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EVERY BANACH IDEAL OF POLYNOMIALS IS COMPATIBLE WITH

AN OPERATOR IDEAL

DANIEL CARANDO, VERÓNICA DIMANT, AND SANTIAGO MURO

Abstract. We show that for each Banach ideal of homogeneous polynomials, there

exists a (necessarily unique) Banach operator ideal compatible with it. Analogously, we

prove that any ideal of n-homogeneous polynomials belongs to a coherent sequence of

ideals of k-homogeneous polynomials.

1. Introduction

Most examples of polynomial ideals were inspired in an ideal of operators. This is

the case, for example, of the ideals of nuclear, integral, compact, multiple r-summing or

r-dominated polynomials. However, the extension of a linear operator ideal to higher

degrees is not always obvious. For example, many extensions of the ideal of absolutely

r-summing operators have been developed, among them, the absolutely, the multiple and

the strongly r-summing polynomials and the r-dominated polynomials.

The question tackled in this article is whether every ideal of polynomials is an extension

of an ideal of operators. This is not a precise question unless we settle what is understood

by an “extension of an ideal of operators”.

In [2] we defined and studied the concept of a homogeneous polynomial ideal being

compatible with an operator ideal. This notion aims to clarify the relationship between

an operator ideal A and a polynomial ideal defined “in the spirit of A”. Compatibility is

related with the natural operations of fixing variables and multiplying by linear function-

als. We proved in [2, Proposition 1.6] that each ideal of polynomials can be compatible

with, at most, one ideal of operators. On the other hand, an operator ideal is always com-

patible with several different polynomial ideals. In this article we complete these results

by showing that a Banch ideal of polynomials is always compatible with a (necessarily

unique) ideal of operators.

The concept of coherent sequence of polynomial ideals was also introduced in [2], in

the spirit of Nachbin’s holomorphy types [9]. It is natural to ask if every ideal of homo-

geneous polynomials belongs to a coherent sequence. We answer this question affirma-

tively: for a fixed ideal of n-homogeneous polynomials An, there exist polynomial ideals
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A1, . . . ,An−1,An+1, . . . such that, together with An, form a coherent sequence. That is, a

sequence of polynomial ideals of degree k (1 ≤ k ≤ n− 1) all “associated” to An.

Throughout this paper E, F and G will be complex Banach spaces. We denote by

L(E, F ) the Banach space of all continuous linear operators from E to F and by Pn(E, F )

the Banach space of all continuous n-homogeneous polynomials from E to F . If P ∈

Pn(E, F ), there exists a unique symmetric n-linear mapping
∨

P : E × · · · × E
︸ ︷︷ ︸

n

→ F such

that

P (x) =
∨

P (x, . . . , x).

We define Pak ∈ Pn−k(E, F ) by

Pak(x) =
∨

P (ak, xn−k).

For k = 1, we write Pa instead of Pa1 .

Let us recall the definition of polynomial ideals [5, 6, 7]. A normed ideal of contin-

uous n-homogeneous polynomials is a pair (An, ‖ · ‖An
) such that:

(i) An(E, F ) = An ∩ Pn(E, F ) is a linear subspace of Pn(E, F ) and ‖ · ‖An(E,F ) is a

norm on it.

(ii) If T ∈ L(E1, E), P ∈ An(E, F ) and S ∈ L(F, F1), then S ◦P ◦T ∈ An(E1, F1) and

‖S ◦ P ◦ T‖An(E1,F1) ≤ ‖S‖‖P‖An(E,F )‖T‖
n

(iii) z 7→ zn belongs to An(C,C) and has norm 1.

In [2] we defined and studied the concept of a polynomial ideal being compatible with

an operator ideal. Here we present more results about this topic. We first recall the

definition:

Definition 1.1. Let A be a normed ideal of linear operators. We say that the normed ideal

of n-homogeneous polynomials An is compatible with A if there exist positive constants

A and B such that for every Banach spaces E and F , the following conditions hold:

(i) For each P ∈ An(E, F ) and a ∈ E, Pan−1 belongs to A(E;F ) and

‖Pan−1‖A(E,F ) ≤ A‖P‖An(E,F )‖a‖
n−1

(ii) For each T ∈ A(E, F ) and γ ∈ E ′, γn−1T belongs to An(E, F ) and

‖γn−1T‖An(E,F ) ≤ B‖γ‖n−1‖T‖A(E,F )

All the examples of ideals of polynomials mentioned above, with the exception of the

ideal of absolutely summing polynomials, are compatible with the respective ideal of

operators (see [2, Section 1] and Example 2.8).
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Remark 1.2. Although the definition of compatibility involves constants which relate

the norms of the operators and the homogeneous polynomials, a simple application of the

closed graph theorem shows that when the ideals are complete those constants automat-

ically exist (see [8] for details). This means that if we can define the operations of fixing

variables and multiplying by functionals, then they are uniformly (in the Banach spaces

E, F ) bounded.

Even though it is not necessary to obtain the constants A and B to show that two

Banach ideals are compatible, we will also seek “good” constants mostly for two reasons:

the first one is that they provide a bound for the norm of the derivatives of homogeneous

polynomials in different ideals and the second is that this kind of bounds allow us to

define holomorphic mappings associated to sequences of ideals (see [3]).

2. Existence of a compatible operator ideal

In [2] it was shown that for any given operator ideal there is more than one ideal

of polynomials compatible with it, for example the ideals of 2-dominated and multiple

2-summing 2-homogeneous polynomials are both compatible with the ideal of absolutely

2-summing operators. Also, it was proved there that there exist at most one operator ideal

compatible with a given polynomial ideal. On the other hand, not every polynomial ideal

is compatible with the commonly associated operator ideal (e.g. the ideal absolutely 1-

summing polynomials is not compatible with the ideal of absolutely 1-summing operators

[2, Example 1.15]).

It is natural to ask wether every polynomial ideal must have a (necessarily unique)

compatible operator ideal or not. The following result answers this question affirmatively.

Theorem 2.1. Let An be a Banach ideal of n-homogeneous polynomials. Then there

exists a unique Banach ideal of operators A compatible with An. This operator ideal can

be normed to obtain compatibility constants 1 ≤ A,B ≤ e.

The proof will be given in several steps. First, we need the following Lemma:

Lemma 2.2. Let An a normed ideal of n-homogeneous polynomials and P ∈ An(E, F ).

If T, S ∈ L(G,E), then the n-homogeneous polynomial Q(·) =
∨

P (T (·), · · · , T (·), S(·))

belongs to An(G,F ). Moreover, ‖Q‖An(G,F ) ≤ e‖T‖n−1
L(G,E)‖S‖L(G,E)‖P‖An(E,F ).

In particular, if S ∈ L(G,E), γ1, . . . , γk ∈ E ′, k < n and a ∈ E, then γ1 . . . γk(Pak◦S) ∈

An(G,F ); and if γ ∈ E ′ then:

(a) γn−1(Pan−1 ◦ S) ∈ An(G,F ) with

‖γn−1(Pan−1 ◦ S)‖An(G,F ) ≤ e‖γ‖n−1‖a‖n−1‖P‖An(E,F )‖S‖L(G,E).

(b) γ(Pa ◦ S) ∈ An(E, F ) with

‖γ(Pa ◦ S)‖An(E,F ) ≤ e‖γ‖‖a‖‖P‖An(E,F )‖S‖
n−1.
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Proof. As in [2, Corollary 1.8], we can write Q in the following useful way:

Q(x) =
1

n2

1

(n− 1)n−1

n−1∑

j=0

rjP
(
(n− 1)rjT (x) + S(x)

)
,

where r is a primitive nth root of unity. Thus, defining, for each 0 ≤ j ≤ n−1, the linear

operator

Sj(x) = (n− 1)rjT (x) + S(x),

we have that

Q =
1

n2

1

(n− 1)n−1

n−1∑

j=0

rj
(
P ◦ Sj

)
.

Therefore, Q belongs to An(G,F ).

For the estimation of the norm, it is enough to consider the case ‖S‖ = ‖T‖ = 1. Since

‖Sj‖ ≤ n, for every j = 0, . . . , n− 1, we obtain

‖Q‖An(G,F ) ≤
1

n2

1

(n− 1)n−1
n‖P‖An(G,F )n

n =
nn−1

(n− 1)n−1
‖P‖An(G,F ) ≤ e‖P‖An(G,F ).

For the particular cases, just note that γn−1 (Pan−1 ◦ S) (x) =
∨

P (γ(x)a, · · · , γ(x)a, S(x)),

and γ(Pa ◦ S)(x) =
∨

P (γ(x)a, S(x), · · · , S(x)). �

As a consequence of this lemma we obtain the following.

Lemma 2.3. Let An be an ideal of n-homogeneous polynomials, let T ∈ L(E, F ) and fix

a nonzero γ0 ∈ E ′. Then γn−1
0 T ∈ An(E, F ) if and only if γn−1T ∈ An(E, F ) for every

γ ∈ E ′.

Proof. Pick a ∈ E such that γ0(a) 6= 0. By Lemma 2.2, γn−1
(
γn−1
0 T

)

an−1 ∈ An(E, F ).

We have

γn−1
(
γn−1
0 T

)

an−1 (x) =
γ(x)n−1

n

(

γ0(a)
n−1T (x) + (n− 1)γ0(a)

n−2γ0(x)T (a)
)

.

Therefore

(
γn−1T

)
(·) =

n

γ0(a)n−1

(

γn−1(·)(γn−1
0 T )an−1(·)−

n− 1

n
γn−1(·)γ0(·)γ0(a)

n−2T (a)

)

,

and then γn−1T belongs to An(E, F ). �

Now we can define, for a fixed polynomial ideal An, an operator ideal A, and a complete

norm on it. This norm also has some interesting properties that we present in the following

proposition.

Proposition 2.4. Let An be an ideal of n-homogeneous polynomials. Define, for each

pair of Banach spaces E and F ,

A(E, F ) =
{
T ∈ L(E, F )/ γn−1T ∈ An(E, F ) for all γ ∈ E ′

}
,
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with ‖|T‖|A(E,F ) = supγ∈SE′
‖γn−1T‖An(E,F ). Then

(a) A is an ideal of operators and A(E, F ) = {Pan−1 ∈ L(E, F )/ P ∈ An(E, F ), a ∈ E}.

(b) ‖| · ‖|A(E,F ) is a norm on A(E, F ) and verifies

‖|T‖|A(E,F ) ≥ ‖T‖L(E,F ), for every T ∈ A(E, F ).

Moreover,
(

A(E, F ), ‖| · ‖|A(E,F )

)

is a Banach space.

(c) ‖|S ◦ T‖|A(E,F1) ≤ ‖S‖L(F,F1)‖|T‖|A(E,F ) for every S ∈ L(F, F1) and T ∈ A(E, F ).

(d) If E0 is a subspace of E with norm 1 inclusion i : E0 →֒ E, then

‖|T ◦ i‖|A(E0,F ) ≤ ‖|T‖|A(E,F ), for all T ∈ A(E, F ).

Proof. (a) Clearly the sum and multiplication by scalars of members of A is again in A.

So, to prove that A is an ideal of operators, we have to show that it behaves well with

compositions.

Consider T ∈ A(E, F ), R ∈ L(E1, E) and S ∈ L(F, F1). Let us prove that S ◦ T ◦R ∈

A(E1, F1). Let γ ∈ E ′ such that γ ◦R 6= 0. Then γn−1T ∈ An(E, F ) and η = γ ◦R ∈ E ′
1.

By Lemma 2.3, it suffices to show that ηn−1
(
S ◦ T ◦ R

)
∈ An(E1, F1). This follows from

the equalities:
(

ηn−1
(
S ◦ T ◦R

))

(x) = γn−1
(
R(x)

)
S
(
T
(
R(x)

))
=
(
S ◦ (γn−1T ) ◦R

)
(x).

Therefore A is an ideal of operators.

To prove the equivalent definition of A, suppose T = Pan−1 with P ∈ An(E, F ) and

a ∈ E. Then by Lemma 2.2, γn−1T belongs to An(E, F ), for all γ ∈ E ′, and thus

T ∈ A(E, F ).

Conversely, if T ∈ A(E, F ) then γn−1T ∈ An(E, F ) for every γ ∈ E ′. Let a ∈ E such

that γ(a) = 1, then P = nγn−1T − (n− 1)T (a)γn is in An(E, F ) and Pan−1 = T .

(b) It is straightforward to prove that we defined a norm.

Let T ∈ A(E, F ), take x ∈ SE such that ‖T (x)‖ > ‖T‖L(E,F )− ε and γ ∈ SE′ such that

|γ(x)| = 1. Then,

‖|T‖|A(E,F ) ≥ ‖γn−1T‖An(E,F ) ≥ ‖γn−1T‖Pn(E,F ) ≥ ‖γ(x)n−1T (x)‖ > ‖T‖L(E,F ) − ε.

Since this is true for every ε > 0, we have that ‖|T‖|A(E,F ) ≥ ‖T‖L(E,F ).

Let us see that
(

A(E, F ), ‖| · ‖|A(E,F )

)

is complete. Suppose
∑

k∈N ‖|Tk‖|A(E,F ) is con-

vergent. Then
∑

k∈N ‖Tk‖L(E,F ) is convergent. Therefore there exists T ∈ L(E, F ) such

that
∑

k Tk → T in L(E, F ).

For each γ ∈ SE′, we know that γn−1Tk ∈ An(E, F ) and ‖γn−1Tk‖An(E,F ) ≤ ‖|Tk‖|A(E,F ).

Thus,
∑

k γ
n−1Tk converges in An(E, F ) and its limit has to be γn−1T . Therefore, T

belongs to A(E, F ). Moreover, since

sup
γ∈SE′

∥
∥
∥
∥
∥
γn−1

∑

k≥N

Tk

∥
∥
∥
∥
∥
An(E,F )

≤ sup
γ∈SE′

∑

k≥N

∥
∥γn−1Tk

∥
∥
An(E,F )

≤
∑

k≥N

‖|Tk‖|A(E,F ) → 0,
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as N → ∞, we have that
∑

k Tk → T in
(

A(E, F ), ‖| · ‖|A(E,F )

)

.

(c) For every S ∈ L(F, F1) and T ∈ A(E, F ), we have:

‖|S ◦ T‖|A(E,F1) = sup
γ∈SE′

‖γn−1S ◦ T‖An(E,F1) = sup
γ∈SE′

‖S ◦ (γn−1T )‖An(E,F1)

≤ ‖S‖L(F,F1) sup
γ∈SE′

‖γn−1T‖An(E,F ) = ‖S‖L(F,F1)‖|T‖|A(E,F ).

(d) Let T ∈ A(E, F ) and γ ∈ E ′
0. Consider γ̃ ∈ E ′ a Hahn-Banach extension of γ

preserving its norm. Then
∥
∥
∥γn−1(T ◦i)

∥
∥
∥
An(E0,F )

=
∥
∥
∥(γ̃◦i)n−1(T ◦i)

∥
∥
∥
An(E0,F )

=
∥
∥(γ̃n−1T )◦i

∥
∥
An(E0,F )

≤ ‖γ̃n−1T‖An(E,F ).

Taking supremum we have that

‖|T ◦ i‖|A(E0,F ) ≤ ‖|T‖|A(E,F ).

�

The following proposition shows that the norm defined on A is “almost ideal”, in the

sense that satisfies the ideal condition up to a constant.

Proposition 2.5. The norm ‖| · ‖|A defined on Proposition 2.4 verifies the “almost ideal”

property: for Banach spaces E and F , there exists a constant c > 0 such that, for all

Banach spaces E1, F1 and all operators R ∈ L(E1, E), T ∈ A(E, F ) and S ∈ L(F, F1), it

follows that

‖|S ◦ T ◦R‖|A(E1,F1) ≤ c‖S‖L(F,F1)‖|T‖|A(E,F )‖R‖L(E1,E).

Proof. By Proposition 2.4 (c), we have that

‖|S ◦ T ◦R‖|A(E1,F1) ≤ ‖S‖L(F,F1)‖|T ◦R‖|A(E1,F ).

For a fixed Banach space E1 and a fixed operator R ∈ L(E1, E), consider
(
A(E, F ), ‖| · ‖|A(E,F )

)
→

(
A(E1, F ), ‖| · ‖|A(E1,F )

)

T 7→ T ◦R

An application of the Closed Graph Theorem gives the existence of a constant cE1,R > 0

such that

‖|T ◦R‖|A(E1,F ) ≤ cE1,R‖|T‖|A(E,F ).

If we apply again the Closed Graph Theorem for

L(E1, E) → L(A(E, F ),A(E1, F ))

R 7→ θR(T ) = T ◦R,

we obtain that there is a constant cE1 > 0 such that

(1) ‖|T ◦R‖|A(E1,F ) ≤ cE1‖|T‖|A(E,F )‖R‖L(E1,E).
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Now suppose that the result is not true. Then there are Banach spaces Ek, and Rk ∈

L(Ek, E), ‖Rk‖L(Ek,E) = 1, for all k ∈ N, such that

‖|T ◦Rk‖|A(Ek,F ) > k.

Let E0 =
⊕

k∈NEk, and R̃k ∈ L(E0, E), R̃k = Rk ◦ πk, where πk : E0 → Ek is the (norm

one) projection. Denote by ik : Ek →֒ E0 the (norm one) inclusion. So we have

k < ‖|T ◦Rk‖|A(Ek,F ) = ‖|T ◦Rk ◦ πk ◦ ik‖|A(Ek,F )

= ‖|T ◦ R̃k ◦ ik‖|A(Ek,F ) ≤ ‖|T ◦ R̃k‖|A(E0,F ),

the last inequality following from Proposition 2.4(d). Also, by (1),

‖|T ◦ R̃k‖|A(E0,F ) ≤ cE0‖|T‖|A(E,F )‖R̃k‖L(E0,E) ≤ cE0‖|T‖|A(E,F ),

which leads to a contradiction. �

Now we present a result that shows how to convert an “almost ideal” norm into an ideal

norm.

Proposition 2.6. Let A be an operator ideal with norm ‖| · ‖|A that verifies the “almost

ideal” property. Then we can define an equivalent norm ‖ · ‖A which is an ideal norm on

A.

Proof. We first define a norm ‖ · ‖′
A

in the following way. For T ∈ A(E, F ), let

‖T‖′
A(E,F ) = sup{‖|S◦T◦R‖|A(E1,F1) : E1, F1 Banach spaces, ‖S‖L(F,F1) = ‖R‖L(E1,E) = 1}.

It is easy to see that ‖ · ‖′
A

is a norm on A equivalent to ‖| · ‖|A. Also, it is clear that

verifies the ideal property:

‖S ◦ T ◦R‖′A(E1,F1) ≤ ‖S‖L(F,F1)‖T‖
′
A(E,F )‖R‖L(E1,E).

Last, if κ = ‖idC‖
′
A(C,C) then the norm ‖ · ‖A defined by

‖T‖A(E,F ) =
1

κ
‖T‖′A(E,F )

is an ideal norm equivalent to ‖| · ‖|A. �

Remark 2.7. When applying the previous proposition to our context (that is, An a

polynomial ideal and (A, ‖| · ‖|A) as in Proposition 2.4), using Proposition 2.4 (ii), we can

simplify the definition of ‖ · ‖′
A
:

‖T‖′
A(E,F ) = sup{‖|T ◦R‖|A(E1,F ) : E1 Banach space, ‖R‖L(E1,E) = 1}.

Then considering

‖T‖A(E,F ) =
‖T‖′

A(E,F )

‖idC‖′A(C,C)
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we obtain an ideal norm on A equivalent to ‖| · ‖|A. Moreover,

κ = ‖z 7→ z‖′
A(C,C) = sup{‖|(z 7→ z) ◦ ϕ‖|A(E1,C) : E1 Banach space, ϕ ∈ SE′

1
}

= sup{‖|ϕ‖|A(E1,C) : E1 Banach space, ϕ ∈ SE′
1
}

= sup{‖γn−1ϕ‖An(E1,C) : E1 Banach space, ϕ, γ ∈ SE′
1
}.

Thus by [2, Corollary 1.8], we have that 1 ≤ κ ≤ e. �

We now can prove the existence, for any polynomial ideal, of a compatible operator

ideal:

Proof. (of Theorem 2.1) Consider the normed ideal (A, ‖ · ‖A), with

A(E, F ) =
{
T ∈ L(E, F )/ γn−1T ∈ An(E, F ) for all γ ∈ E ′

}

and ‖ · ‖A given by Remark 2.7 (ii). By the equivalence with ‖| · ‖|A and Proposition 2.4

(b), for each E and F Banach,
(
A(E, F ), ‖ · ‖A(E,F )

)
is a Banach space.

Let us check that An is compatible with A.

It is clear, by definition, that if T ∈ A(E, F ) and γ ∈ E ′ then γn−1T ∈ An(E, F ). On

the other hand take P ∈ An(E, F ) and a ∈ E. By Proposition 2.4 (a), Pan−1 belongs to

A(E, F ). By Remark 1.2 we conclude that An is compatible with A. We can moreover

estimate the constants of compatibility. For the first one, by Lemma 2.2 (a),

‖Pan−1‖A(E,F ) =
1

κ
sup

E1 Banach

R∈SL(E1,E)

sup
‖γ‖=1

∥
∥
∥γn−1(Pan−1 ◦R)

∥
∥
∥
An(E1,F )

≤
e

κ
‖a‖n−1‖P‖An(E,F ).

For the other constant we have,

‖γn−1T‖An(E,F ) = ‖γ‖n−1

∥
∥
∥
∥

γn−1

‖γ‖n−1
T

∥
∥
∥
∥
An(E,F )

≤ ‖γ‖n−1‖|T‖|A(E,F ) ≤ κ‖γ‖n−1‖T‖A(E,F ).

The fact that A is the only ideal of operators compatible with An follows from [2,

Proposition 1.6]. �

We have proved that every polynomial Banach ideal is compatible with a unique Banach

operator ideal. On the other hand, [2, Example 1.15] shows that the ideal of absolutely 1-

summing polynomials is not compatible with the ideal of absolutely 1-summing operators.

Then the question that comes up now is which is the ideal of linear operators which is

compatible with the absolutely 1-summing polynomials.

As the following example shows, the unique compatible operator ideal may be far

from “natural”. Note, however, that this unnatural compatibility has some interesting

consequences.

Example 2.8. The ideal Πn
p of absolutely-p-summing n-homogeneous polynomials is com-

patible with L, the ideal of continuous linear operators, with constants A = e and B = 1.
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Proof. Obviously, for P ∈ Πn
p (E, F ) and a ∈ E, the operator Pan−1 belongs to L(E, F )

and

‖Pan−1‖L(E,F ) ≤ e‖P‖Pn(E,F )‖a‖
n−1 ≤ e‖P‖Πn

p (E,F )‖a‖
n−1.

For the other condition, let T ∈ L(E, F ) and γ ∈ E ′, then, for all x1, . . . , xm ∈ E,

( m∑

j=1

∥
∥(γn−1T )(xj)

∥
∥p
) 1

p

≤ ‖γ‖

(
m∑

j=1

( |γ(xj)|

‖γ‖
‖γ‖n−2‖T‖‖xj‖

n−1
)p
) 1

p

≤ ‖γ‖n−1‖T‖

(
m∑

j=1

( |γ(xj)|

‖γ‖

)p
) 1

p (

max
1≤j≤m

‖xj‖
)n−1

≤ ‖γ‖n−1‖T‖ sup
x′∈BE′

(
m∑

j=1

|x′(xj)|
p

)n
p

= ‖γ‖n−1‖T‖ωp

(
(xj)

m
j=1

)n
.

Thus, γn−1T is absolutely p-summing and

‖γn−1T‖Πn
p (E,F ) ≤ ‖T‖L(E,F )‖γ‖

n−1.

�

Corollary 2.9. Suppose that Πn
p (E, F ) ⊂ An(E, F ) and that An is compatible with A1.

Then A1(E, F ) = L(E, F ).

Proof. This is just a special case of [2, Proposition 1.6]. �

It is well known that every absolutely summing operator is weakly compact (see for

example [4, Theorem 2.17]). In [1] it was shown that not every dominated polynomial

is weakly compact by exhibiting an example of a polynomial from ℓ1 to ℓ1. We now

show how the concept of compatible ideals can be easily applied to prove that not every

absolutely p-summing homogeneous polynomial is weakly compact.

Corollary 2.10. E is reflexive if and only if, for some n ≥ 2, every absolutely p-summing

n-homogeneous polynomial from E to E is weakly compact.

Proof. It easy to prove that the ideal of weakly compact homogeneous polynomials, Pn
WK ,

is compatible with the ideal of weakly compact operators, LWK. Suppose that Πn
p (E,E) ⊂

Pn
WK(E,E). Then, by the previous corollary, we have that L(E,E) = LWK(E,E) and

thus E must be reflexive.

Conversely, if E is reflexive, every homogeneous polynomial from E to E is weakly

compact. �

Analogously we can prove that if every absolutely p-summing n-homogeneous polyno-

mial from E to F is weakly compact (for some n ≥ 2), then every linear operator from E

to F is weakly compact.
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3. Coherent sequences of polynomial ideals

In [2] we also defined coherent sequences of polynomial ideals:

Definition 3.1. Consider the sequence {Ak}
N
k=1, where for each k, Ak is an ideal of k-

homogeneous polynomials and N is eventually infinite. We say that {Ak}k is a coherent

sequence of polynomial ideals if there exist positive constants C and D such that for

every Banach spaces E and F , the following conditions hold for k = 1, . . . , N − 1:

(i) For each P ∈ Ak+1(E, F ) and a ∈ E, Pa belongs to Ak(E;F ) and

‖Pa‖Ak(E,F ) ≤ C‖P‖Ak+1(E,F )‖a‖

(ii) For each P ∈ Ak(E, F ) and γ ∈ E ′, γP belongs to Ak+1(E, F ) and

‖γP‖Ak+1(E,F ) ≤ D‖γ‖‖P‖Ak(E,F )

It is shown in [2] that, given an operator ideal A, there are many coherent sequences

{Ak}k such that A1 = A. On the other hand, an ideal of n-homogeneous polynomials An

there can be at most one coherent sequence {A1,A2, . . . ,An}. In other words, all coherent

sequences with the same n-homogeneous ideal, must have the same k-homogeneous ideals

for 1 ≤ k ≤ n. As in the case of compatibility, not all the usual polynomial extensions of

an operator ideal form a coherent sequence. Indeed, an argument similar to the proof of

Example 2.8 proves:

Example 3.2. The sequence {L,P2, . . . ,Pn−1,Πn
p} is coherent with constants C = e and

D = 1.

From this example and [2, Proposition 1.6] we can prove that if every absolutely p-

summing n-homogeneous polynomial from E to F is weakly compact, then every k-

homogeneous polynomial from E to F is weakly compact, for each k ≤ n− 1.

For An a Banach ideal of n-homogeneous polynomials, we can define for each Banach

spaces E, F ,

An−1(E, F ) =
{
P ∈ Pn−1(E, F ) : γP ∈ An(E, F ) for all γ ∈ E ′

}
,

with ‖|P‖|An−1(E,F ) = supγ∈SE′
‖γP‖An(E,F ). With some modifications to the results from

previous section (see [8] for details) it may be proven that An−1 is an ideal of (n − 1)-

homogenous polynomials and that ‖|·‖|An−1 is an almost ideal norm, which can be modified

to an equivalent ideal norm ‖ · ‖An(E,F ). We can proceed analogously to define An−2, and

then An−3, . . . ,A1. As a result, we have shown how to construct a (necessarily unique)

sequence of polynomial ideals A1, . . . ,An−1 such that {A1, . . . ,An−1,An} is a coherent

sequence. Also, the polynomial ideals A1, . . . ,An−1 can be normed to obtain constants of

coherence 1 ≤ C,D ≤ e.
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We can also give a whole sequence {Ak}
∞
k=1 of polynomial ideals which form a coherent

sequence. In this case the ideals Ak, k ≥ n + 1 are not uniquely determined by An. For

example, we may define for each Banach spaces E, F , k ≥ 1,

An+k(E, F ) = {P ∈ Pn+k(E, F ) : Pak belongs to An(E, F ) for every a ∈ E},

and ‖P‖An+k(E,F ) = sup{‖Pak‖An(E,F ) : ‖a‖E = 1}. Then it is easy to see that An+k is an

ideal of (n+ k)-homogeneous polynomial and that ‖ · ‖An+k
is an ideal norm. Moreover, a

simple modification of the proof of [2, Proposition 2.5 a)] shows that if P ∈ An+k(E, F )

and a ∈ E then Pa belongs to An+k−1(E, F ) and ‖Pa‖An+k−1(E,F ) ≤ e‖a‖‖P‖An+k(E,F ).

Therefore we have the following.

Theorem 3.3. Let An be a Banach ideal of n-homogeneous polynomials. Then there exist

polynomial ideals A1, . . . ,An−1,An+1, . . . such that {Ak}
∞
k=1 is a coherent sequence with

constants 1 ≤ C,D ≤ e. The polynomial ideals A1, . . . ,An−1 are uniquely determined by

An.

The sequence {Ak}
∞
k=1 constructed is actually the largest sequence of ideals coherent

with An. That is, if {Bk}
∞
k=1 is a coherent sequence such that Bn = An, then Bk(E, F ) ⊂

Ak(E, F ) for every E, F , k ∈ N (it is an equality for k < n). It is also possible to define the

smallest coherent sequence associated to An, see [2, Section 2] for a related construction.

It is clear that we can deduce the existence of compatible operator ideal for every

polynomial ideal from Theorem 3.3. However, is should be noted that the bounds for the

compatibility constants obtained with this theorem would be en, while in Theorem 2.1 we

have e as a bound.
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