive integer; we will also think of G as the group of

automorphisms of a right D-vector space V. Denote by R(G) the category of smooth

complex representations of G. In order to describe our results more precisely, we begin by

recalling the Bernstein decomposition [1], in the language of [12]. For L a Levi subgroup

of G, denote by X(L) the complex torus of unramified characters of L: that is, smooth

homomorphisms L → C× which are trivial on all compact subgroups of L. For π an

irreducible cuspidal representation of L, we write [L, π]G for the G-inertial equivalence

class of (L, π): that is, the set of pairs (L′, π′), consisting of a Levi subgroup L′ and

an irreducible cuspidal representation π′ of L′, such that (L, π) and (L′, π′ ⊗ χ′) are G-

conjugate, for some unramified character χ′ ∈ X(L′). We denote by B(G) the set of

G-inertial equivalence classes of pairs (L, π) as above.
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To s = [L, π]G an inertial equivalence class we associate a full subcategory Rs(G) of

R(G), whose objects are those representations all of whose subquotients have cuspidal

support in s. Then the Bernstein decomposition says that

R(G) =
∏

s∈B(G)

Rs(G).

Bushnell–Kutzko’s theory of types [12] is a strategy to understand the subcategories

in this decomposition. For s ∈ B(G), an s-type is a pair (K, ρ), with K a compact

open subgroup of G and (ρ,W ) an irreducible smooth representation of K, such that the

irreducible representations in Rs(G) are precisely those irreducible representations of G

which contain ρ. In that case, there is an equivalence of categories

Rs(G) → H (G, ρ)-Mod

V 7→ HomK(W ,V ),

where H (G, ρ) is the convolution algebra of compactly supported EndC(W̌ )-valued func-

tion f of G which satisfy f(hgk) = ρ̌(h)f(g)ρ̌(k), for h, k ∈ K, g ∈ G (the spherical Hecke

algebra).

Our main result is the following:

Main Theorem. — Let s ∈ B(G). There exists an s-type (K, ρ) in G, such that

H (G, ρ) ∼=

l⊗

i=1

H (ri, q
fi
F ),

for some positive integers l and ri, fi, for 1 ≤ i ≤ l.

Here qF denotes the cardinality of the residue field of F, and H (n, q) is the affine Hecke

algebra of type Ãn−1 with parameter q. In particular, the category of modules of such

algebras is completely understood, through the work of Kazhdan–Lusztig [18]. The values

of l, ri, fi can be described as follows.

To π an irreducible cuspidal representation of G = GLm(D), we may associate two

invariants. First there is the torsion number n(π), the (finite) number of unramified

characters χ of G such that π ≃ πχ. Second, we have the reducibility number s(π): writing

G̃ = GL2m(D) and P̃ for the standard parabolic subgroup of G̃ with Levi subgroup G×G,

it is the unique positive real number such that the induced representation IndG̃
P̃
π⊗ πνs(π)

(with respect to normalized parabolic induction) is reducible, where ν(g) = |Nrd(g)|F,
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Nrd denotes the reduced norm of A over F, and | · |F is the normalized absolute value on

F (see [22, Theorem 4.6]).

Now suppose s = [L, π]G is an inertial equivalence class. The Levi subgroup L is the

stabilizer of some decomposition V =
⊕r

j=1V
j into subspaces, which gives an identifica-

tion of L with
∏r

j=1GLmj
(D), where mj = dimD Vj . We can then write π =

⊗r
j=1 πj,

for πj an irreducible cuspidal representation of Gj = GLmj
(D). We define an equivalence

relation on {1, . . . , r} by

(∗) j ∼ k ⇐⇒ mj = mk and [Gj , πj]Gj
= [Gk, πk]Gk

,

where we have identified Gj with Gk whenever mj = mk. We may, and do, assume that

πj = πk whenever j ∼ k, since this does not change the inertial class s. Denote by

S1, . . . , Sl the equivalence classes. For i = 1, . . . , l, we set

ri = #Si, fi = n(πj)s(πj), for any j ∈ Si.

These are then the parameters appearing in the Hecke algebras of the Main Theorem.

We now describe in more detail the construction of the types. The starting point

is the construction of the irreducible cuspidal representations of G, which was achieved

in [21, 23]. In [21], generalizing the work of Bushnell–Kutzko for GLn(F) [8], the first

author constructed a set of pairs (J, λ) called simple types. Amongst these are the maximal

simple types, which give rise to cuspidal representations: if (J, λ) is a maximal simple

type then λ extends to a representation λ̃ of its normalizer J̃ and the compactly-induced

representation c-IndG
J̃
λ̃ is irreducible and cuspidal. The main result of [23] is that all

irreducible cuspidal representations of G arise in this way. Here we prove more:

Theorem A. — Let π be an irreducible cuspidal representation of G and s = [G, π]G.

There is a maximal simple type (J, λ) contained in π, and any such is an s-type. Moreover,

it is unique up to G-conjugacy: that is, if (Ji, λi), for i = 1, 2, are maximal simple types

contained in π then there exists g ∈ G such that gJ1 = J2 and gλ1 = λ2.

The uniqueness (up to conjugacy) is proved in Corollary 6.2. We remark that, in the

case of GLn(F), the uniqueness here follows from an “intertwining implies conjugacy” result

for simple types. In the case of G there is no such result for two reasons: Firstly there

is an extra invariant of a simple type, the embedding type (see paragraph 2.1) and simple

types with different embedding types may intertwine but be non-conjugate. Secondly
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there is an action of a galois group on simple types, and any two types in the same orbit

will intertwine but may be non-conjugate; this phenomenon arises already for level zero

representations in [17]. Nonetheless, the embedding type of a sound simple type (see

§6) is determined by any irreducible representation containing it. Moreover, in the case

of maximal simple types (which are always sound), the galois action can be realized by

conjugation by an element of the normalizer of J, and the uniqueness follows from this.

We turn to the case of a general G-inertial equivalence class s = [L, π]G, for which

we have the corresponding cuspidal L-inertial equivalence class sL = [L, π]L. In [12],

Bushnell and Kutzko present a general framework for constructing an s-type from an

sL-type (JL, λL): the theory of covers. We do not recall precisely the definition of a cover

here, only that it should be a pair (JG, λG) which has an Iwahori decomposition with

respect to any parabolic subgroup with Levi component L, such that the Hecke algebra

H (G, λG) contains a suitable invertible element. If one has such a cover (JG, λG) then it

is an s-type.

The normalizer NG(L) acts on B(L) by conjugation and there is a Levi subgroup M of

G which is minimal for the property of containing the NG(L)-stabilizer of sL. Then we also

have an M-inertial equivalence class sM = [L, π]M. The strategy now is first to construct

a cover (JM, λM) of (JL, λL), and then a cover (JG, λG) of (JM, λM) – by transitivity of

covers, this will give the required s-type.

In our situation, we do indeed have an sL-type: Writing L =
∏r

j=1GLmj
(D) and π =

⊗r
j=1 πj as above, for πj an irreducible cuspidal representation of Gj = GLmj

(D), there is

a maximal simple type (Jj, λj) which is a [Gj , πj]Gj
-type, by Theorem A. Then, putting

JL =
r∏

j=1

Jj, λL =
r⊗

j=1

λj,

it is clear that (JL, λL) is an sL-type. The Levi subgroup M is then that defined by the

equivalence relation (∗): it is the stabilizer of the decomposition V =
⊕l

i=1Y
i, where

Yi =
⊕

j∈Si
Vj .

The first case to consider is when M = G, that is, the case l = 1 of the Main The-

orem. In this situation we have the following result, which summarizes [21, Proposi-

tion 5.5, Théorème 4.6] and [23, Théorème 5.23]:
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Theorem B. — Let π0 be an irreducible cuspidal representation of G0 = GLm0(D), with

m = rm0, and let (J0, λ0) be a maximal simple type which is a [G0, π0]G0-type. Let

L = G0
r be a Levi subgroup of G with irreducible cuspidal representation π = π0

⊗r, and

put s = [L, π]G. Put JL = J0
r and λL = λ0

⊗r. Then there is an s-type (JG, λG) which is a

cover of (JL, λL), and

H (G, λG) ≃H (r, qfF),

where f = n(π0)s(π0). Moreover, there is a simple type (J, λ) in G such that λ = IndJ
JG
λG.

Now we turn to the general case of arbitrary M. In order to describe the covering

process, we need to recall some detail of the structure of simple types.

Let (J, λ) be a simple type contained in an irreducible representation π of G. There

is a particular filtration of pro-p subgroups {Ht+1 : t ≥ 0} of J such that λ restricts

to a multiple of a character θ(t) on Ht+1, and θ(0) | Ht+1 = θ(t). These characters are

called simple characters of level t. Simple characters were the main object of study

of [19, 6] and they exhibit remarkable functorial properties, as in the case D = F [8, 7].

In particular, it is possible to transfer them to the multiplicative group of other central

simple F-algebras. A convenient and powerful way to express this is in terms of endo-

classes (see [7, 6] and §4): the simple character θ(t) determines and endo-class Θ(t), which

depends only on the representation π.

Now let π =
⊗r

j=1 πj be a cuspidal representation of L as above and denote by Θ
(t)
j the

endo-class of level t determined by πj. (We are assuming a normalization of the index in

the filtrations.) For each integer t ≥ 0, we define an equivalence relation on {1, . . . , r} by

j ∼t k ⇐⇒ Θ
(t)
j is endo-equivalent to Θ

(t)
k .

As for the equivalence relation (∗), this determines a Levi subgroup Mt. Note that

M ⊆ M0; Mt ⊆ Mt′ , for t ≥ t′; and Mt = G, for sufficiently large t.

It is useful to extend the notation and put Mt = M for t < 0. Of course, although the

Levi subgroups are indexed by an integer t, there are only finitely many in {Mt : t ∈ Z}.

Theorem B provides a cover (JM, λM) of (JL, λL) in M and the Main Theorem now

follows from the transitivity of covers and:

Theorem C. — For t ≥ t′, there are a cover (JMt′
, λMt′

) of (JMt
, λMt

) in G and a support-

preserving isomorphism of Hecke algebras H (Mt, λMt
) ≃H (Mt′ , λMt′

).
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As always in the theory of covers, the difficulty is in defining the groups JMt
. In fact,

many covers were already constructed in [23, §4] and we must show that we can put

ourselves in the situation of loc. cit.. For this, we need to use the notion of a common

approximation of simple characters from [13], which is essentially a reinterpretation of

the notion of endo-class.

We end the introduction with a summary of the contents of each section. Section 1

consists of basic definitions, as well as recalling a very useful technique from [6] for reducing

proofs to easier situations. Section 2 concerns simple strata and pairs, while section 3

concerns simple characters; these are the technical heart of the paper, in particular the

translation principle Theorem 3.3 which is needed to cope with the fact that a simple

character may be defined relative to several inequivalent simple strata. Along the way, we

prove a generalization of a conjecture in [6] on the embedding type of a simple character.

Section 4 concerns the relationship between endo-classes and common approximations.

Section 5 recalls basic results about simple types but in the more general situation of

lattice sequences which is needed later, and we prove the uniqueness results in section 6.

Finally, the general construction of a cover is given in section 7.

Much of the material here is necessarily technical. A reader who is already familiar

with the situation (and common notations) for the case D = F and is interested only in

seeing the main results could probably get by reading only sections 6 and 7.

1. Notation and preliminaries

Let F be a nonarchimedean locally compact field. For K a finite extension of F, or

more generally a division algebra over a finite extension of F, we denote by OK its ring of

integers, by pK the maximal ideal of OK and by kK its residue field.

For u a real number, we denote by ⌈u⌉ the smallest integer which is greater than or

equal to u, and by ⌊u⌋ the greatest integer which is smaller than or equal to u, that is,

its integer part.

All representations considered are smooth and complex.

1.1. — Let A be a simple central F-algebra, and let V be a simple left A-module.

The algebra EndA(V) is an F-division algebra, the opposite of which we denote by D.
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Considering V as a right D-vector space, we have a canonical isomorphism of F-algebras

between A and EndD(V).

Definition 1.1. — An OD-lattice sequence on V is a map

Λ : Z→ {OD-lattices of V}

which is decreasing (that is, Λ(k) ⊇ Λ(k + 1) for all k ∈ Z) and such that there exists a

positive integer e = e(Λ|OD) satisfying Λ(k + e) = Λ(k)pD, for all k ∈ Z. This integer is

called the OD-period of Λ over OD.

If Λ(k) ) Λ(k + 1) for all k ∈ Z, then the lattice sequence Λ is said to be strict.

Associated with an OD-lattice sequence Λ on V, we have an OF-lattice sequence on A

defined by:

Pk(Λ) = {a ∈ A | aΛi ⊆ Λi+k, i ∈ Z}, k ∈ Z.

The lattice A(Λ) = P0(Λ) is a hereditary OF-order in A, and P(Λ) = P1(Λ) is its

Jacobson radical. They depend only on the set {Λ(k) | k ∈ Z}.

We denote by K(Λ) the A×-normalizer of Λ, that is the subgroup of A× made of all

elements g ∈ A× for which there is an integer n ∈ Z such that g(Λ(k)) = Λ(k + n) for

all k ∈ Z. Given g ∈ K(Λ), such an integer is unique: it is denoted υΛ(g) and called the

Λ-valuation of g. This defines a group homomorphism υΛ from K(Λ) to Z. Its kernel,

denoted U(Λ), is the group of invertible elements of A(Λ). We set U0(Λ) = U(Λ) and, for

k > 1, we set Uk(Λ) = 1 +Pk(Λ).

1.2. — Let E be a finite extension of F contained in A. We denote by e(E/F) and

f(E/F) the ramification index and residue class degree respectively.

An OD-lattice sequence Λ on V is said to be E-pure if it is normalized by E×. The

centralizer of E in A, denoted B, is a simple central E-algebra. We fix a simple left

B-module VE and write DE for the algebra opposite to EndB(VE). By [23, Théorème

1.4] (see also [3, Theorem 1.3]), given an E-pure OD-lattice sequence on V, there is an

ODE
-lattice sequence Γ on VE such that:

Pk(Λ) ∩ B = Pk(Γ), k ∈ Z.

It is unique up to translation of indices, and its B×-normalizer is K(Λ) ∩ B×.
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Definition 1.2. — A stratum in A is a quadruple [Λ, n,m, β] made of an OD-lattice

sequence Λ on V, two integers m,n such that 0 6 m 6 n−1 and an element β ∈ P−n(Λ).

For i = 1, 2, let [Λ, n,m, βi] be a stratum in A. We say these two strata are equivalent

if β2 − β1 ∈ P−m(Λ).

1.3. — Given a stratum [Λ, n,m, β] in A, we denote by E the F-algebra generated by

β. This stratum is said to be pure if E is a field, if Λ is E-pure and if υΛ(β) = −n. Given

a pure stratum [Λ, n,m, β], we denote by B the centralizer of E in A. For k ∈ Z, we set:

nk(β,Λ) = {x ∈ A(Λ) | βx− xβ ∈ Pk(Λ)}.

The smallest integer k > υΛ(β) such that nk+1(β,Λ) is contained in A(Λ) ∩ B +P(Λ) is

called the critical exponent of the stratum [Λ, n,m, β], denoted k0(β,Λ).

Definition 1.3. — The stratum [Λ, n,m, β] is said to be simple if it is pure and if we

have m 6 −k0(β,Λ)− 1.

Given n > 0 and Λ an OD-lattice sequence, there is another stratum which plays a

very similar role to simple strata, namely the null stratum [Λ, n, n− 1, 0]. In particular, a

simple stratum [Λ, n, n− 1, β] is equivalent to a null stratum if and only if β ∈ P1−n(Λ).

1.4. — Let [Λ, n,m, β] be a simple stratum in A. The affine class of Λ is the set of all

OD-lattice sequences on V of the form:

aΛ + b : k 7→ Λ(⌈(k − b)/a⌉),

with a, b ∈ Z and a > 1. The period of aΛ + b is a times the period e(Λ|OD) of Λ. The

affine class of the stratum [Λ, n,m, β] is the set of all (simple) strata of the form

[Λ′, n′, m′, β],

where Λ′ = aΛ + b is in the affine class of Λ, n′ = an and m′ is any integer such that

⌊m′/a⌋ = m.

In the course of the paper, there will be several objects associated to a simple stra-

tum [Λ, n,m, β], in particular simple characters (see §3). By a straightforward induction

(see [6, Lemma 2.2]), these objects depend only on the affine class of the stratum.
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1.5. — This article makes use of a number of results of Grabitz [16] which are based on

the following definition.

Definition 1.4. — A simple stratum [Λ, n,m, β] in A is sound if Λ is strict, A ∩ B is

principal and K(A)∩B× = K(A∩B), where A = P0(Λ) is the hereditary OF-order defined

by Λ.

The condition on A∩B forces A to be a principal OF-order. In the split case, a simple

stratum [Λ, n,m, β] is sound if and only if Λ is strict and A is principal.

1.6. — In [6, §2.7], we developed a process to reduce many proofs to the case of sound

strata, which we recall briefly here: Let [Λ, n,m, β] be a simple stratum in A and let

e denote the period of Λ over OD. Write B for the centralizer of the field E = F(β)

in A, fix a simple left B-module VE and write DE for the E-algebra opposite to the

algebra of B-endomorphisms of VE. Let Γ denote an ODE
-lattice sequence on VE such

that Pk(Λ) ∩ B = Pk(Γ) for k ∈ Z, and let e′ denote its period over ODE
. We fix an

integer l which is a multiple of e and e′ and set:

Λ‡ : k 7→ Λ(k)⊕ Λ(k + 1)⊕ · · · ⊕ Λ(k + l − 1),

which is a strict OD-lattice sequence on V‡ = V ⊕ · · · ⊕ V (l times). Thus we can form

the simple stratum [Λ‡, n,m, β] in A‡ = EndD(V
‡), where β is the block diagonal element

diag(β, . . . , β) ∈ Al ⊆ A‡. By [6, Lemma 2.17], the stratum [Λ‡, n,m, β] is sound.

As we have mentioned, there will be several objects associated to a simple stratum

[Λ, n,m, β] through the course of the paper. If one identifies A with the “(1, 1)-block” of A‡

and intersect (or restrict) these objects for [Λ‡, n,m, β] to A one recovers the corresponding

objects for [Λ, n,m, β] (see, for example, [23, Théorème 2.17]). Using this, in several

proofs we write something like: “by passing to Λ‡ we may assume we are in the sound

case” (Lemma 2.11, Proposition 2.14, Lemma 3.5)). By this we mean that we may prove

the result for the sound stratum [Λ‡, n,m, β] and then deduce the result for [Λ, n,m, β]

by intersecting with A. In general, it is safe to do this provided there is no conjugation

involved in the statement. An example of this is given already in [6, Theorem 4.16].

2. Simple strata and simple pairs

2.1. — We begin by recalling the definition of a type of embedding, from [5, 6].
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We fix a simple central F-algebra A and a simple left A-module V, and denote by D the

opposite algebra of EndA(V). An embedding in A is a pair (E,Λ) consisting of a finite field

extension E of F contained in A and an E-pure OD-lattice sequence Λ on V. Given such

a pair, we denote by E⋄ the maximal finite unramified extension of F which is contained

in E and whose degree divides the reduced degree of D over F.

Two embeddings (Ei,Λi) are equivalent if there is an element g ∈ G such that Λ1 is in

the translation class of gΛ2 and E⋄
1 = gE⋄

2g
−1. An equivalence class for this relation is

called an embedding type in A.

Lemma 2.1. — Let (E,Λ) be an embedding and put e = e(E/F ), f = f(E/F). Let E′

be a finite field extension of F such that e(E′/F ) = e and f(E′/F ) = f . Then there is an

embedding ι : E′ →֒ A such that (ι(E′),Λ) is an embedding with the same embedding type

as (E,Λ).

Proof. — When Λ is strict, this is [5, Corollary 3.16(ii)]. For the general case, we fix

a simple right E ⊗F D-module S and put A(S) = EndD(S). Let B be the commutant

of E in A, and let DE be the commutant of E in A(S). We also fix a decomposition

V = V1 ⊕ · · · ⊕ Vl into simple right E ⊗F D-modules (which are all copies of S) such

that the lattice sequence Λ decomposes into the direct sum of the Λj = Λ ∩ Vj , for

j ∈ {1, . . . , l}. From [21, §1.3], after choosing identifications Vj ≃ S for each j, we have

an F-algebra embedding ι : A(S)→ A. Denote by S the unique (up to translation) E-pure

strict OD-lattice sequence on S. By the strict case, there is an embedding ρ : E′ →֒ A(S)

such that (ρ(E′),S) is an embedding with the same embedding type as (E,S). (Indeed,

by [6, Remark 2.12], any embedding (ρ(E′),S) has the same embedding type as (E,S).)

By conjugating the embedding, we may assume ρ(E′)⋄ = E⋄. Then the embedding ι ◦ ρ

has the required property.

2.2. — We recall the definitions of simple pair and endo-equivalence from [6, Defini-

tions 1.4, 1.7] (see also [7, Definition 1.5]):

Definition 2.2. — A simple pair over F is a pair (k, β) consisting of a non-zero element

β of some finite extension of F and an integer 0 6 k 6 −kF(β)− 1.

Let A be a simple central F-algebra and V be a simple left A-module. A realization of

a simple pair (k, β) in A is a stratum in A of the form [Λ, n,m, ϕ(β)] made of:
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(i) a homomorphism ϕ of F-algebra from F(β) to A;

(ii) an OD-lattice sequence Λ on V normalized by the image of F(β)× under ϕ;

(iii) an integer m such that
⌊
m/eϕ(β)(Λ)

⌋
= k.

The integer −n is then the Λ-valuation of ϕ(β). By [19, Proposition 2.25] we have:

k0(ϕ(β),Λ) = eϕ(β)(Λ)kF(β),

which implies that any realization of a simple pair is a simple stratum.

Definition 2.3. — (i) For i = 1, 2, let (ki, βi) be a simple pair over F. We say that

these pairs are endo-equivalent, denoted:

(k1, β1) ≈ (k2, β2),

if k1 = k2 and [F(β1) : F] = [F(β2) : F], and if there exists a simple central F-algebra A

together with realizations [Λ, ni, mi, ϕi(βi)] of (ki, βi) in A, with i = 1, 2, which intertwine

in A.

This defines an equivalence relation on simple pairs, from the following Proposition:

Proposition 2.4 ([6, Propositions 1.7, 1.9]). — For i = 1, 2, let (k, βi) be a simple pair

over F, and suppose these pairs are endo-equivalent. Let A be a simple central F-algebra

and let [Λ, ni, mi, ϕi(βi)] be a realization of (k, βi) in A, for i = 1, 2. These strata then

intertwine in A.

Moreover, if n1 = n2, m1 = m2, and (F [ϕi(βi)],Λ) have the same embedding type then

these strata are conjugate in K(Λ).

2.3. — Let [Λ, n,m, b] be a stratum in a simple central F-algebra A = EndD(V) and

let [Λ̃, n,m, b] be the induced stratum in the split central simple F-algebra Ã = EndF(V),

where Λ̃ denotes the OF-lattice sequence defined by Λ. By [19, Théorème 2.23], this latter

stratum is simple if and only the first one is, and in this case they are realizations of the

same simple pair over F.

We fix a uniformizer ̟F of F and sety = y (b,Λ) = ̟
n/g
F be/g,

where e = e(Λ|OF) and g = gcd(n, e). Sety = y (b,Λ) = y +P1(Λ̃),
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considered as an element of P0(Λ̃)/P1(Λ̃).

Definition 2.5. — With notation as above:

(i) the characteristic polynomial of y (in kF[X ]) is called the characteristic polynomial

of the stratum [Λ, n,m, b];

(ii) the minimum polynomial of y (in kF[X ]) is called the minimum polynomial of the

stratum [Λ, n,m, b].

Remark 2.6. — (i) Since y depends only on the equivalence class of the stratum

[Λ, n, n − 1, b] (and the choice of the uniformizer ̟F), the same is true of the minimum

and characteristic polynomials.

(ii) If b normalizes Λ then, by [4, Lemma 2.1.9], the element y depends only on the

strict lattice sequence whose image is the image of Λ; hence the same is true of the

minimum and characteristic polynomials.

(iii) The characteristic polynomial of a stratum may also be computed as the reduction

modulo pF of the characteristic polynomial of y in Ã; of course, the same is not true for

the minimum polynomial.

Proposition 2.7. — Let [Λ, n, n− 1, b] be a stratum in A. Then [Λ, n, n− 1, b] is equiv-

alent to a simple stratum if and only if its minimum polynomial is irreducible and not X.

Moreover, if [Λ, n, n− 1, β] is a simple stratum equivalent to [Λ, n, n− 1, b] then, writing

E = F[β], we have

OE +P1(Λ) = OF[y (b,Λ)] +P1(Λ).

Proof. — Note first that both conditions imply that the b normalizes Λ: if the minimum

polynomial of [Λ, n, n− 1, b] is irreducible and not X then y (b,Λ) is invertible so y (b,Λ)

normalizes Λ, whence so does b. Hence, using Remark 2.6(ii), we may (and do) assume

in the proof that Λ is strict. Also, the final assertion is clear since, by the minimality

of β, the element y (β,Λ) + pE generates the extension kE/kF, and y (β,Λ) + P1(Λ) =y (b,Λ) +P1(Λ).

Suppose [Λ, n, n−1, b] is equivalent to a simple stratum [Λ, n, n−1, β] and put E = F[β].

Then [Λ̃, n, n− 1, β] is also simple; in particular, y (b,Λ) = y (β,Λ) is a non-zero element

of kE in P0(Λ̃)/P1(Λ̃) so has irreducible minimum polynomial not X.

For the converse, suppose [Λ, n, n− 1, b] has irreducible minimum polynomial f(X) ∈

kF[X ] and put δ = deg(f(X)). Since [Λ, n, n − 1, b] has characteristic polynomial which
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is a power of f(X), it is non-split fundamental. Now the proof follows that of [4, The-

orem 3.2.1] and we only sketch the difference so this proof should be read alongside loc.

cit. – in particular, we will refer to notations used in the proofs there.

Following the ideas of [4, §3], we treat first the simpler case when f(X) is also irreducible

as an element of kD[X ] – that is, when d is coprime to δ. We fix L/F a maximal unramified

subfield of D, so that kL = kD.

Let f(X) ∈ OF[X ] be any monic polynomial which reduces modulo pF to give f(X).

We choose a matrix γ ∈ Mδ(kF) with minimum polynomial f(X). In [4, Definition 3.2.4],

Broussous defines the notion of γ-standard form, which we will use here. Since [Λ, n, n−

1, b] has characteristic polynomial which is a power of f(X), it is non-split fundamental

and, by [4, Proposition 3.2.5] there is a u ∈ U(Λ) such that [Λ, n, n−1, ubu−1] is equivalent

to a stratum in γ-standard form. Since the property of being equivalent to a simple

stratum is unchanged by conjugation in U(Λ), we may as well assume [Λ, n, n − 1, b] is

itself in γ-standard form.

Now we follow the proof of [4, Theorem 3.2.1] in this case. In op. cit. p.221, an

element β is defined and the proof of op. cit. Proposition 3.2.8 shows that there is u ∈

U(Λ) such that [Λ, n, n − 1, β] is equivalent to [Λ, n, n − 1, ubu−1]. (More precisely, [4,

Proposition 3.2.9] is applied to the OL-order Mni
(OL), in the notation there.) Moreover,

β is minimal over F by [4, Lemma 3.2.10] so [Λ, n, n − 1, b] is equivalent to the simple

stratum [Λ, n, n− 1, u−1βu].

Finally suppose we are in the general case where f(X) is not irreducible in kL[X ] and we

decompose f(X) = p0(X) · · ·ps−1(X) into irreducibles. Now we follow [4, §3.3] to reduce

to previous case. The proof is essentially identical (but easier) so we will not repeat it –

the only point is that, in [4, Proposition 3.3.2], the orders A0 and B0 can be taken to be

equal, by the case where f(X) is irreducible, and then the lattice sequences denoted M 1

and L are equal, which implies that M is the lattice sequence here denoted Λ and, in

the notation of [4, Lemma 3.3.10], we have A = A′.

For j = 1, . . . , r, let [Λj, n, n − 1, βj] be a simple stratum in Aj = EndD(V
j) with

e(Λj|OF) = e. Put V = V1 ⊕ · · · ⊕ Vr, and set Λ = Λ1 ⊕ · · · ⊕ Λr, a lattice sequence

in V of OF-period e. Write A = EndD(V) and denote by ej the idempotents in P0(Λ)

corresponding to the decomposition of V. We put β =
∑r

j=1 βj . Then [Λ, n, n− 1, β] is a

stratum in A.
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Corollary 2.8. — With notation as above, suppose the strata [Λj, n, n − 1, βj] are all

equivalent to simple (or null) strata. Then they have the same minimum polynomial if

and only if [Λ, n, n− 1, β] is equivalent to a simple (or null) stratum.

Proof. — Writing A =
⊕

i,j EndD(V
j ,Vi), it is clear that y (β,Λ) is block diagonal of the

form diag(y (β1,Λ
1), . . . ,y (βr,Λ

r)). In particular, the minimum polynomial of y (β,Λ)

is the gcd of the minimum polynomials of y (βj ,Λ
j). The result is now immediate from

Proposition 2.7, with the case of null strata coming from the case where the minimum

polynomial is X.

Corollary 2.9. — Let (k, β) be a simple pair over F and let [Λ1, n1, m1, ϕ1(β)] be

a realization in some simple central F-algebra A1. The minimum polynomial of

[Λ1, n1, m1, ϕ1(β)] depends only on the endo-equivalence class of the pair (−kF(β)− 1, β).

Proof. — First note that Corollary 2.8 essentially says that the minimum polynomial

is independent of the realization. For suppose [Λ2, n2, m2, ϕ2(β)] is another realization

in a simple central F-algebra A2. Since the minimum polynomial depends only on the

induced strata in Ã1 and Ã2, we may as well suppose that both algebras are split – that

is, Aj = EndF(V
j), for some F-vector space Vj , j = 1, 2. Moreover, by scaling we may

assume that Λ1 and Λ2 have the same period so that n1 = n2 = n. Put m = max{m1, m2}.

Now set V = V1⊕V2 and use the notation of Corollary 2.8; also let ϕ = ϕ1+ϕ2 denote

the diagonal embedding of F[β] in A. The stratum [Λ, n,m, ϕ(β)] is then a realization of

the simple pair (k, β) so it is simple and [Λ, n, n − 1, ϕ(β)], being pure, is equivalent to

a simple stratum. Hence, by Corollary 2.8, the strata [Λj, n, n− 1, ϕj(β)] have the same

minimum polynomial.

Finally, suppose (k, γ) is a simple pair endo-equivalent to (k, β). Let [Λ, n,m, ϕ(β)]

and [Λ, n,m, ρ(γ)] be realizations in some split simple central F-algebra A = EndF(V).

By Proposition 2.4, these strata are conjugate by some u ∈ K(Λ) so, by conjugating the

embedding ρ, we may assume that [Λ, n, n−1, ϕ(β)] is equivalent to [Λ, n, n−1, ρ(γ)]. In

particular, they have the same minimum polynomial.

2.4. — The following is a generalization of [8, Lemma 2.4.11], [16, Lemma 1.9]:

Lemma 2.10. — Let [Λ, n, n−1, b] be a stratum in A. It is intertwined by every element

of G if and only if (b+P1−n(Λ)) ∩ F 6= ∅.
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Proof. — The proof follows the same scheme as that of [8, Lemma 2.4.11] (see op. cit.

pp.77–78) so we only sketch the argument. Suppose [Λ, n, n−1, b] is intertwined by every

element of G. If b ∈ P1−n(Λ) then 0 ∈ (b + P1−n(Λ)) ∩ F so we assume b 6∈ P1−n(Λ).

Then b defines a non-zero map β in

P−n(Λ)/P1−n(Λ) =
e−1⊕

i=0

HomkD(Λ(i)/Λ(i+ 1),Λ(i− n)/Λ(i− n + 1)),

where e = e(Λ|OD) is the OD-period of Λ. (Note that there is, in general, redundancy in

this sum: the spaces HomkD(Λ(i)/Λ(i+ 1),Λ(i− n)/Λ(i− n+ 1)) may be 0.)

Since β is non-zero, by moving Λ in its translation class we can suppose that it defines

a non-zero map in HomkD(Λ(0)/Λ(1),Λ(−n)/Λ(1 − n)). If e ∤ n then we can find g ∈

G ∩ P0(Λ) such that g induces the identity map on Λ(0)/Λ(1) but the zero map on

Λ(i)/Λ(i + 1), for 1 ≤ i ≤ e − 1. But then gb is zero on Λ(0)/Λ(1), while bg coincides

with b on Λ(0)/Λ(1), so is non-zero, which contradicts the assumption that g intertwines

[Λ, n, n− 1, b].

Thus e divides n and we put t = −n/e. Fix L/F a maximal unramified subfield of D,

and ̟D a uniformizer of D which normalizes L (so acts via conjugation as a generator

of Gal(L/F)) and such that ̟d
D = WF. Then the coset b̟−t

D + P1(Λ) is intertwined by

every g ∈ G which commutes with ̟D. In particular, since elementary matrices (with

respect to a suitable basis) commute with ̟D, we find that (b̟−t
D +P1) ∩ OD 6= ∅ and,

since conjugation by ̟D acts by Frobenius on kD, the fact that ̟D intertwines implies

that (b̟−t
D +P1) ∩ OF 6= ∅. Thus b ≡ ̟t

Dλ (mod P1−n(Λ)), for some λ ∈ O
×
F . Finally,

the fact that every element of O×
L intertwines the stratum implies that conjugation by ̟t

D

acts trivially on kD, so d divides t and ̟t
Dλ ∈ F, as required.

The converse is trivial.

2.5. — Let A be a simple central F-algebra and V be a simple left A-module. Let

[Λ, n,m, β] be a simple stratum, set E = Eβ = F[β], and let B = Bβ denote the A-

centralizer of E. We identify Ã = EndF(V) with A⊗FEndA(V). From [23, Définition 2.25]

(see also [4, §4.2]) a tame corestriction relative to E/F on A is a (B,B)-bimodule homo-

morphism s = sβ : A → B such that s̃ = s ⊗ idEndA(V) is a tame corestriction relative to

E/F on Ã, in the sense of [8, Definition 1.3.3].
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Lemma 2.11 (cf. [8, Lemma 2.4.12]). — Let [Λ, n,m, βi] be equivalent simple strata.

Then, putting Ei = F[βi], we have:

(i) OE1 +P1(Λ) = OE2 +P1(Λ);

(ii) there are tame corestrictions si on A relative to Ei/F such that, for all k ∈ Z and

x ∈ Pk(Λ),

s1(x) ≡ s2(x) (mod Pk+1(Λ));

(iii) there are prime elements ̟i of Ei such that ̟1U
1(Λ) = ̟2U

1(Λ);

(iv) the pairs (Ei,Λ) have the same embedding type.

Proof. — We begin by proving (i)-(iii), for which we may assume that Λ is strict by

passing first to Λ‡ (cf. paragraph 1.6). To return to Λ, notice that the condition in (iii)

is equivalent to ̟1 ≡ ̟2 (mod Pe+1(Λ)), with e = e(Λ|OEi
), so for (i) and (iii) we can

simply intersect with A. The same is true for (ii) since tame corestrictions also decompose

by blocks, by [23, Proposition 2.26].

The simple strata [Λ̃, n,m, βi] in Ã are equivalent so, by [8, Lemma 2.4.12], we have

the results corresponding to (i) and (ii) in Ã, while (iii) is a by-product of the proof (see

also [11, Lemma 5.2] and its proof). Intersecting with A gives the result here.

In the case of strict sequences, (iv) is given by [5, Lemma 5.2]. Moreover, writing L for

the strict lattice sequence with the same image as Λ, since P0(Λ) = P0(L ) and P1(Λ) =

P1(L ), the same proof (using op. cit. Lemma 2.3.6) works in the general case to show

that the maximal unramified subextensions of Ei are conjugate in U1(L ) = U1(Λ).

2.6. — Now let VE be a simple left B-module, let DE be the algebra opposite to

EndB(VE), and let Γ = Γβ be the unique (up to translation) ODE
-lattice sequence VE

such that Pk(Λ) ∩ B = Pk(Γ), for all k ∈ Z.

Definition 2.12 ([23, Définition 3.21]). — A derived stratum of [Λ, n,m, β] is a stratum

of the form [Γ, m,m− 1, s(b)], for some b ∈ P−m(Λ) and some tame corestriction s on A

relative to E/F.

The following result is a slight strengthening of [23, Proposition 3.30]:

Proposition 2.13. — Let [Λ, n,m, β] be a simple stratum and let b ∈ P−m(Λ) be such

that the derived stratum [Γ, m,m − 1, s(b)] is equivalent to a simple (or null) stratum

[Γ, m,m − 1, c]. Then there is a simple stratum [Λ, n,m − 1, β ′] equivalent to [Λ, n,m −
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1, β + b] and, moreover, for any such stratum, writing E′ = F[β ′] and E1 = F[β, c], we

have:

(i) e(E′/F) = e(E1/F), f(E
′/F) = f(E1/F) and k0(β

′,Λ) =




k0(β,Λ) if c ∈ E,

−m otherwise;

(ii) OE′ +P1(Λ) = OE1 +P1(Λ) = OE[y (s(b))] +P1(Λ).

Proof. — The first assertion is proved in [23, Proposition 3.30], under the hypothesis that

the derived stratum [Γ, m,m−1, s(b)] is itself simple. If it is only equivalent to the simple

stratum [Γ, m,m − 1, c] then c − s(b) ∈ P1−m(Γ) so, by [23, Proposition 2.29], there is

d ∈ P1−m(Λ) such that s(d) = c− s(b). Replacing b by b + d we reduce to the case that

the derived stratum is simple and the result here follows.

For (i), we may pass first to Λ‡, where the result follows from [16, Proposition 9.5].

For (ii), the second equality follows from Proposition 2.7, while the independence of

OE′ +P1(Λ) on the choice of β ′ comes from Lemma 2.11. In particular, we need only find

a single β ′ for which the first equality holds.

We fix a simple right E1 ⊗F D-module S and put A(S) = EndD(S). Let C be the

commutant of E1 in A, and let D1 be the commutant of E1 in A(S). We also fix a

decomposition V = V1⊕ · · ·⊕Vl into simple right E1⊗F D-modules (which are all copies

of S) such that the lattice sequence Λ decomposes into the direct sum of the Λj = Λ∩Vj ,

for j ∈ {1, . . . , l}. From [21, §1.3], after choosing identifications Vi ≃ S, we have an

F-algebra embedding ι : A(S)→ A and an isomorphism of (A(S),C)-bimodules

A(S)⊗D1 C→ A.

We denote by B(S) the commutant of E in A(S) and let SE be a simple left B(S)-module.

By [23, Lemme 3.31], the tame corestriction s on A relative to E/F takes the form s1⊗idC,

for s1 a tame corestriction on A(S) relative to E/F.

Denote by S the unique (up to translation) E1-pure strict OD-lattice sequence on S,

and by Sβ the unique (up to translation) ODE
-lattice sequence on SE compatible with

the filtration from S. Set n0 = −vS(β) and m0 = −vS(c) and pick b0 ∈ P−m0(S) such

that s1(b0) = c. By [23, Lemme 3.32], the stratum [S, n0, m0 − 1, β + b0] is pure, so

equivalent to a simple stratum [S, n0, m0 − 1, β + b′], with s1(b
′) ∈ c +P1−m0(Sβ). We

put E′ = F[β + b′].
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Suppose first that c ∈ E. Then, by (i), we have k0(β + b′,S) = k0(β,S) so that

[S, n0, m0, β] and [S, n0, m0, β + b′] are equivalent simple strata. Now Lemma 2.11(i)

implies

(†) OE′ +P1(S) = OE1 +P1(S).

Now suppose c 6∈ E. Let x ∈ OE′ and put r = −k0(β,S), which is strictly greater

than m0. Then certainly aβ(x) ∈ P−m0(S) so, by [23, Proposition 2.29], we can write

x = γ + y, with γ ∈ P0(S) and y ∈ Pr−m0(S) ⊆ P1(S). Thus

0 = (β + b′)(γ + y)− (γ + y)(β + b′) ≡ aβ(y) + b′γ − γb′ (mod P1−m0(S)).

Applying s1 and using s1(b
′) ∈ c + P1−m0(S), we see that ac(γ) ∈ P1−m0(Sβ). Now

k0(c,Sβ) = −m0 so we deduce that γ ∈ OD1 + P1(Sβ), since D1 is the commutant of

E1 = E[c] in B(S). In particular, we see that OE′ ⊆ OD1 +P1(S) so that the image of the

residue field kE′ in P0(S)/P1(S) is contained in the image of kD1. Since (the images of)

kE′ and kE1 are then subfields of kD1 of the same cardinality (by (i)), they must coincide

and we deduce again that

(†) OE′ +P1(S) = OE1 +P1(S).

Finally, we must translate this back to A, using the embedding ι : A(S) → A; we will

identify β and c with their images under ι. The image of the simple stratum [S, n0, m0−

1, β + b′] under ι is a simple stratum [Λ, n,m− 1, β + ι(b′)], and we have

s(ι(b′)) = ι(s1(b
′)) ≡ c ≡ s(b) (mod P1−m(Γ)),

since ι(P1−m0(S)) ⊆ P1−m(Λ). Thus, as in the end of the proof of [23, Proposition 3.30],

there exists h ∈ U1(Λ) such that, putting β ′ = h−1(β + ι(b′))h, we get a simple stratum

[Λ, n,m− 1, β ′] equivalent to [Λ, n,m− 1, β + b]. Then F[β ′] = h−1ι(E′)h and

OF[β′] = h−1ι(OE′)h ≡ ι(OE′) (mod P1(Λ)).

Finally, by (†), we have ι(OE′) ≡ ι(OE1) (mod P1(Λ)) and, since we have identified E1

with ι(E1), we deduce

OF[β′] +P1(Λ) = OE1 +P1(Λ).

This completes the proof of Proposition 2.13.
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2.7. — We also have a converse to Proposition 2.13:

Proposition 2.14 (cf. [8, Theorem 2.4.1], [16, Proposition 9.3])

Let [Λ, n,m, β] be a pure stratum equivalent to the simple stratum [Λ, n,m, γ1]. Let s1

be a tame corestriction on A relative to F[γ1]/F. Then the derived stratum [Γ1, m,m −

1, s1(β − γ1)] is equivalent to a simple (or null) stratum.

We will need the following Lemma, which is in fact a special case of the Proposition.

Lemma 2.15 (cf. [8, (2.4.10)]). — Let [Λ, n,m, βi] be equivalent simple strata and let

s1 be a tame corestriction on A relative to F[β1]/F. Then there exists δ ∈ F[β1] such that

s1(β1 − β2) ≡ δ (mod P1−m(Λ)).

Proof. — By passing to Λ‡, we may assume we are in the strict sound case. The proof

is then identical to that of [8, (2.4.10)], replacing [8, Proposition 1.4.6] by [4, Proposi-

tion 4.3.3] and [8, Theorem 1.5.8] by [4, Proposition 4.1.1].

Proof of Proposition 2.14. — By passing to an equivalent stratum, we may assume that

the stratum [Λ, n,m− 1, β] is simple. If [Λ, n,m, β] is also simple then the result follows

from Lemma 2.15; thus we may assume k0(β,Λ) = −m. By passing to Λ‡, we may assume

we are in the strict sound case. We write E1 = F[γ1] and B1 for the A-centralizer of E1.

By [16, Propositions 3.8, 9.3], there exists a simple stratum [Λ, n,m, γ2] equivalent to

[Λ, n,m, β] such that the derived stratum [Γ2, m,m−1, s2(β−γ2)] is equivalent to a simple

(or null) stratum, where s2 is a tame corestriction on A relative to F[γ2]/F. Moreover,

this derived stratum is non-scalar, by Proposition 2.13, since k0(β,Λ) > k0(γ2,Λ), and

thus, by Proposition 2.7, it has irreducible minimum polynomial.

We write E2 = F[γ2] and B2 for the A-centralizer of E2. By Lemma 2.11, we may

assume that the tame corestriction s2 is chosen such that, for all k ∈ Z and x ∈ Pk(Λ),

s1(x) ≡ s2(x) (mod Pk+1(Λ)).

We also use Lemma 2.11 to choose uniformizers ̟i for Ei such that ̟1U
1(Λ) = ̟2U

1(Λ).

Again by Lemma 2.11, the residue fields kEi
have a common image in P0(Λ)/P1(Λ) so that

we may identify them. Moreover, P0(Γi)/P1(Γi) have a common image in P0(Λ)/P1(Λ):

by [23, Proposition 2.29], the maps si : Pk(Λ)→ Pk(Γi) are surjective, for all k ∈ Z, so

P0(Γi)/P1(Γi) are the common image of si in P0(Λ)/P1(Λ).
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Put bi = β − γi. By the choices of ̟i and si, we havey (s1(b2),Γ1) ≡ y (s2(b2),Γ2) (mod P1(Λ)).

In particular (given the identifications we have made), we see that the two strata

[Γi, m,m− 1, si(b2)] have the same minimum and characteristic polynomials. In particu-

lar, [Γ1, m,m − 1, s1(b2)] has irreducible minimum polynomial so, by Proposition 2.7, it

is equivalent to a simple stratum [Γ1, m,m− 1, c].

Finally, by Lemma 2.15, the stratum [Γ1, m,m− 1, s1(γ2− γ1)] is equivalent to a scalar

stratum [Γ1, m,m− 1, δ], whence [Γ1, m,m− 1, s1(b1)] is equivalent to the simple stratum

[Γ1, m,m− 1, c+ δ], as required.

3. Simple characters and refinement

3.1. — Let A be a central simple F-algebra and let [Λ, n, 0, β] be a simple stratum in

A. To this simple stratum, in [23, §2.4], one attaches compact open subgroups H(β,Λ) ⊆

J(β,Λ) of A×, together with filtrations

Hm+1(β,Λ) = H(β,Λ) ∩Um+1(Λ), Jm+1(β,Λ) = J(β,Λ) ∩ Um+1(Λ), m ≥ 0,

and a finite set C(Λ, 0, β) of characters of H1(β,Λ), called simple characters of level 0,

depending on the choice of an additive character

ψF : F→ C×

which is trivial on pF but not on OF, and which will now be fixed once and for all.

By restriction to Hm+1(β,Λ), we get also a set C(Λ, m, β) of simple characters of level

m. If ⌊n/2⌋ 6 m, then Hm+1(β,Λ) = Um+1(Λ), and the set C(Λ, m, β) reduces to the

single character ψβ of Um+1(Λ) defined by

ψβ : x 7→ ψF ◦ trA/F(β(x− 1)),

where trA/F denotes the reduced trace of A over F, which depends only on the equivalence

class of [Λ, n,m, β]. More generally, for any m, the subgroup Hm+1(β,Λ) and the set

C(Λ, m, β) depend only on the equivalence class of [Λ, n,m, β].

Note that we will use the following common convention: the trivial character of the

group Ut+1(Λ) will be considered as a simple character for the trivial stratum [Λ, t, t, 0].
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3.2. — Various properties of simple characters can be found in [23, 6]. For now we

recall two of them, the first of which is a special case of the intertwining formula [23,

Théorème 2.24]:

Proposition 3.1. — Let A be a central simple F-algebra, let [Λ, n, 0, β] be a simple stra-

tum in A and let θ ∈ C(Λ, 0, β). Then, writing B for the A-centralizer of β as usual, we

have

IG(θ) = J1(β,Λ)B×J1(β,Λ).

The following fundamental result is one of the main results of [6]:

Proposition 3.2 ([6, Theorem 1.12]). — Let A be a simple central F-algebra. For i =

1, 2, let [Λ, n,m, βi] be a simple stratum in A, and let θi ∈ C(Λ, m, βi) be a simple charac-

ter. Write Ki for the maximal unramified extension of F contained in F(βi). Assume that

θ1 and θ2 intertwine in A× and that the (F[βi],Λ) have the same embedding type. Then

there is an element u ∈ K(Λ) such that:

(i) K1 = uK2u
−1;

(ii) C(Λ, m, β1) = C(Λ, m, uβ2u
−1);

(iii) θ2(x) = θ1(uxu
−1), for all x ∈ Hm+1(β2,Λ).

3.3. — One of the technical difficulties with simple characters is that they do not de-

termine the simple stratum used to define them: that is, we may have C(Λ, m, β1) ∩

C(Λ, m, β2) 6= ∅, for inequivalent strata [Λ, n,m, βi] (though certain invariants of the

strata are equal – see later). In order to cope with this, we need the following translation

principle, which is the main result of this section.

Theorem 3.3 (cf. [11, Translation Principle 2.11]). — Let [Λ, n,m, γi] be simple strata

with C(Λ, m, γ1) ∩ C(Λ, m, γ2) 6= ∅. Let [Λ, n,m − 1, β1] be a simple stratum such that

[Λ, n,m, β1] is equivalent to [Λ, n,m, γ1]. Then there is a simple stratum [Λ, n,m− 1, β2]

such that [Λ, n,m, β2] is equivalent to [Λ, n,m, γ2] and C(Λ, m− 1, β1) = C(Λ, m− 1, β2).

The proof of this translation principle, which will take up most of the remainder of this

section, begins with the following special case, in which β1 = γ1:

Lemma 3.4 (cf. [8, Theorem 3.5.9], [16, Proposition 9.10]). — Let [Λ, n,m, γi] be sim-

ple strata with C(Λ, m, γ1) ∩ C(Λ, m, γ2) 6= ∅. Then Hm(γ1,Λ) = Hm(γ2,Λ) and there
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is a simple stratum [Λ, n,m, β2] equivalent to [Λ, n,m, γ2] such that C(Λ, m − 1, β2) =

C(Λ, m− 1, γ1).

Proof. — From [6, Lemma 4.12], we have already that Hm(γ1,Λ) = Hm(γ2,Λ). The

remainder of the proof is mutatis mutandis that of [8, Theorem 3.5.9]: we replace [8,

Theorem 3.3.2] by [23, Théorème 2.23], [8, Lemma 2.4.11] by Lemma 2.10, [8, Theo-

rem 2.2.8] by Proposition 2.13, [8, 3.3.20] by [23, Proposition 2.15], and [8, 3.5.8] by [6,

Theorem 4.16]; for the proof of [8, Lemma 3.5.10] we replace [8, Corollary 3.3.17] by [23,

Proposition 2.24] and [8, Proposition 3.3.9] by [23, Lemme 2.30(2)].

3.4. — The technical crux of the translation principle is contained in the following

lemma:

Lemma 3.5 (cf. [11, Lemma 5.2]). — Let [Λ, n,m−1, βi] be simple strata with C(Λ, m−

1, β1) ∩ C(Λ, m− 1, β2) 6= ∅. Then, putting Ei = F[βi], we have:

(i) OE1 +P1(Λ) = OE2 +P1(Λ);

(ii) the pairs (Ei,Λ) have the same embedding type;

(iii) there are prime elements ̟i of Ei such that ̟1U
1(Λ) = ̟2U

1(Λ);

(iv) there are tame corestrictions si on A relative to Ei/F such that, for all k ∈ Z and

x ∈ Pk(Λ),

s1(x) ≡ s2(x) (mod Pk+1(Λ)).

Note that (ii) in this lemma answers Conjecture 4.17 of [6] – indeed, it is a generalization

of that conjecture since here we do not assume that the sequence Λ is strict. Also,

the hypothesis C(Λ, m − 1, β1) ∩ C(Λ, m − 1, β2) 6= ∅ is equivalent to C(Λ, m − 1, β1) =

C(Λ, m− 1, β2), by [6, Theorem 4.16].

Proof. — In the split case when Λ is strict, this is [11, Lemma 5.2], while the case of

arbitrary Λ follows by passing to Λ‡.

We proceed by induction on m. When m = n the result is immediate from Lemma 2.11.

Note that k0(βi,Λ) is independent of i, by [6, Lemma 4.7]. If k0(βi,Λ) < −m then

again the result is clear from the induction hypothesis, since the conclusions (i)–(iv) are

independent of m, so we assume k0(βi,Λ) = −m > −n. By replacing [Λ, n,m− 1, β1] by

an equivalent stratum, Lemma 3.4 says we may (and do) assume C(Λ, 0, β1) = C(Λ, 0, β2)

without affecting the conclusion of the lemma, by Lemma 2.11.
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For i = 1, 2, let [Λ, n,m, γi] be a simple stratum equivalent to [Λ, n,m, βi]. Then

C(Λ, m, γ1) = C(Λ, m, β1) = C(Λ, m, β2) = C(Λ, m, γ2)

so, by induction applied to the simple strata [Λ, n, (m + 1) − 1, γi], (i)–(iv) are satisfied

with Eγi = F[γi] in place of Ei, and we pick uniformizers ̟γi and tame corestrictions

sγi satisfying (iii), (iv). Moreover, by replacing [Λ, n,m, γ1] by an equivalent stratum,

Lemma 3.4 says we may assume C(Λ, 0, γ1) = C(Λ, 0, γ2).

Put ci = βi−γi and let θ ∈ C(Λ, m−1, β1) = C(Λ, m−1, β2). By [23, Proposition 2.15],

we have θ = ϑiψci , for some ϑi ∈ C(Λ, m− 1, γi). Hence

ϑ1 = ϑ2ψc2−c1

and ϑ1, ϑ2 ∈ C(Λ, m − 1, γ1) both restrict to the same character ϑ ∈ C(Λ, m, γ1). Since

ϑ1, ϑ2 are both intertwined by B×
γ1 , the same is true of ψc2−c1. In particular, restricting

to Hm(γ1,Λ)∩B
×
γ1

= Um(Γγ1), we see that ψsγ1 (c2−c1)|U
m(Γγ1) is intertwined by all of B×

γ1

and, by Lemma 2.10, (sγ1(c2 − c1) + P1−m(Γγ1)) ∩ Eγ1 6= ∅. In particular, the stratum

[Γγ1 , m,m− 1, sγ1(c2 − c1)] is equivalent to a simple (or null) scalar stratum.

By Proposition 2.13, there is a simple stratum [Λ, n,m−1, γ′1] equivalent to the stratum

[Λ, n,m− 1, γ1 + (c2 − c1)]. Since ϑ2 ∈ C(Λ, m− 1, γ1), by [23, Proposition 2.15] we have

ϑ1 = ϑ2ψc2−c1 = ϑ2ψγ′

1−γ1 ∈ C(Λ, m − 1, γ′1). Hence C(Λ, m − 1, γ′1) = C(Λ, m − 1, γ1).

Moreover, putting c′1 = β1−γ
′
1 we see that c2− c

′
1 ∈ P1−m(Λ); in particular, for any tame

corestriction sγ′

1
on A relative to Eγ′

1
/F, we have sγ′

1
(c2 − c

′
1) ∈ P1−m(Λ).

Thus, replacing γ1 by γ′1 we may assume that sγ1(c2− c1) ∈ P1−m(Λ). By (iv), we also

have sγ2(c2 − c1) ∈ P1−m(Λ). In particular, looking at the derived strata [Γγi , m,m −

1, sγi(cj)], with i, j ∈ {1, 2}, and using the inductive hypotheses (iii), (iv), we gety (sγ1(c1)) ≡ y (sγ1(c2)) ≡ y (sγ2(c2)) (mod P1(Λ)).

(The elements y here are computed with respect to the uniformizers ̟γi satisfying (iii).)

By Proposition 2.14 the derived strata [Γγi , m,m − 1, sγi(ci)] are equivalent to simple or

null strata so, by Proposition 2.13 (applied to the strata [Λ, n,m, γi] and β ′ = βi) and the

inductive hypothesis (i), we have

OE1 +P1(Λ) = OEγ1
[y (sγ1(c1))] +P1(Λ) = OEγ2

[y (sγ2(c2))] +P1(Λ) = OE2 +P1(Λ)



SEMISIMPLE TYPES FOR GLm(D) 25

and we have proved (i). Now (ii) follows exactly as in the proof of Lemma 2.11 (see also [5,

Lemma 5.2]); indeed the proof gives the existence of u ∈ U1(Λ) such that u−1K1u = K2,

where Ki is the maximal unramified subextension of Ei/F.

For the remainder, we may pass to Λ‡ and assume we have soundly embedded strict

lattice sequences with P0(Λ) principal, as in the proof of Lemma 2.11. (By [6, Propo-

sition 4.11], we have C(Λ‡, m − 1, β1) = C(Λ‡, m − 1, β2); cf. the proof of op. cit. Theo-

rem 4.16.) Recall that we have θ ∈ C(Λ, m− 1, β1) = C(Λ, m− 1, β2), which we extend to

a common simple character in C(Λ, 0, β1) = C(Λ, 0, β2). Then θu ∈ C(Λ, 0, u−1β1u) surely

intertwines θ ∈ C(Λ, 0, β2) so, by Proposition 3.2, there is g ∈ K(Λ) such that θug = θ and

(ug)−1K1(ug) = K2. Since ug then normalizes θ, we have ug ∈ K(Γβ2)J
1(βb,Λ).

In particular, there is x ∈ K(Γβ2) such that h = ugx ∈ J1(β2,Λ), h
−1K1h = K2 and

θh = θ. Thus, replacing β1 by h−1β1h, we may assume that K1 = K2 = K, without

affecting the conclusion of the Lemma (since h ∈ U1(Λ)).

Now we will utilise the interior lifting and base change processes of [6] to reduce to the

split case.

We suppose first that we are in the special case K = F, that is Ei/F is totally ramified.

Fix an unramified extension L/F which splits A, so that Li = Ei⊗FL is a field, for i = 1, 2.

The algebra A = A⊗F L is then a split simple L-central algebra and we choose a simple

left A-module V. There is a unique (up to translation) strict OL-lattice sequence Λ on

A such that Pk(Λ) = Pk(Λ) ⊗OF
OL, for all k ∈ Z (see [19, §2.2]). Identifying A with

A⊗F 1 ⊆ A, we get strata [Λ, n,m− 1, βi], which are simple.

Denote by C(Λ, m − 1, βi) the set of simple characters with respect to the character

ψF ◦ trL/F. The base change process from [6, §7.2] gives rise to injective K(Λ)-equivariant

maps

b
i = b

i
L/F : C(Λ, m− 1, βi)→ C(Λ, m− 1, βi).

Moreover, by [6, Proposition 7.6], we have b
1(θ) = b

2(θ) so C(Λ, m − 1, β1) ∩ C(Λ, m −

1, β2) 6= ∅. In particular, by the split case we get uniformizers ̟L
i of Li such that

(‡) ̟L
1 +Pe+1(Λ) = ̟L

2 +Pe+1(Λ),

with e = e(Λ|OL) = e(Λ|OF), and tame corestrictions sLi on A relative to Li/L for the

character ψF ◦ trL/F such that, for all k ∈ Z and x ∈ Pk(Λ),

sL1 (x) ≡ sL2 (x) (mod Pk+1(Λ)).
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Multiplying through (‡) by a unit, we see that we may assume ̟L
1 = ̟1 is a uniformizer

of E1 and ̟L
2 = ̟2ζ , for some uniformizer ̟2 of E2 and ζ ∈ O

×
L a root of unity of order

coprime to p. Thus we have

̟1̟
−1
2 ≡ ζ (mod P1(Λ)).

Now the Galois group Gal(L/F) acts on A, fixing ̟1̟
−1
2 , so the image of ζ in kL is fixed

by Gal(kL/kF). In particular, ζ ∈ O
×
F so, replacing ̟2 by ̟2ζ , we get

̟1 +Pe+1(Λ) = ̟2 +Pe+1(Λ),

and intersecting with A completes the proof of (iii).

The argument for the tame corestrictions is similar: We check that, if si is an arbitrary

tame corestriction on A relative to Ei/F, then si⊗ 1 is a tame corestriction on A relative

to Li/L. By [23, Proposition 2.26], sLi and si ⊗ 1 differ by a unit ui in OLi
and, changing

by a root of unity, we can assume u1 ∈ 1+ pL1 . We have u2 ≡ ζ (mod pLi
), for some root

of unity ζ ∈ O
×
L . Then, for all k ∈ Z and a ∈ Pk(Λ)

s1(a)⊗ 1 ≡ sL1 (a⊗ 1) ≡ sL2 (a⊗ 1) ≡ s2(a)⊗ ζ (mod Pk+1(Λ)).

Again, the Galois group Gal(L/F) acts on A, fixing s1(a)⊗ 1, so

s2(a)⊗ ζ ≡ s2(a)⊗ ζ
σ (mod P1(Λ)), for all a ∈ P0(Λ), σ ∈ Gal(L/F).

By [23, Proposition 2.29], the map s2 : P0(Λ) → P0(Γ2) is surjective so, as above, we

deduce that ζ ∈ O
×
F and, after replacing s2 by ζs2, we may assume ζ = 1. Finally,

intersecting with A completes with proof of (iv).

Finally we consider the case where K 6= F. Denote by C the A-centralizer of K, fix a

simple left C-module W, and let DK be the algebra opposite to EndC(W). Let ΓK be the

unique (up to translation) ODK
-lattice sequence on W such that

Pk(Λ) ∩ C = Pk(ΓK), k ∈ Z.

Then [ΓK, n,m − 1, βi] is a simple stratum in C, for i = 1, 2, by [6, Proposition 5.2].

From [6, Theorem 5.8, Proposition 6.12], we get interior lifting maps

l
i = l

i
K/F : C(Λ, m− 1, βi)→ C(ΓK, m− 1, βi),

which are injective and K(ΓK)-equivariant. Moreover, by [6, Proposition 6.13], we have

l
1(θ) = l

2(θ) so that C(ΓK, m−1, β1)∩C(ΓK, m−1, β2) 6= ∅. From the case K = F above,



SEMISIMPLE TYPES FOR GLm(D) 27

we find uniformizers ̟i of Ei with ̟1U
1(ΓK) = ̟2U

1(ΓK); in particular, ̟1U
1(Λ) =

̟2U
1(Λ) which proves (iii). We also get tame corestrictions sKi on C relative to Ei/K

satisfying (iv): for all k ∈ Z and x ∈ Pk(ΓK),

sK1 (x) ≡ sK2 (x) (mod Pk+1(ΓK)).

Finally, if sK is any tame corestriction on A relative to K/F then si = sKi ◦ sK are tame

corestrictions on A relative to Ei/F, which satisfy (iv) since Pk+1(ΓK) ⊆ Pk+1(Λ).

3.5. — Now we are ready to complete the proof of the translation principle.

Proof of Theorem 3.3. — For i = 1, 2, we have simple strata [Λ, n,m, γi] such that

C(Λ, m, γ1) ∩ C(Λ, m, γ2) 6= ∅; these sets of simple characters are then equal, by [6,

Theorem 4.16]. Moreover, by Lemma 3.4, we may replace [Λ, n,m, γ1] by an equivalent

stratum so that C(Λ, m− 1, γ1) = C(Λ, m− 1, γ2).

Let Bi denote the A-centralizer of F[γi], let Vi be a simple left Bi-module, and let Di

be the algebra opposite to EndBi
(VF[γi]). Denote by Γi the unique (up to translation)

ODi
-lattice sequence in Vi such that

Pk(Λ) ∩ Bi = Pk(Γi), k ∈ Z.

We use Lemma 3.5 to choose uniformizers ̟i for F[γi] such that ̟1U
1(Λ) = ̟2U

1(Λ),

and tame corestrictions si on A relative to F[γi]/F such that, for all k ∈ Z and x ∈ Pk(Λ),

s1(x) ≡ s2(x) (mod Pk+1(Λ)).

Again by Lemma 3.5, the residue fields kF[γi] have a common image in P0(Λ)/P1(Λ) so that

we may identify them. Moreover, P0(Γi)/P1(Γi) have a common image in P0(Λ)/P1(Λ),

as in the proof of Proposition 2.14.

Now let [Λ, n,m − 1, β1] be a simple stratum such that [Λ, n,m, β1] is equivalent to

[Λ, n,m, γ1]. If the stratum [Λ, n,m, β1] is itself simple then the result follows from

Lemma 3.4 (applied with β1 in place of γ1), so we assume this is not the case. We

write β1 = γ1 + b, with b ∈ P−m(Λ), and pick a simple character ϑ ∈ C(Λ, m− 1, γ1), so

that ϑψb is a simple character in C(Λ, m− 1, β1).

By Proposition 2.14, the derived stratum [Γ1, m,m− 1, s1(b)] is equivalent to a simple

stratum, which is non-scalar by Proposition 2.13, since k0(β1,Λ) > k0(γ1,Λ). Thus, by



28 V. SÉCHERRE & S. STEVENS

Proposition 2.7, [Γ1, m,m − 1, s1(b)] has irreducible minimum polynomial. However, by

the choices of ̟i and si, we havey (s1(b),Γ1) ≡ y (s2(b),Γ2) (mod P1(Λ)).

In particular (given the identifications we have made), we see that the strata [Γi, m,m−

1, si(b)] have the same minimum and characteristic polynomials. In particular, [Γ2, m,m−

1, s2(b)] has irreducible minimum polynomial so, by Proposition 2.7, it is equivalent to a

simple stratum.

Finally, by Proposition 2.13, there is a simple stratum [Λ, n,m − 1, β2] equivalent to

[Λ, n,m − 1, γ2 + b] and, by [23, Proposition 2.15], we have ϑψb ∈ C(Λ, m − 1, β2). In

particular, C(Λ, m − 1, β1) ∩ C(Λ, m − 1, β2) 6= ∅ so, by [6, Theorem 4.16], we have

C(Λ, m− 1, β1) = C(Λ, m− 1, β2) as required.

3.6. — We will need one corollary of the translation principle, which is in fact a gener-

alization of Proposition 2.14:

Corollary 3.6. — Let [Λ, n,m, γ] be a simple stratum and let [Λ, n, 0, β] be a simple

stratum such that C(Λ, m, β) ∩ C(Λ, m, γ) 6= ∅. Suppose ϑ ∈ C(Λ, m − 1, γ) and θ ∈

C(Λ, m − 1, β) coincide on Hm+1(γ,Λ) = Hm+1(β,Λ). Then there is c ∈ P−m(Λ) such

that θ = ϑψc and, for any such c, the derived stratum [Γγ, m,m− 1, sγ(c)] is equivalent to

a simple (or null) stratum.

Proof. — The entire statement depends only on the equivalence class of the stratum

[Λ, n,m− 1, β] so, by replacing with an equivalent stratum, we may assume this stratum

is simple. Moreover, that such c ∈ P−m(Λ) exists is clear so we need only prove that the

derived stratum is simple.

By the translation principle (Theorem 3.3), there is a simple stratum [Λ, n,m − 1, β ′]

such that [Λ, n,m, β ′] is equivalent to [Λ, n,m, γ] and C(Λ, m − 1, β ′) = C(Λ, m − 1, β).

Then, by [23, Proposition 2.15], we have θ|Hm(β ′,Λ) = ϑ′ψc′ , for some ϑ′ ∈ C(Λ, m−1, γ)

and c′ = β ′ − γ. Moreover, the derived stratum [Γγ, m,m − 1, sγ(c
′)] is simple (or null),

by Proposition 2.14.

Now we have two simple characters, ϑ′, ϑ|Hm(γ,Λ) in C(Λ, m − 1, γ), which differ by

the character ψc−c′. Since the simple characters are intertwined by B×
γ , so is ψc−c′ and,

in particular, its restriction to Um(Γγ). Then, by Lemma 2.10, there is a δ ∈ F[γ]
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such that sγ(c − c
′) − δ ∈ P1−m(Γ). In particular, [Γγ , m,m − 1, sγ(c)] is equivalent to

[Γγ, m,m− 1, sγ(c
′) + δ], which is simple (or null).

4. Endo-classes and common approximations

In this section, we collect together some results concerning endo-classes of ps-characters

and their relationship with common approximations (see [13, §8]). Much of this is implicit

in [13] in the split case.

4.1. — Let (k, β) be a simple pair and, for i = 1, 2, let [Λi, ni, mi, ϕi(β)] be a realization

in a simple central F-algebra Ai. According to [19, §3.3], there is a canonical transfer

map

τ : C(Λ1, m1, ϕ1(β))→ C(Λ2, m2, ϕ2(β)).

Denote by C(k,β) the set of pairs ([Λ, n,m, ϕ(β)], θ) made of a realization [Λ, n,m, ϕ(β)] of

(k, β) in a simple central F-algebra and a simple character θ ∈ C(Λ, m, ϕ(β)). Then the

transfer maps τ induce an equivalence relation on C(k,β).

Definition 4.1. — A potential simple character over F (or ps-character for short) is a

triple (Θ, k, β) made of a simple pair (k, β) over F and an equivalence class Θ in C(k,β).

When the context is clear, we will often denote by Θ the ps-character (Θ, k, β). Given

a realization [Λ, n,m, ϕ(β)] of (k, β), we will denote by Θ(Λ, m, ϕ) the simple character θ

such that the pair ([Λ, n,m, ϕ(β)], θ) belongs to Θ.

Definition 4.2. — For i = 1, 2, let (Θi, ki, βi) be a ps-character over F. We say that

these ps-characters are endo-equivalent, denoted:

Θ1 ≈ Θ2,

if k1 = k2 and [F(β1) : F] = [F(β2) : F], and if there exist a simple central F-algebra A and

realizations [Λ, ni, mi, ϕi(βi)] of (ki, βi) in A, for i = 1, 2, such that the simple characters

Θ1(Λ, m1, ϕ1) and Θ2(Λ, m2, ϕ2) intertwine in A×.

That this defines an equivalence relation on ps-characters follows from a major result

in [6]:
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Proposition 4.3 ([6, Theorem 1.11]). — For i = 1, 2, let (Θi, ki, βi) be a ps-character

over F, and suppose that Θ1 ≈ Θ2. Let A be a simple central F-algebra and let

[Λ, ni, mi, ϕi(βi)] be realizations of (ki, βi) in A, for i = 1, 2. Then θ1 = Θ1(Λ, m1, ϕ1)

and θ2 = Θ2(Λ, m2, ϕ2) intertwine in A×.

In the situation of Proposition 4.3, if (F [ϕi(βi)],Λ) have the same embedding type

then we can apply Proposition 3.2 to conclude that the realizations θ1, θ2 are actually

conjugate.

We will use the common convention that, for each t ≥ 0, there is the trivial ps-character

Θ
(t)
0 , whose realization on any lattice sequence Λ is the trivial character of the group

Ut+1(Λ); then {Θ
(t)
0 } forms a singleton equivalence class under endo-equivalence.

4.2. — Let [Λ, n, 0, β] be a simple stratum in A = EndD(V). Let θ ∈ C(Λ, 0, β) be a

simple stratum and denote by (Θ, 0, β) the ps-character that it determines – that is, θ is

a realization of Θ.

For t ≥ 0, let [Λ, n, t, β(t)] be a simple stratum equivalent to the pure stratum [Λ, n, t, β]

and write E(t) = F[β(t)]. Then the restriction θ|Ht+1(β,Λ) is a simple character in

C(Λ, t, β(t)) and we denote by (Θ(t), k(t), β(t)) the ps-character determined by this restric-

tion, with k(t) = ⌊t/e(Λ|OE(t))⌋.

Remark. We allow the case t ≥ n, in which case we interpret the stratum [Λ, n, t, β]

to be equivalent to a null stratum [Λ, t, t, 0] and Θ(t) is the trivial ps-character.

Lemma 4.4. — With notation as above let (Θγ, k, γ) be a ps-character which is endo-

equivalent to Θ(t). Then there is an embedding ιγ : F[γ] →֒ A such that

θ|Ht+1(β,Λ) = Θγ(Λ, t, ιγ).

Proof. — Put Eγ = F[γ]. Since the ps-characters Θγ , Θ
(t) are endo-equivalent, the fields

Eγ , E
(t) have the same invariants by [6, Lemma 4.8]:

e(Eγ/F) = e(E(t)/F), f(Eγ/F) = f(E(t)/F), and kF(γ) = kF(β
(t)).

Then, by Lemma 2.1, there is an embedding ιγ : Kγ →֒ A such that [Λ, n, t, ιγ(γ)] is

a pure stratum with the same embedding type as [Λ, n, t, β(t)], which is simple since

kF(γ) = kF(β
(t)) and [Λ, n, t, β(t)] is simple.



SEMISIMPLE TYPES FOR GLm(D) 31

Finally, since the ps-characters are endo-equivalent, by Propositions 4.3 and 3.2, the

realization Θγ(Λ, t, ιγ) is conjugate to θ|Ht+1(β,Λ) by some u ∈ K(Λ). Conjugating our

embedding ιγ by u gives the desired embedding.

For j = 1, . . . , r, let Aj = EndD(V
j), let [Λj , nj, 0, βj] be a simple stratum in Aj , write

Ej = F[βj], and let θj ∈ C(Λj, 0, βj). We normalize so that the lattice sequences Λj have

the same OF-period e.

As above, for t ≥ 0, let [Λj, nj , t, β
(t)
j ] be a simple stratum equivalent to the pure

stratum [Λj, nj , t, βj], and write E
(t)
j = F[β

(t)
j ]. The restriction θj |H

t+1(βj,Λ
j) is a simple

character in C(Λj , t, β
(t)
j ) and we denote by (Θ

(t)
j , k

(t)
j , β

(t)
j ) the ps-character determined by

this restriction, with k
(t)
j = ⌊t/e(Λ|O

E
(t)
j

)⌋.

We put V = V1 ⊕ · · · ⊕ Vr, and set Λ = Λ1 ⊕ · · · ⊕ Λr, a lattice sequence in V of OF-

period e. Write A = EndD(V) and denote by ej the idempotents in P0(Λ) corresponding

to the decomposition of V. We put β =
∑r

j=1 e
jβje

j . Then [Λ, n, 0, β] is a stratum in A,

with n = maxj nj . We write L for the stabilizer in G = AutD(V) of the decomposition

V = V1 ⊕ · · · ⊕ Vr, and AL for its stabilizer in A.

Definition 4.5. — A common approximation of (θj) of level t on Λ is a pair

([Λ, n, t, γ], ϑ) consisting of: a simple stratum [Λ, n, t, γ] with γ ∈ AL and 0 ≤ t ≤ n, such

that

Ht+1(γ,Λ) ∩ L =

r∏

j=1

Ht+1(βj ,Λ
j);

and a simple character ϑ ∈ C(Λ, 0, γ) such that

ϑ|Ht+1(γ,Λ) ∩ L = θ1 ⊗ · · · ⊗ θr.

When we have such a common approximation, we will identify γ with its images ejγej

in Aj.

Lemma 4.6. — Let 0 ≤ t ≤ n. Then the following are equivalent:

(i) There is a common approximation of (θj) of level t on Λ.

(ii) The ps-characters Θ
(t)
j are endo-equivalent.

Proof. — (ii)⇒(i) Let (Θγ , k, γ) be a ps-character which is endo-equivalent to all Θ
(t)
j .

Then, by Lemma 4.4, for each j there is an embedding ιj : F[γ] →֒ Aj such that

Θγ(Λ
j, t, ιj) = θj |H

t+1(βj,Λ
j). Denote by ι the diagonal embedding ι : F[γ] →֒

⊕r
j=1A

j ⊆
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A and let ϑ be any simple character in C(Λ, 0, ι(γ)) which restricts to Θγ(Λ, t, ι) on

Ht+1(γ,Λ). Then ([Λ, n, t, ι(γ)], ϑ) is a common approximation as required.

(i)⇒(ii) Suppose ([Λ, n, t, γ], ϑ) is a common approximation of (θj) of level t on Λ.

Then the characters θj |H
t+1(βj ,Λ

j) are simple characters in C(Λj, t, γ) and, by [23,

Théorème 2.17], these characters are all transfers of each other relative to γ; hence

the corresponding ps-characters (which are supported by the simple pair (k, γ), with

k = ⌊t/e(Λ|OF[γ])⌋) are endo-equivalent.

We suppose now that there is a common approximation ([Λ, n, t, γ], ϑ) of (θj). Denote

by Bγ the A-centralizer of Eγ = F[γ], by Vγ a simple left Bγ-module, by Dγ the opposite

algebra to EndBγ
(Vγ), and by sγ a tame corestriction on A. Note that, since γ ∈ AL, the

restriction of sγ to Aj is also a tame corestriction (see [23, Proposition 2.26]). Also, the

idempotents ej lie in Bγ so correspond to a decomposition Vγ = V1
γ ⊕ · · · ⊕ Vr

γ . Let Γγ

be an ODγ
-lattice sequence in Vγ such that Pn(Λ) ∩ Bγ = Pn(Γγ), for all n ∈ Z, and put

Γj
γ = Γγ ∩ Vj

γ, for 1 ≤ j ≤ r.

Since θj and ϑ coincide on Ht+1(γ,Λ), Corollary 3.6 says that there is cj ∈ P−t(Λ
j) such

that θj |H
t(βj,Λ

j) = ϑψcj , and that the derived stratum [Γj
γ , t, t − 1, sγ(cj)] is equivalent

to a simple (or null) stratum. The following result is a generalization of Corollary 2.9.

Corollary 4.7. — In the situation above, the derived strata [Γj
γ, t, t− 1, sγ(cj)] have the

same minimum polynomial if and only if the ps-characters Θ
(t−1)
j are endo-equivalent.

Proof. — Suppose first that the minimum polynomials of the derived strata [Γj
γ, t, t −

1, sγ(cj)] are all the same. Note that they are irreducible since these strata are equivalent

to simple strata. Then the derived stratum [Γγ , t, t − 1, sγ(c)] is equivalent to a simple

stratum by Corollary 2.8 and, by Proposition 2.13, there is a simple stratum [Λ, n, t−1, γ′]

equivalent to [Λ, n, t−1, γ+ c], so that ϑψc ∈ C(Λ, t−1, γ′). Then, for any ϑ′ ∈ C(Λ, 0, γ′)

extending ϑψc, the pair ([Λ, n, t − 1, γ′], ϑ′) is a common approximation of level t − 1.

Hence, by Lemma 4.6, the ps-characters Θ
(t−1)
j are endo-equivalent.

Conversely, suppose the ps-characters Θ
(t−1)
j are endo-equivalent so, by Lemma 4.6,

there is a common approximation ([Λ, n, t−1, γ′], ϑ′) of level t−1. We then have ϑ′ = ϑψc

and, by Corollary 3.6, the derived stratum [Γγ , t, t− 1, sγ(c)] is equivalent to a simple (or

null) stratum. Hence, by Corollary 2.8, the derived strata [Γj
γ , t, t − 1, sγ(cj)] have the

same minimum polynomial.
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5. Simple types

In this section we recall some results from [21] concerning simple types. In later sections

we will need these in slightly more generality than in op. cit. – in particular, in the case

where we have a non-strict lattice sequence. Already in the case of GL(n,F), simple

types on non-strict lattice sequence are required in [13], although this is not immediately

apparent. The proofs are mostly identical to those in [20, 21].

5.1. — Let [Λ, n, 0, β] be a simple stratum in A = EndD(V), and use all the usual

notation from the previous sections. Since β is fixed, we will omit it from the notations;

when Λ is fixed, we will omit that also.

Lemma 5.1. — Let θ ∈ C(Λ, 0, β) be a simple character. Then there is a unique irre-

ducible representation η of J1 which contains θ; moreover, η|H1 is a multiple of θ, the

dimension dim(η) = (J1 : H1)1/2 and

dim Ig(η) =




1 if g ∈ J1B×J1,

0 otherwise.

Proof. — The proof of all but the final assertion is identical to that of [8, Proposi-

tion 5.1.1)], replacing [8, Theorem 3.4.1)] by [23, Proposition 2.31]. The proof of the

final assertion is identical to that of [8, Proposition 5.1.8)], replacing the exact sequences

there by those of [23, Proposition 2.27].

Lemma 5.2. — For i = 1, 2, let [Λi, ni, 0, β] be a simple stratum in A, let θi ∈ C(Λi, 0, β),

and let ηi be the unique irreducible representation of J1(β,Λi) which contains θi. Then

dim(η1)

dim(η2)
=

(J1(β,Λ1) : J1(β,Λ2))

(U1(Λ1) ∩ B : U1(Λ2) ∩ B)
.

Proof. — Again, the proof is identical to that of [8, Proposition 5.1.2], replacing the exact

sequence there with [23, Proposition 2.27].

5.2. — Recall that a β-extension of θ is a representation κ of J which extends the

representation η given by Lemma 5.1 and such that IG(κ) ⊃ B×. In the case that Λ

is strict, the existence of β-extensions is given by [20, Théorème 2.28]. Using this, we

proceed here via a simplified version of the compatibility argument used there.
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Definition 5.3. — Let [Λ, n, 0, β] be a simple stratum in A and let Λ′ be an E-pure

lattice sequence in V such that P0(Λ) = P0(Λ
′). Let θ, θ′ be simple characters which are

realizations of the same ps-character on Λ,Λ′ respectively, and let κ, κ′ be extensions of

the representations η, η′ given by Lemma 5.1 respectively. We say that κ, κ′ are compatible

(or mutually coherent) if

Ind
(U(Λ)∩B)U1(Λ)
J κ ≃ Ind

(U(Λ)∩B)U1(Λ)
J(β,Λ′) κ′.

Proposition 5.4. — With the notations of Definition 5.3, the notion of compatibility

induces a bijection

{β-extensions of θ} ←→ {β-extensions of θ′} .

In particular, there is a β-extension κ of θ, and then the set of β-extension of θ is given

by {
κ⊗

(
χ ◦ NB/E

)
: χ ∈ ÛE/U1

E

}
.

Proof. — The first assertion follows as in [20, Lemmes 2.23,2.24] (cf. also [8, Proposi-

tion 5.25]). Now taking Λ′ to be the strict lattice sequence in V with the same image as

Λ, the final assertion follows from [20, Théorème 2.28].

5.3. — We continue with a simple stratum [Λ, n, 0, β] and a simple character θ ∈

C(Λ, 0, β), together with the unique irreducible representation η of J1 containing θ. Let

VE be a simple left B-module, let DE be the opposite algebra to EndB(VE), and set

mE = dimDE
VE. We write Γ for the unique (up to translation) ODE

-lattice sequence on

VE such that Pk(Λ) ∩ B = Pk(Γ), for all k ∈ Z.

We suppose given a decomposition V = V1⊕· · ·⊕Vr which is subordinate to P0(Γ) in the

sense of [23, Définition 5.1]: that is, it is a decomposition of E⊗D-bimodules and, writing

ej for the idempotents of P0(Γ) defined by the decomposition and mj = dimDE
ejVE, there

is an isomorphism of E-algebras Ψ : B→ MmE
(DE) such that:

(i) for 1 ≤ j ≤ r, the idempotent Ψ(ej) is Ij = diag(0, . . . , Idmj
, . . . , 0):

(ii) The hereditary order Ψ(P0(Γ)) is the OE-subalgebra of MmE
(ODE

) consisting of

matrices whose reduction modulo pDE
is upper triangular by blocks of size (m1, . . . , mr).

Note then that Λj = Λ∩Vj is in the affine class of a strict lattice sequence of ODE
-period

1 in Vj .
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Let P be the parabolic subgroup of G stabilizing the flag

{0} ⊂ V1 ⊂ V1 ⊕ V2 ⊂ · · · ⊂ V,

and write P = LN, where L is the stabilizer of the decomposition V =
⊕r

j=1V
j and N is

the unipotent radical. Write P− = LN− for the opposite parabolic relative to L.

We define the groups

JP = H1 (J ∩ P) , J1P = H1
(
J1 ∩ P

)
, H1

P = H1
(
J1 ∩N

)
,

and define the character θP of H1
P by θP(hu) = θ(h), for h ∈ H1 and u ∈ J1 ∩N. We also

put JL = J ∩ L and J1L = J1 ∩ L and notice that, since the decomposition is subordinate

to P0(Λ) ∩ B, we have

JP/J
1
P ≃ JL/J

1
L ≃ U(Γ)/U1(Γ) ≃ J/J1.

In particular, given a representation of U(Γ) trivial on U1(Γ), we can also regard it as a

representation of JP (respectively JL, J) trivial on J1P respectively J1L, J
1).

The following Proposition summarizes the results of [23, Propositions 5.3–5] (see also

op. cit. §5.8); the results there are in the case that Λ is strict but, given our preliminary

results above, identical proofs apply in the general case.

Proposition 5.5. — Let ηP denote the natural representation of J1P on on the J ∩ N-

invariants of η. Then ηP is the unique irreducible representation of J1P which contains θP.

Moreover, IndJ1

JP
ηP is isomorphic to η and

dim Ig(ηP) =





1 if g ∈ J1PB

×J1P,

0 otherwise.

5.4. — Now let κ be a β-extension of θ and let κP denote the natural representation of

JP on on the J ∩ N-invariants of κ. The proof of [23, Proposition 5.8] (see also op. cit.

§5.8) again generalizes to the non-strict case and gives:

Proposition 5.6. — κP is an irreducible representation of JP with the following proper-

ties:

(i) κP|H
1(β,Λ) is a multiple of θ;

(ii) κP is trivial on JP ∩N and JP ∩N−;

(iii) κP|JL ≃ κ1 ⊗ · · · ⊗ κr, for some β-extensions κj containing θj;

(iv) IG(κP) = JPB
×JP;
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(v) if mj = mk then κj ≃ κk.

(vi) if ξ is an irreducible representation of U(Γ) trivial on U1(Γ), then

IndJ
JP
(κP ⊗ ξ) ≃ κ⊗ ξ, and IG(κP ⊗ ξ) = JPIB×(ξ)JP.

Proof. — The only property not given by [23, Proposition 5.8 or §5.8] is (v), where imitate

the proof of [8, Corollary 7.2.6]. There is a permutation matrix in w ∈ MmE
(DE) (which

we have identified with B via Ψ above) which swaps Vj with Vk, and leaves all other

Vi fixed. In particular, it lies in B and normalizes JP ∩ L. Then w intertwines κP so

normalizes κP|JL and hence induces an isomorphism between κj and κk.

5.5. — Finally, we consider the case where all mj are equal to some integer s, so that

U(Γ)/U1(Γ) ≃ GLs(kDE
)r and let ξ be the inflation to U(Γ) of the representation σ⊗r, for

σ an irreducible cuspidal representation of GLs(kDE
).

We put λ = κ⊗ ξ, λP = κP ⊗ ξ and λL = λP |JL.

Proposition 5.7. — The pair (JP, λP) is a cover of (JL, λL) and

H (G, λP) ∼= H (r, qsDE
).

We remark that the parameter qsDE
here is the same as that in Theorem B of the

introduction, by [22, Theorem 4.6].

Proof. — In the case that Λ is strict, this is given by [21, Proposition 5.5, Théorème 4.6].

The idea of the proof is to reduce to this case, as in the proof of [21, Théorème 5.6].

Let L be the strict lattice sequence with the same image as Λ and we make the same

constructions for L , which we denote with the superscript L . In particular, we choose

a β-extension κL compatible with κ. Hence (as in [21, Proposition 4.5]) we have a

support-preserving isomorphism

H (G, λ) ∼= H (G, λL ).

Moreover, we have λ = IndJ
JP
λP and λL = IndJL

JL
P
λL
P , so we get a support-preserving

isomorphism

H (G, λP) ∼= H (G, λL

P ).

Then the assertions follow from (the proof of) [21, Proposition 5.5].

Definition 5.8. — A pair (J, λ) as in this paragraph is called a simple type; if r = 1

then it is called a maximal simple type.
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Recall that the main result of [23] (Théorèmes 5.21, 5.23) is that every irreducible

cuspidal representation of G contains a maximal simple type.

6. Intertwining and conjugacy

In this section we consider the unicity of the simple type contained in an irreducible

representation π of G = GLm(D). That is, we suppose the inertial class s(π) of π is homo-

geneous: there are a positive integer r dividing m, an irreducible cuspidal representation ρ

of the group G0 = GLm/r(D) and unramified characters χi of G0, with i ∈ {1, . . . , r}, such

that π is isomorphic to a quotient of the normalized parabolically induced representation

ρχ1×· · ·×ρχr. Unlike the situation for D = F, the simple type is not uniquely determined

up to conjugacy in general, as there is a galois action we must take into account.

We consider the set S of sound simple types

S =

{
simple types (J(β,Λ), λ) such that Λ is strict, P0(Λ)

is principal and (F[β],Λ) is soundly embedded

}
.

For (J, λ) ∈ S, we use all the associated notation of §5: that is, there are a (sound) simple

stratum [Λ, n, 0, β], a simple character θ ∈ C(Λ, 0, β), a β-extension κ and a representation

ξ which is the inflation to U(Γ) of the representation ξ = σ⊗r of

U(Γ)/U1(Γ) ≃ GLs(kDE
)r,

for σ an irreducible cuspidal representation of GLs(kDE
). Note that, implicit in the iso-

morphism above are the choice of a decomposition V = V1⊕· · ·⊕Vr subordinate to P0(Γ)

and the choice of an E-algebra isomorphism Ψ : B→ MmE
(DE) as in paragraph 5.3.

We fix a uniformizer ̟ of DE. The Galois group G = Gal(kDE
/kE) identifies, via reduc-

tion, with the group generated by Ad(̟), the inner automorphism given by conjugation

by ̟. The Galois group G acts on the representations of GLs(kDE
). Moreover, a dif-

ferent choice of E-algebra isomorphism Ψ could result in a change in the identification

U(Γ)/U1(Γ) ≃ GLs(kDE
)r by conjugating each factor by an element of G , rather than just

by an inner automorphism. Thus we define [σ] to be the orbit of σ under the action of G

and set

[λ] =

{
equivalence classes of representations κ ⊗ ξ′, for ξ′

the inflation to U(Γ) of σ1 ⊗ · · · ⊗ σr, with σi ∈ [σ]

}
.

We also define an equivalence relation on S by: (J, λ) ∼ (J, λ′) if and only if there is

an irreducible representation π of G such that π contains both λ and λ′.
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Theorem 6.1 (cf. [8, Theorem 5.7.1]). — Let (J, λ) and (J′, λ′) be sound simple types.

Then (J, λ) ∼ (J′, λ′) if and only if there exists g ∈ G such that gJ′ = J and [gλ′] = [λ].

Proof. — The proof follows that of [8, Theorem 5.7.1]. Suppose first that (J, λ) ∼ (J′, λ′)

and use all notation as above, with a prime ′ to indicate the corresponding objects for

J′, λ′), in particular writing E′ = F[β ′]. We also write Θ for the ps-character defined by

θ. Then [6, Theorems 9.2, 9.3] imply that:

• Θ′ is endo-equivalent to Θ;

• (E,Λ) and (E′,Λ′) have the same embedding type.

In particular, by Propositions 4.3 and 3.2, and the definition of embedding type, there is

g ∈ G such that gΛ′ is in the translation class of Λ, gH1(β ′,Λ′) = H1(β,Λ) and gθ′ = θ.

Replacing λ′ by gλ′ we may assume that g = 1, so that θ′ = θ; moreover, since changing

Λ in its translation class affects nothing, we may assume Λ′ = Λ.

Now the U(Λ) intertwining of θ is J(β,Λ) so we get J′ = J and J1(β ′,Λ′) = J1(β,Λ).

By unicity in Lemma 5.1, we get η′ = η. Moreover, since the intertwining of θ is JB×J =

J(B′)×J, the β-extension κ is also a β ′-extension and we may assume κ′ = κ.

As in the proof of [8, Theorem 5.7.1], the cuspidality of ξ can be interpreted in purely

group-theoretic terms. In particular, if we identify J/J1 with GLs(kDE
)r, then ξ′ decom-

poses as σ′
1 ⊗ · · · ⊗ σ

′
r with all σ′

i cuspidal.

Now λ, λ′ are contained in some irreducible representation π of G and are therefore

intertwined by some x ∈ G. Since λ, λ′ both restrict to a multiple of θ on H1, we have

also that x intertwines θ and thus x ∈ J1B×J1. In particular, we may assume x ∈ B×.

Then, arguing as in [8, Proposition 5.3.2], we see that x intertwines ξ with ξ′, when we

interpret them as representations of U(Γ).

To finish, we argue again as in the proof of [8, Theorem 5.7.1], using results from [17].

In particular, we will use some notation from [17, §0.8], writing W̃B for the generalized

affine Weyl group in B×, which we have identified with GLmE
(DE) via Ψ. By the affine

Bruhat decomposition, we may assume x ∈ W̃B.

Since ξ and ξ′ are cuspidal, the same proof as that of [17, Proposition 1.2] shows that

x normalizes L ∩ U(Γ), where L is the Levi subgroup of G which is the stabilizer of the

decomposition V = V1 ⊕ · · · ⊕ Vr. Likewise, [17, Lemma 1.5] implies that

HomU(Γ)∩x−1U(Γ)x(ξ
′, ξx) = HomU(Γ)/U1(Γ)(ξ′, ξ

x
).
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Now ξ
x
= σ1 ⊗ · · · ⊗ σr, with each σi ∈ [σ] and, since ξ′, ξ

x
are irreducible, we deduce

σ′
i ≃ σi ∈ [σ]. Hence the equivalence class of λ′ is in [λ], so [λ′] = [λ], as required.

The converse is given by [23, Proposition 5.19].

Although, in general, equivalent sound simple types are not conjugate, they are in the

special case of cuspidal representations:

Corollary 6.2. — Suppose (J, λ), (J′, λ′) are maximal simple types. Then (J, λ) ∼

(J′, λ′) if and only if there exists g ∈ G such that gJ′ = J and gλ′ ≃ λ.

Proof. — Suppose (J, λ) and (J′, λ′) are equivalent maximal simple types. By Theo-

rem 6.1, there there exists g ∈ G such that gJ′ = J and [gλ′] = [λ]. That is, as in the

proof of Theorem 6.1, we can write gλ′ ≃ κ⊗ ξ′, with ξ′ ≃ ξ
γ
, for some γ ∈ G . But the

action of γ can be realized as conjugation by a power of ̟, which normalizes Γ, so there

is y ∈ K(Γ) such that yξ′ ≃ ξ. Since y also normalizes κ, we deduce that ygλ′ ≃ λ.

This also completes the proof of Theorem A of the introduction.

7. Semisimple types

Suppose we have cuspidal representations πj of Gj = AutD(V
j), for 1 ≤ j ≤ r, and we

think of L =
∏r

j=1Gj as a Levi subgroup in G = AutD(V), where V =
⊕r

j=1V
j . The aim

of this section is to prove Theorem C: a maximal simple type for (L, π1⊗· · ·⊗πr) admits

a cover, with an explicitly computable Hecke algebra.

For j = 1, . . . , r, the cuspidal representation πj contains a (maximal) simple type

(J(βj ,Λ
j), λj), where [Λj, nj , 0, βj] is a simple stratum in Aj = EndD(V

j), θj is a simple

character of H1(βj,Λ
j), κj is a βj-extension containing θj , σj is a cuspidal representation

of J(βj ,Λ
j)/J1(βj ,Λ

j) and λj = κj ⊗ σj . We write (Θj , 0, βj) for the ps-character defined

by θj . Then our type in L is (JL, λL), given by

JL =

r∏

j=1

J(βj ,Λ
j), λL = λ1 ⊗ · · · ⊗ λr.

For j = 1, . . . , r, we write Bj for the Aj-centralizer of βj. Then Bj has the form

EndDEj
(Wj), for some right DEj

-vector space Wj . We write Γj for the unique strict ODEj
-

lattice sequence in Wj such that P0(Γ
j) = P0(Λ

j) ∩ Bj. Since πj is cuspidal, Γj is a
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sequence of ODEj
-period 1 and then the normalizer in Gj ∩ Bj of Γj is just K(Λj) ∩ Bj;

moreover, Λj is a strict lattice sequence and P0(Λ
j) is a principal order in Aj.

7.1. The homogeneous case. — We suppose first that the (Θj, 0, βj) are all endo-

equivalent to some fixed ps-character (Θ, 0, β).

By Lemma 4.4, for each j there is a realization Θ(Λj, 0, ιj) equal to θj . Hence we may

(and do) assume that all θj are defined relative to the same simple pair (0, β) and are

realizations of the same ps-character Θ.

We have V =
⊕r

j=1V
j and put W =

⊕r
j=1W

j , so that B = EndDE
(W). Write ej for

the idempotent in B with image Wj and kernel
⊕

i 6=j W
i. As an element of A it has image

Vj and kernel
⊕

i 6=j V
i.

Let Γ be an ODE
-lattice sequence in W such that:

(i) Γ ∩Wj is in the affine class of Γj , and

(ii) Γ is subordinate to the decomposition W =
⊕r

j=1W
j .

Note that condition (ii) is generically satisfied: that is, amongst all lattice sequences

satisfying (i), those also satisfying (ii) are dense (in the building of B×). A particular

example of such a sequence is given by

Γ(k) =
r⊕

j=1

Γj

(⌊
k + j

r

⌋)
, k ∈ Z,

which is strict of ODE
-period r but not principal in general.

We fix Γ satisfying (i),(ii) and let Λ be the corresponding OD-lattice sequence in V

given by [23, Théorème 1.7]. Then ej ∈ P0(Γ) ⊆ P0(Λ) so Λ is decomposed by (indeed

subordinate to) the decomposition V =
⊕r

j=1V
j and the lattice sequence r 7→ Λ(r) ∩ Vj

is in the affine class of Λj. In fact, replacing Λj by this sequence changes nothing in the

construction of the type (J(βj,Λ
j), λj) so we may (and do) assume this done, in which

case Λ =
⊕r

j=1Λ
j .

Let P be the parabolic subgroup of G stabilizing the flag

{0} ⊂ V1 ⊂ V1 ⊕ V2 ⊂ · · · ⊂ V,

and write P = LN, where L is the stabilizer of the decomposition V =
⊕r

j=1V
j and N is

the unipotent radical. Write P− = LN− for the opposite parabolic relative to L.
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Now [Λ, n, 0, β] is a simple stratum in A = EndD(V), for a suitable integer n, and we

have H1(β,Λ)∩L ∼=
∏r

j=1H
1(β,Λj), with similar decompositions for J1 and J. Moreover,

θ = Θ(V, 0,Λ) is a simple character such that

θ|H1(β,Λ) ∩ L = θ1 ⊗ · · · ⊗ θr.

As in §5, we define the groups

JP = H1(β,Λ) (J(β,Λ) ∩ P) , J1P = H1(β,Λ)
(
J1(β,Λ) ∩ P

)
,

noting that JL = JP ∩ L.

Let κP be the irreducible representation of JP given by Proposition 5.6, so that κP|JL ≃⊗r
j=1 κ

′
j , for some β-extensions κ′j containing θj . Then we can choose the decompositions

λj = κj ⊗ σj of the maximal simple types above so that κj = κ′j , which we assume done.

We define an equivalence relation ∼ on {1, . . . , r} by

j ∼ k ⇐⇒ σj ≃ σγ
k , for some γ ∈ Gal(kDe/kE),

and denote by I1, . . . , Il the equivalence classes. Put ri = #Ii and define si by

J(β,Λj)/J1(β,Λj) ≃ GLsi(kDE
), for any j ∈ Ii. Note also that, by conjugating the

types λj by a suitable element of D×
E , we may (and do) assume that σj ≃ σk whenever

j ∼ k. Put Yi =
⊕

j∈Ii
Vj and denote by M the Levi subgroup which stabilizes the

decomposition V =
⊕l

i=1Y
i. Note that this is the Levi subgroup M of the introduction.

Now JP/J
1
P
∼=

∏r
j=1 J(β,Λ

j)/J1(β,Λj) so we can define a representation σ of JP inflated

from
⊗r

j=1 σj . Then we put λP = κP ⊗ σ. We put JM = JP ∩M and λM = λP|JM.

Proposition 7.1. — The pair (JP, λP) is a cover of (JM, λM), which is a cover of (JL, λL).

Moreover, we have a support-preserving Hecke algebra isomorphism

H (M, λM) ∼= H (G, λP)

and

H (M, λM) ∼=

l⊗

i=1

H (ri, q
si
DE

).

Proof. — The proof of the first assertion is identical to that of [23, Proposition 5.17];

indeed the proof there shows that IG(λP) ⊆ JP(B
× ∩ M)JP and then the first Hecke

algebra isomorphism also follows from [12, 7.2].
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That (JM, λM) is a cover of (JL, λL) follows from Proposition 5.7, as does the second

Hecke algebra isomorphism.

7.2. The general case. — We now treat the general case, where the ps-characters Θj

are not all endo-equivalent. We define an equivalence relation ∼ on {1, . . . , r} by

j ∼ k ⇐⇒ Θj ,Θk are endo-equivalent,

and denote by I1, . . . , Il the equivalence classes. We put Y(i) =
⊕

j∈Ii
Vj . As in the

homogeneous case, we assume that, for fixed i, every j ∈ Ii has the same ps-character,

defined relative to the same simple pair. We write Λ(i) for an OD-lattice sequence in Y(i),

as in the homogeneous case. By changing in their affine class, we may (and do) assume

that all the Λ(i) have the same OF-period; as in the homogeneous case, we suppose also

that we have replaced the lattice sequences Λj with sequences in their affine class, so that

Λ(i) =
⊕

j∈Ii
Λj.

We write M for the Levi subgroup of G which stabilizes the decomposition V =
⊕l

i=1Y
(i), and (JM, λM) for the cover of (JL, λL) in M, given by the homogeneous case in

Proposition 7.1. Note that this M is now not the Levi subgroup of the introduction, but

one rather larger.

We put Λ =
⊕l

i=1 Λ
(i), a (not necessarily strict) OD-lattice sequence in V, and β =

∑r
j=1 βj ∈ A = EndD(V). Then [Λ, n, 0, β] is a (non-simple) stratum in A, for a suitable

integer n.

For 0 ≤ t ≤ n, we write Θ
(t)
j for the ps-character defined by the character θj |H

t+1(βj ,Λ
j).

Theorem 7.2 (cf. [13, Main Theorem, p.94]). — There is a cover (K, τ) of the type

(JM, λM) with the following properties:

(i) Un+1(Λ) ⊆ K ⊆ U(Λ);

(ii) if the ps-characters Θ
(t)
j , for 1 ≤ j ≤ r, are endo-equivalent, and ([Λ, n, 0, γ], ϑ, t)

is a common approximation of (θ1, . . . , θr), then

(a) K contains and normalizes Ht+1(γ,Λ) · (Ht(γ,Λ) ∩M);

(b) τ |Ht+1(γ,Λ) is a multiple of ϑ;

(c) τ |Ht(γ,Λ) ∩ L is a multiple of θ1 ⊗ · · · ⊗ θr;

(iii) there is a support-preserving isomorphism of Hecke algebras H (M, λM) ≃

H (G, τ).
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Proof. — The proof is by induction on r, the case r = 1 being empty. So let r > 1 and

suppose that t ≥ 0 is minimal such that the ps-characters Θ
(t)
j are endo-equivalent. Let

([Λ, n, 0, γ], ϑ, t) be a common approximation of (θ1, . . . , θr). If t = 0 then the Theorem is

given by Proposition 7.1, so we assume t > 0. We allow t = n (that is, the ps-characters

Θ
(n−1)
j are not all endo-equivalent) in which case ϑ is the trivial character of Un+1(Λ). We

use the notation of §4.

For 1 ≤ j ≤ r, let cj ∈ P−t(Λ
j) be such that θj |H

t+1(βj ,Λ
j) = ϑψcj . By Corollary 3.6,

the derived stratum [Γj
γ, t, t − 1, sγ(cj)] is equivalent to a simple (or null) stratum and

we write φj(X) for the minimum polynomial of this stratum (so that the characteristic

polynomial is a power of φj(X)). We define an equivalence relation on {1, . . . , r} by

j ∼t k ⇐⇒ Θ
(t−1)
j ,Θ

(t−1)
k are endo-equivalent.

Note that, by Corollary 4.7, we have j ∼t k if and only if φj(X) = φk(X). Let J denote

an equivalence class for ∼t for which the minimum polynomial is not X; then J is a

union of certain equivalence classes Ii but is not the whole of {1, . . . , r}, or else we would

contradict the minimality of t.

Set Z =
⊕

j∈J V
j and Z′ =

⊕
j 6∈J V

j ; let M̄ be the Levi subgroup which stabilizes the

decomposition V = Z⊕Z′ and let P̄ = M̄N̄ be a parabolic subgroup with Levi component

M̄ and opposite P̄− = M̄N̄−. By the inductive hypothesis, we have a cover (KM̄, τM̄) of

(KM, τM) satisfying the conditions of the theorem (with M̄ in place of G). We define the

group K by

K = KM̄H
t(γ,Λ) · (U1(Λ) ∩ B)Ωq−t+1(γ,Λ) ∩ N̄,

where Ωq−t+1(γ,Λ) is the group defined in [23, §2.8]. Then [23, Corollaire 4.6] says that

there is a unique irreducible representation τ of K such that (K, τ) is a cover of (KM̄, τM̄),

which has all the required properties by transitivity of covers. [Note that, although it

is assumed in [23, §4] that the lattice sequence Λ is strict, this extra condition is never

used.]

Now Theorem C of the introduction follows from Theorem 7.2 and Proposition 7.1,

whence the Main Theorem.
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