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Abstract
The Oeljeklaus-Toma (OT-) manifolds are complex man-
ifolds constructed by Oeljeklaus and Toma from certain
number fields, and generalizing the Inoue surfaces Sm. On
each OT-manifold we construct a holomorphic line bun-
dle with semipositive curvature form ω0 and trivial Chern
class. Using this form, we prove that the OT-manifolds
admitting a locally conformally Kähler structure have no
non-trivial complex subvarieties. The proof is based on the
Strong Approximation theorem for number fields, which
implies that any leaf of the null-foliation of ω0 is Zariski
dense.
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1 Introduction

1.1 OT-manifolds and their subvarieties

The Oeljeklaus-Toma (OT-) manifolds are an important class of compact
complex manifolds not admitting a Kähler metric. They were discovered
by Oeljeklaus and Toma in 2005 ([OT]). The construction of OT-manifolds
uses the Dirichlet unit theorem from number theory (Subsection 1.2; see
[PV] for additional details of this construction and many related questions).
Starting from a degree 3 number field, one obtains a 2-dimensional OT-
manifold known as Inoue surface Sm (see [I]).

For some number fields, the OT-manifolds are locally conformally Kähler.
A locally conformally Kähler (LCK) structure on a complex manifold is
a Kähler metric on its universal cover M̃ , such that the deck transform
maps act on M̃ by homotheties. The OT-manifolds serve an important
function in the theory of LCK manifolds, providing a counterexample to
a longstanding conjecture of I. Vaisman, who asked whether there exists a
compact, non-Kähler LCK-manifold M with all odd Betti numbers even:

b2p+1(M)
... 2. The Oeljeklaus-Toma manifolds in dimension 3 are the only

known examples of compact LCK-manifolds with even odd Betti numbers,
b1 = b5 = 2, b2 = 0.

An OT-manifold is LCK if (and only if) it is constructed from a number
field K which has precisely 2 complex (non-real) embeddings, that is, two

distinct homomorphisms K
σ,σ−→ C.

Oeljeklaus and Toma proved that an OT-manifold has no global mero-
morphic functions. We give a generalization of this theorem, proving that an
OT-manifold which is locally conformally Kähler has no non-trivial complex
subvarieties.

The idea of the proof of this result is quite simple. We construct a
holomorphic Hermitian line bundle, called the weight bundle, on any
OT-manifold M . This bundle is topologically trivial, and has semipositive
curvature form ω0. The weight bundle also admits a flat connection, com-
patible with the holomorphic structure.

To learn about complex subvarieties of an OT-manifold, we study the
zero-foliation Σ of ω0, proving that all its leaves are Zariski dense in M .
For an OT-manifold M constructed from a number field K admitting ex-
actly 2t distinct complex (non-real) embeddings to C, the leaves of Σ are
t-dimensional. When t = 1, M is locally conformally Kähler, and Σ is
one-dimensional. In this case, we prove that for any positive-dimensional
complex subvariety Z ⊂ M , Z contains with each point z ∈ Z a leaf Σz
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passing through z. Since all leaves of Σ are Zariski dense, the same is true
for Z.

The weight bundle L is quite useful for many other purposes. As it was
done in [Ve3], one can take the α-th tensor power of L, denoted by Lα,
for any real α; this power is well defined, because L is equipped with a
natural C∞-trivialization. The Gauduchon degree degg of Lα, taken with

respect to any Gauduchon metric, satisfies 1
α
degg L

α = degg L > 0, henceM
admits a line bundle with any prescribed Gauduchon degree. This implies,
in particular, that the connected component of the Picard group Pic(M) is
non-compact. Also, this implies that any vector bundle on M has degree
zero after tensoring with an appropriate power of L; this is useful for the
study of Hermitian-Einstein bundles on M , providing useful tools for the
classification of stable bundles, and, eventually, coherent sheaves on M .

A similar argument was used in [Ve3] to study holomorphic vector bun-
dles and subvarieties on homogeneous elliptic fibrations, such as Calabi-
Eckmann manifolds and quasi-regular Vaisman manifolds. We pose two
questions, very much unsolved, but quite natural in the context presented
by [Ve3] and the present paper. Notice that from their construction it is
clear that OT-manifolds are affine flat, that is, equipped with a flat, affine,
torsion-free connection.

Question 1.1: Are there any OT-manifolds with non-trivial closed complex
subvarieties? Can we classify these subvarieties? Are they always completely
geodesic with respect to the flat affine connection?

Question 1.2: Does there exist a stable holomorphic vector bundle of rank
> 1 on any OT-manifold of dimension > 2? Do all holomorphic vector
bundles admit a flat connection, compatible with the holomorphic structure?

Remark 1.3: It is well known that generic complex tori have no non-trivial
complex subvarieties. In [Ve2], it was shown that all stable bundles on a
generic complex torus of dimension > 2 have rank 1, and all holomorphic
vector bundles admit flat connections.

1.2 Number theory and the construction of OT-manifolds

Let [K : Q] be a number field, that is, a finite extension of Q, of degree n,
with σ1, ..., σs the real embeddings of K into C, and σs+1, ..., σn the complex
embeddings. Let σ = (σ1, . . . , σs+t) : K → Cs+t be the corresponding group
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homomorphism. Since the complex embeddings of K into C occur in pairs
of complex conjugate embeddings, the number n− s is even, n− s = t.

Let OK be the ring of algebraic integers of K, O∗

K its multiplicative
group of units and O∗,+

K the group of units which are positive in all the real
embeddings of K.

Denote by H be the upper complex half-plane. Using the Dirichlet’s unit
theorem, Oeljeklaus and Toma proved that OK⋊O∗,+

K acts freely on Hs×Ct

by

Ta(zi) = (zi + σi(a)), i = 1, . . . , s+ t, a ∈ OK ,

Ru(zi) = (σi(u)zi), i = 1, . . . , s+ t, u ∈ O∗,+
K .

(see [OT], [PV]). Moreover, an admissible subgroup U ⊂ O∗,+
K can always

be found such that the action of Γ := OK⋊U is also properly discontinuous.
For t = 1, every U of finite index in O∗,+

K has this property.

Definition 1.4: The manifoldMK := (Hs×Ct)/Γ is called an Oeljeklaus-
Toma manifold. It is a compact complex manifold of dimension s+ t.

For s = t = 1, MK reduces to an Inoue surface Sm (where m is a matrix
in SL(3,Z)), see [I]. The corresponding number field K is Q[T ]/P (t), where
Pm(t) is the characteristic polynomial of the matrix m. It is shown in [OT]
that the manifolds MK are never Kähler, but that for t = 1, MK is a locally
conformally Kähler (LCK) manifold (see [DO] and the more recent survey
[OV] for definitions and results in LCK geometry). We briefly explain the
construction of this LCK metric.

Clearly, the function ψ(z) =
∏s

i=1(im zi) + |zs+1|2 is plurisubharmonic
on Hs × C. It defines the Kähler form Ω := ∂∂ ψ on Hs × C. The group Γ
acts on (Hs × C,Ω) by homotheties:

T ∗

aΩ = Ω,

R∗

uΩ = |σs+1(u)|2Ω.

Let now χ : Γ → R>0 be the character χ(γ) = γ∗Ω
Ω . We call automorphic

any p-form η ∈ Λp(Hs×C) which satisfies γ∗η = χ(γ)η. For any automorphic
function ϕ on Hs × C, the quotient Ω

ϕ
is Γ-invariant and hence projects to

an LCK metric ω on MK . This form satisfies the equation dω = θ ∧ ω, for
the closed 1-form θ (called the Lee form) which is the projection on MK

of θ̃ = −d logϕ:
dω = −dϕ

ϕ2
∧ ω̃ = −d(logϕ) ∧ ω.
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It is easily seen that the function ϕ =
∏s

i=1(im zi)
−1 is automorphic, and

hence it produces a LCK metric on MK as described above. This LCK
metric generalizes the one constructed by Tricerri on Sm, [Tr].

The main result of this paper shows that, just as Inoue surfaces Sm have
no complex curves, OT-manifolds have no complex subvarieties:

Theorem 1.5: Let [K : Q] be a number field of degree n = s + 2, with
s real embeddings and 2 complex embeddings, and MK the corresponding
OT-manifold. Then MK has no non-trivial complex subvarieties.

Proof: See Theorem 3.1.

2 The weight bundle of an OT-manifold

Definition 2.1: Let [K : Q] be a number field of degree n = s + 2t, with
s real embeddings and 2t complex embeddings, and MK = Hs × Ct/Γ the
associated OT-manifold. Denote by z1, ..., zs the standard complex coordi-
nates on Hs, and let θ̃ := d log

∏s
i=1(im zi). It is easy to see that the form θ̃

is Γ-invariant. Therefore it is obtained as a lift of a form θ, called the Lee
form of the OT-manifold. When t = 1, this is the Lee form constructed
above.

Let MK be an OT-manifold, and θ its Lee form. Consider a trivial
Hermitian line bundle L with connection ∇ := ∇0 +

√
−1 θc, where θc :=

I(θ), and ∇0 is the trivial connection on L. Clearly, ∇ is Hermitian, and
∇0,1 = ∂ + θ0,1, where θ0,1 is the (0,1)-part of θ.

Claim 2.2: In these assumptions, the curvature ω0 of ∇ is −
√
−1 dθc.

Moreover, this form is of type (1,1).

Proof: A simple computation shows that in the standard coordinates
z1, ...zs, zs+1, ...zs+t, ω0 can be written as follows:

ω0 =
√
−1 ∂∂ logϕ =

√
−1

s
∑

i=1

dzi ∧ dzi
| im zi|2

,

Definition 2.3: Let MK be an OT-manifold, and L the holomorphic Her-
mitian bundle defined above. Then L is called the weight bundle of MK .
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We restate Claim 2.2 as

Theorem 2.4: Let MK be an OT-manifold, and L its weight bundle with
the holomorphic Hermitian structure and the Chern connection ∇ defined
above. Consider the form ω0 :=

√
−1∇2. Then ω0 is a semi-positive form,

which can be written in the standard coordinates z1, ...zs, zs+1, ..., zs+t as
follows:

ω0 =
√
−1 ∂∂ logϕ =

√
−1

s
∑

i=1

∂zi ∧ ∂zi
| im zi|2

Remark 2.5: The Vaisman manifolds are, by definition, LCK manifolds
(M, I, g) satisfying the aditional condition ∇gθ = 0, where ∇g is the Levi-
Civita connection of an LCKmetric g. For all Vaisman manifolds, the 2-form
ω0 = dθc is semi-positive, being zero only on the direction of θ♯ − Iθ♯. This
is a general fact, proven in [Ve1], independent of the particular form of θ.
OT-manifolds are far from being Vaisman (they never admit any Vaisman
metric), but the particular expression of their Lee form gives ω0 the same
property as for Vaisman manifold. This is what inspired our construction.

Remark 2.6: An object of interest in conformal geometry and, in particular,
LCK geometry is the weight bundle. It is the real line bundle L−→M
associated to the representation GL(2n,R) ∋ A 7→ |detA| 1n (see [OV]).
Then L can be complexified and endowed with the Chern connection ∇0 +√
−1 θc (where ∇0 is the trivial connection). It can be verified that ω0 =√
−1∇2, and hence ω0 can be seen as the curvature form of this Chern

connection. When t = 1 and M is an LCK-manifold, this construction gives
the weight bundle defined above.

Remark 2.7: For any OT-manifoldM , in addition to the Chern connection
∇0+

√
−1 θc, the weight bundle L also admits the connection ∇0+ θ, which

is flat because dθ = 0. It is clear that the (0, 1)-part of ∇ coincides with the
(0, 1)-part of this flat connection.

The following claim is obvious from the explicit form of ω0 (Theorem 2.4).

Claim 2.8: In the assumptions of Theorem 2.4, let Σ̃ be the holomor-
phic foliation on the covering M̃K = Hs × C generated by the vector fields
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∂
∂zs+1

, ..., ∂
∂zs+t

. Then:

(i) The foliation Σ̃ is Γ-invariant, hence it is obtained as the pullback of a
holomorphic foliation Σ on MK = M̃K/Γ.

(ii) The foliation Σ is the null-space of the form ω0 constructed above.

Claim 2.9: Let [K : Q] be a number field of degree n = s + 2, with s
real embeddings and 2 complex embeddings, MK the corresponding LCK
OT-manifold, and Σ ⊂ TM the holomorphic foliation defined in Claim 2.8.
Consider a complex closed subvariety Z ⊂ MK . Then Σ is tangent to Z at
any point of Z:

∀z ∈ Z, Σ
∣

∣

∣

z
⊂ TzZ. (2.1)

Proof: The form ω0 has (n−1) positive eigenvalues, where n = dimCM ,

and its zero eigenspace at z is Σ
∣

∣

∣

z
. Unless (2.1) holds at z ∈ Z, the restric-

tion ω0

∣

∣

∣

Z
has m = dimZ positive eigenvalues at z. Then

∫

Z
ωm
0 > 0. This

is impossible, because ω0 is exact.

Corollary 2.10: In asssumption of Claim 2.9, let Σz be a leaf of Σ passing
through z ∈ Z. Then Σz ⊂ Z.

3 Complex subvarieties in LCK OT-manifold

Using Corollary 2.10, we can easily prove the main result of this paper.

Theorem 3.1: Let [K : Q] be a number field of degree n = s+2, with s real
embeddings and 2 complex embeddings, and let MK be the corresponding
OT-manifold. Then MK has no non-trivial complex subvarieties.

Proof: Theorem 3.1 follows from Corollary 2.10 and the following more
general proposition.

Proposition 3.2: Let [K : Q] be a number field of degree n = s+2t, t > 0,
with s real embeddings and 2t complex embeddings, and letMK = Hs×Ct/Γ
be the associated (non-Kähler) OT-manifold. Let Σ ⊂ TMK be the foliation
defined in Claim 2.8. Consider a leaf of Σ, and let Z be its closure. Then
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(i) The preimage π−1(Z) of Z to M̃K = Hs × Ct contains the set

Zα1,...,αs
:= {(z1, ..., zs, zs+1, . . . , zs+t) | im zi = αi}

for some positive numbers α1, . . . , αs ∈ Rs.

(ii) Any complex subvariety of MK containing Z must coincide with MK .

Proof: The implication (i) ⇒ (ii) is clear, because any complex manifold
containing Zα1,...,αs

must have the same dimension as MK . The proof of (i)
is a bit more elaborate.

Let O be the ring of integers in K. By construction, the group Γ =
π1(MK) is an cross-product of the additive group O+ of O with a subgroup
of the multiplicative group O∗. Let Σ̃ be the pullback of the foliation Σ to
M̃K = Hs × Ct. A leaf of Σ̃ is given as

Tt1,...,ts := {(z1, ..., zs, zs+1, ..., zs+t) | zi = ti}

for some (t1, ..., ts) ∈ Hs. Let Z̃ : π−1(Z) be the preimage of the cor-
responding closure of a leaf of Σ. Clearly, Z̃ is the closure of Γ(Tt1,...,ts).
Therefore, to prove Proposition 3.2 (i) it is sufficient to show that the clo-
sure of Γ(Tt1,...,ts) contains Zα1,...,αs

. In fact, even the smaller group O+ ⊂ Γ
will suffice, as seen from the following lemma, which proves Proposition 3.2.

Lemma 3.3: Let [K : Q] be a number field of degree n = s + 2t, t > 0
with s real embeddings and 2t complex embeddings, and M̃K := Hs × Ct,
equipped with the action of O+ as in Subsection 1.2. Consider the subset

Tt1,...,ts := {(z1, ..., zs, zs+1, . . . , zs+t) | zi = ti}

in M̃K . Then the closure of O+(Tt1,...,ts) coincides with

Zα1,...,αs
:= {(z1, ..., zs, zs+1, . . . , zs+t) | im zi = αi, }

with αi := im ti.

Proof: Equivalently, we may state that the closure of an orbit of the
standard action of O+ in Hs is the set {(z1, . . . , zs, zs+1, . . . , zs+t) | im zi =
αi}. This in turn is equivalent to the following

Lemma 3.4: Let [K : Q] be a number field of degree n = s + 2t, t > 0
with s real embeddings σ1, . . . , σs and 2t complex embeddings. Consider the
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additive group O+ of the corresponding ring of integers. Let σ : O+ −→ Rs

map ξ to σ1(ξ), . . . , σs(ξ). Then the image of O+ is dense in Rs.

Proof:1 Let K be a number field, OK its ring of integers, P the set of
all prime ideals of OK , V the product of all archimedean completions of K,
and V1 the product of some, but not all, archimedean completions. Denote
by Oν the completion of OK at ν ∈ P, and let Kν be the corresponding
local field. Consider the adele space A, obtained as a subset of the product
V × ∏

ν∈PKν , where all components, except finitely many, belong to Oν ,
and let A1 be the image of projection of A to V1 ×

∏

ν∈PKν . Denote by τ :
K −→ A1 the natural homomorphism, which is tautological componentwise.

From the Strong Approximation theorem (see [K] or [NT, Theorem
20.4.4]2) it follows that the image τ(K) of K is dense in A1. Let

OA1
:= A1 ∩



V1 ×
∏

ν∈P

Oν





be the set of points of A, corresponding to the integer adeles. Clearly, OA1
is

open in A1. Therefore, the intersection τ(K)∩OA1
is dense in OA1

. On the
other hand, τ(K)∩OA1

consists of those elements of the number field which
are integer at all non-archimedean places. This gives τ(K) ∩OA1

= τ(OK).
Therefore, the image of OK to V1 is dense.

Remark 3.5: The above argument actually proves that the image of OK

in the product V1 of all archimedean completions of K except one is dense
in V1.
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