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Abstract

In this paper, we study succinct computationally sound proofs (arguments) for NP, whose commu-
nication complexity is polylogarithmic the instance and witness sizes. The seminal works of Kilian ’92
and Micali ’94 show that such arguments can be constructed under standard cryptographic hardness as-
sumptions with four rounds of interaction, and that they be made non-interactive in the random-oracle
model. The latter construction also gives us some evidence that succinct non-interactive arguments
(SNARGs) may exist in the standard model with a common reference string (CRS), by replacing the
oracle with a sufficiently complicated hash function whose description goes in the CRS. However, we
currently do not know of any construction of SNARGs with a formal proof of security under any simple
cryptographic assumption.

In this work, we give a broad black-box separation result, showing that black-box reductions cannot be
used to prove the security of any SNARG construction based on any falsifiable cryptographic assumption.
This includes essentially all common assumptions used in cryptography (one-way functions, trapdoor
permutations, DDH, RSA, LWE etc.). More generally, we say that an assumption is falsifiable if it can
be modeled as an interactive game between an adversary and an efficient challenger that can efficiently
decide if the adversary won the game. This is similar, in spirit, to the notion of falsifiability of Naor ’03,
and captures the fact that we can efficiently check if an adversarial strategy breaks the assumption.

Our separation result also extends to designated verifier SNA RGs, where the verifier needs a trapdoor
associated with the CRS to verify arguments, and slightly succinct SNARGs, whose size is only required
to be sublinear in the statement and witness size.
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1 Introduction

The notion of a “proof” plays a fundamental role in theoretical computer science. For example, the
class NP can be defined as the class of languages that have efficiently verifiable proofs (or witnesses) of
membership. Various aspects of such proofs have brought about many breakthroughs in the past decades,
including the concepts of zero-knowledge proofs [GMRRS5], interactive proofs [GMR85, LFKN90, Sha90],
probabilistically checkable proofs (PCPs) [BFLS91, FGL191, ALM™98] and computationally sound proofs
[Ki192, Mic94].

Succinct Arguments. One natural question that we can ask is how large do proofs of membership for
NP statements need to be? If we restrict ourselves to unconditionally convincing proofs, then it is easy
to see that the proof length cannot be too small since we can decide membership by trying to all possible
proofs and seeing if one verifies. In particular, NP statements of size n cannot have sublinear proofs of
size o(n), unless NP C DTIME(2°(™), which we do not believe to be likely. Similar intuition can even
be extended to showing that interactive proofs are unlikely to have sublinear communication complexity
[GH98, GVWO02, Wee05]. However, the seminal works of Kilian [Kil92] and Micali [Mic94]| show that
succinct proofs may be possible if we consider a relaxed notion of computational soundness, where only
proofs generated by computationally bounded parties are convincing, and unbounded parties may be able
to “prove” false statements. Such computationally sound proofs are also called arguments.

More concretely, we say that an argument system for NP is succinct if, given a statement x with a
witness w, the communication-complexity of the argument is bounded by poly(n)polylog(|z| + |w|), where
n is a security parameter and soundness holds for all poly(n)-time bounded provers. Alternatively, one
can view the above as saying that the size of the argument is bounded by some fixed polynomial in the
security parameter n, and essentially independent of the exact (polynomial) size of the statement being
proved and its witness. We will also consider slightly succinct arguments whose communication-complexity
can be sublinear in the instance and witness size, and is bounded by poly(n)o(|z| + |w]).

Succinct Non-Interactive Arguments. The work of [Kil92] showed how to construct succinct interac-
tive arguments for NP, requiring four rounds of interaction between the prover and the verifier, under the
simple assumption that collision resistant hash functions (CRHF's) exist. The work of [Mic94] showed that
such arguments can also be made fully non-interactive in the random-oracle model.! However, this leaves
the question whether succinct non-interactive arguments (SNARGs) may exist in the standard model.

As pointed out in [BP04, Wee05], SNARGs that don’t require any initialization are unlikely to exist
since we can always come up with a small adversarial prover that contains a single hard-coded false
statement z along with some convincing proof 7 for it.? This is reminiscent of the reason why un-keyed
CRHF's cannot exist, since there is always a small adversary with a hard-coded collision. Of course, the
standard default notion of keyed CRHFs assumes that they are initialized with a short random public
value (key), and we have many natural candidates for such constructions. Analogously, we will by default
consider SNARGs that are initialized with a public value called a common reference string (CRS). The
central question considered in this work is whether such SNARGs exist and, if so, under what assumptions.

The [Mic94] construction of succinct argument in the random-oracle model gives us some evidence that
SNARGs may indeed exist. In particular, by replacing the random oracle with a sufficiently complicated
hash function (whose description is placed in the CRS), we get a candidate SNARG construction in the
standard model, whose security seems plausible. However, we currently do not have any construction of a
SNARG with a formal proof of security under any simple cryptographic assumption.

In addition, [Mic94] also showed that computationally sound proofs have many other benefits such as very efficient
verification procedures and the ability to prove all of EXP. Here we just focus on the succinctness and on the class N'P.
2At least if NP € BPTIME(2°(™) so that such false statements/proofs exist. The adversary is non-uniform.



1.1 Owur Results

In this work we provide some explanation for the current lack of provably secure SNARG constructions.
In particular, we give a broad black-box separation result showing that no construction of SNARGs can be
proven secure via a black-box reduction from any falsifiable cryptographic assumption (unless that assump-
tion is already false). The terms “black-box reduction” and “falsifiable assumption” are explained below,
but on a highly informal level, this captures the types of assumptions and proof techniques that are used
to prove the security of virtually every other primitive in cryptography.

Black-Box Reductions. A black-box reduction gets “oracle access” to an arbitrary successful attacker
and must use it to break some underlying assumption. In other words, it only relies on the input/output
behavior of the attacker, and does not use the description of the attacker otherwise. It should work for all
attackers, including inefficient ones. Essentially all known proofs of cryptographic security in the literature
are of this type, with one notable exception being Barak’s use of non-black-box techniques to construct
zero-knowledge simulators and extractors in [Bar0O1]. However, it is currently unknown how to apply such
techniques more broadly to other cryptographic tasks. We also note that, in contrast to most prior black-
box separation results, we do not put any restrictions on the construction of our primitive, but only restrict
its proof of security to using the adversary as a black-box.

Falsifiable Assumptions. A falsifiable assumption can be modeled as an interactive game between
an efficient challenger and an adversary, at the conclusion of which the challenger can efficiently decide
whether the adversary “won” the game. The assumption states that every efficient adversary has at
most a negligible winning probability. Most standard cryptographic assumptions are falsifiable, including
general notions (e.g. One Way Functions, Trapdoor Permutations, Oblivious Transfer, Identity Based
Encryption, Fully Homomorphic Encryption etc.) and concrete assumptions (e.g. hardness of factoring,
discrete logarithms, shortest vector problem, RSA, CDH, DDH, LWE etc.). The above notion of falsifiability
is based, in spirit, on similar notions of [Nao03] and captures the fact that the challenger gives us an
efficient process to test whether an adversarial strategy falsifies (i.e. breaks) the assumption. Intuitively,
assumptions that are not falsifiable are harder to reason about, and therefore we have significantly less
confidence in them.

Of course, it would be easy to prove the security of a SNARG construction, if we were to just make
the assumption that the construction is secure. Indeed, this assumption turns out to not be falsifiable. In
order for a challenger to decide whether an adversary produces a proof of a false statement, the challenger
needs to decide whether an NP statement is true or false, which may not be efficient. Our result therefore
gives the first black-box separation between a meaningful non-falsifiable assumption and the class of all
falsifiable ones.

Extensions and Limitations. Our separation result also extends to the weaker notion of designated-
verifier SNARGs. In such arguments, the verifier keeps a private verification key associated with the CRS
and uses it to verify the arguments of the system. Security is only guaranteed if the private verification
key is kept hidden from the adversary. It also extends to SNARGs that are only slightly succinct.

Syntactically, one may equate designated verifier SNARGs with interactive two-round (challenge-
response) arguments by thinking of the CRS as the verifier’s challenge. However, the security properties we
normally require from these two primitives are different. The natural security notion for SNARGs considers
adaptive soundness, where the adversary can choose which false statement to prove adaptively depending
on the CRS. For two-round interactive arguments, one traditionally only considers the weaker notion of
static soundness, where the adversary chooses the false statement prior to seing the verifier’s challenge.
Therefore, succinct two-round arguments are a weaker primitive than designated verifier SNARGs. We
do not know how to extend our separation to the former primitive, and it remains as an interesting open
problem to do so (or to give a construction).



We also mention that our separations are not unconditional, since without assumptions it may be
possible that all NP statements x have witnesses of size o(|x|) or even polylog(|z|). This may even be
possible if (say) one-way functions exist. Therefore, to get around this, we will just make the assumption
that there exist some sub-exponentially hard subset-membership problems (e.g. distributions over an N'P
language and its complement that are indistinguishable by sub-exponential attackers). In other words, our
results essentially say that a black-box proof of security of some SNARG under some falsifiable assumptions
(e.g. security of RSA) would imply that either (1) the falsifiable assumption is actually false (e.g. there
is a poly-time attack on RSA), or (2) there are no sub-exponentially hard subset membership problems
in N'P. Note that (1) and (2) may be incomparable. When extending our separation to slightly succinct
SNARGs, we need to assume the existence of exponentially hard subset-membership problems.

1.2 Owur Techniques

Separation via a Simulatable Adversary. Our main technique is to show that every SNARG for an
NP complete language L has a simulatable adversary P. This is an inefficient adversarial prover that,
given a CRS, outputs a false statement x ¢ L and a verifying proof 7 for it. However, it also comes with an
efficient simulator S so that no efficient machine can tell whether it is interacting with P or S. Assuming
a simulatable adversary, our black-box separation result (Theorem 5.1) follows almost immediately. In
particular, a black-box reduction is an eflicient oracle-access machine R(O) which, when given access to
a successful adversary, breaks some falsifiable assumption. But if R” breaks some falsifiable assumption
then the efficient machine R must break it as well since the efficient challenger of a falsifiable assumption
cannot distinguish P from S. Therefore, we show that if there is a black-box reduction from some falsifiable
assumption to the soundness of a SNARG, then the assumption must already be false.

Existence of a Simulatable Adversary. To show the existence of a simulatable adversary, we prove
a basic lemma of independent interest about indistinguishability with auziliary information (Lemma 3.1).
Assume that two distributions, £ over the set L and £ over L = {0,1}* \ L, are computationally indistin-
guishable. Then, for any short auxiliary information 7 that we can give about x « L, there exists some
information 7 that we can give about Z « L so that (z,7) and (Z,7) are also computationally indistin-
guishable, where the security degrades (exponentially) with the size of . This holds even if the auxiliary
information 7 is not efficiently computable from z (say, if it depends on a witness w for x), and T may not
be efficiently computable from . Our proof relies on von Neumann’s min-max theorem [vN28].

Given the above, we can show the existence of a simulatable adversary P and its corresponding simulator
S (Lemma 4.1). Assuming the existence of a sub-exponentially hard subset-membership problem, there is
an AP language L along with distributions £ and £ as above, that are computationally indistinguishable.
On a high level, the simulator S efficiently samples x «+ £ along with a witness w and efficiently computes
an honest proof m for . The unbounded simulatable adversary P samples Z « £ along with some
inefficiently samplable auxiliary information 7, as defied by our lemma. Because the proofs 7 of a SNARG
are sufficiently short, the distributions (z, 7) produced by P and (x, 7) produced by S are computationally
indistinguishable by efficient parties. In particular, that means that P produces valid proofs for false
statements, and hence is a successful adversary, but it can also be simulated by the efficient simulator S.

Our actual proof is somewhat more involved and also deals with the fact that a reduction may call the
oracle P many times and may “lie” about the value of the security parameter it gives to P. In the latter
case, P may output very short false statements Z that can be efficiently distinguished from true statements
x. Therefore, our simulator S must sometimes also output false statements in a careful manner.

1.3 Related Work

Succinct Arguments. The works of [Kil92, Mic94] introduced the concept of succinct arguments. Their
constructions both rely on the PCP theorem of [ALM™98], and the construction of [Mic94] can be seen as



an application of the Fiat-Shamir heuristic [F'S86] to convert the interactive four-round protocol of [Kil92]
into a non-interactive argument in the random-oracle model. The works [GH98, GVWO02, Wee05] show
that only languages which are “easy” have unconditional succinct proofs (even interactive ones). Therefore,
computational assumptions are necessary to construct succinct argument for N'P.

The work of Aiello et al. [ABORO0] suggested a concrete approach for constructing succinct two-round
arguments for NP using private information retrieval (PIR). However, Dwork et al. [DLN'04] showed that
such an approach is fundamentally flawed and is unlikely to follow from PIR security alone. Therefore,
the question of constructing succinct arguments with fewer than four rounds of interaction under standard
assumptions remains open. Recently, the works of [CL08, Grol0] construct (designated-verifier and publicly
verifiable) SNARGs under non-falsifiable “knowledge” assumptions.

The work of Rothblum and Vadhan [RV10] also considers succinct arguments with black-box reductions
under falsifiable assumptions. It shows that such arguments (even interactive ones) can be efficiently
converted into PCP systems. Therefore, the heavy machinery of PCPs is “inherent” in the constructions
of such arguments, explaining why all known works rely on it. However, since PCPs exist unconditionally,
this result does not help separate such arguments from computational assumptions. Our techniques for
showing the existence for a simulatable adversary seem to significantly differ from those of [RV10].

Black-Box Separations. Black-Box seperation results in cryptography go back to Impagliazzo and
Rudich [IR89], who showed that key-agreement (KA) cannot be constructed from one-way permutations
(OWP) if the construction uses the OWP in a black-box manner. Since then, we have many other results
in this vein (e.g. [Sim98, GKM™00, GMRO1, RTV04, BPR"08]) showing that the construction of one
primitive cannot just use another (simpler) primitive in a black-box manner. A natural criticism of such
separations is that they do not address natural cryptographic constructions that use an underlying primitive
in a non-black-box way, for example by using its description to run zero-knowledge proofs. In contrast,
our separation only places limitations on the proof of security, requiring that it uses the adversary as a
black-box, but does not place any restirctions on the construction. Separations of this type also appear in
[DOP05, AF07, HH09] for full-domain hash signatures, NIZKs with perfect ZK, and encryption with key-
dependent message (KDM) security respectively. However, in all of these previous works, some additional
technical restrictions are placed on the construction and/or reduction, beyond just requiring that the proof
of security is black-box in the adversary. For example, [HH09| defines strongly black-box reductions for
KDM security, which also treat some of the adversary’s outputs (the key-dependence functions chosen by
the adversary) as a black-box. In fact, it was recently shown in [BHHI10] how to overcome the separation
of [HH09], by giving a reduction that is black-box in the standard sense, but is not strongly black box.
To the best of our knowledge, ours is the first black-box separation result that does not place any other
restrictions on the reduction, other than that it treats the adversary as a black box.

2 Preliminaries and Definitions

All of the results in this work hold with respect to a non-uniform model of computation. Given a (sometimes
implicit) security parameter n, we identify efficient algorithms with poly(n)-sized randomized circuits or,
equivalently, probabilistic poly(n)-time Turing Machines with poly(n)-sized advice. A function €(n) is called
negligible if e(n) = ﬁ and we write ¢(n) = negl(n) for short. We say that two distributions X;, X are
(s(n), e(n))-indistinguishable if for every circuit D of size s(n), we have | Pr[D(X;) = 1] —Pr[D(X3) = 1]| <
e(n). We say that they are (plain) computationally indistinguishable if for every s(n) = poly(n) there is
some €(n) = negl(n) such that the distributions are (s(n), e(n))-indistinguishable.

2.1 Succinct Non-Interactive Arguments (SNARGs)

We first formally define the properties that we expect for a SNARG. Since our focus will be on negative
results, we will give a weaker definition than what one might expect. In particular, our default notions will



be a designated verifier SNARGthat requires some secrete associated with the CRS for verification. Also,
we will give a slightly relaxed notion of succinctness.

A SNARG system II consists of three efficient machines II = (G,P,V). The generation algorithm
(crs, priv) < G(1™) produces a common reference string crs along with some private verification state priv.
The prover algorithm = « P(crs,z,w) produces a proof 7 for a statement z using a witness w. The
verification algorithm V(priv, z, 7) decides if 7 is a valid proof for x, using the private state priv.

Definition 2.1. We say that II = (G, P,V) is a succinct non-interactive argument (SNARG) for an NP
language L with a corresponding NP relation R, if it satisfies the following three properties:

(crs, priv) «— G(1™)

Completeness: For all (x,w) € R, Pr [V(prlv,x,w) =0 ‘ 7 Plcrs, z,w)

} = negl(n).
. = V(priv,z,m) =1 (crs,priv) < G(1™) |
Soundness: For all efficient P, Pr [ N ozdL ‘ (2, 7) — P(1%,crs) | — negl(n).

Succinctness: The length of a proof is given by |r| = poly(n)(|z| + |w|)°™).

The above will be our default notion. However, we will also consider a weaker notion of the succinctness
property given below, and we call arguments that satisfy only this weaker notion slightly succinct SNARGS.

Slightly Succinct SANRG: The length of a proof is given by || = poly(n)o(|z| + |w]).

One can view the succinctness property as saying that there is a fixed polynomial bound on the size of the
proof 7, no matter how large polynomial-sized statement/witness pair is used to create the proof.

Public vs. Designated Verifiability. We say that a SNARG is publicly verifiable if the private verifi-
cation state is just priv = crs. In that case, proofs can be verified by all parties. Otherwise, we call it a
designated-verifier SNARG, in which case only the party that knows priv can verify proofs and soundness
only holds if priv is kept private. The latter weaker definition is our default notion and all our negative
results hold even for the case of designated-verifier SNARGs. In the case of designated-verifier SNARGs,
our definition is perhaps too weak since it does not address the issue of reusing the crs for multiple proofs.
In particular, if the same crs is used multiple times, then the verifier’s accept/reject decisions can leak
some information about the private verification state priv to an adversary, and eventually may allow it to
prove false statements. However, since our focus is on negative results, our results are only strengthened
by considering this weaker definition of security, and ignoring the issue of reusability. This issue also goes
away when considering publicly verifiable SNARGs.

2.2 Falsifiable Cryptographic Assumptions

We now define our notion of falsifiable cryptographic assumptions. Although similar in spirit to that of
[Nao03] our definition is significantly more inclusive (and simpler). Recall that the goal of [Nao03] was
to measure how reasonable an assumption is by looking at how easy it is to falsify, while our goals is to
be as inclusive as possible. We wish to capture essentially all reasonable assumptions, but do not mind
capturing some unreasonable ones as well.

Definition 2.2. A falsifiable cryptographic assumption consists of an efficient interactive challenger C
and a constant ¢ € [0,1). On security parameter n, the challenger C(1") interacts with a machine A(1™)
and may output a special symbol win. If this occurs, we say that A(1"™) wins C(1").

The assumption associated with the tuple (C,c) states that for any efficient A, we have
Pr[A(1™) wins C(1™)] < ¢+ negl(n), where the probability is over the random coins of C and A.

For any constant § > 0, the §-exponential version of the assumption associated with (C,c) states that
for every A of size 2°(") we have Pr[A(1™) wins C(1™")] < ¢+ 1/29("6).



We say that a (possibly inefficient) machine A breaks such assumption if its probability of winning
exceeds that of the assumption.

Our separation result holds with respect to both standard and J-exponential versions of falsifiable
assumptions (for any constant §). For simplicity, we only consider standard versions in the main body and
discuss how to extend our proofs to the exponential case in Appendix A.

Our definition of a falsifiable assumptions captures most cryptographic assumptions used in the lit-
erature. For example, with ¢ = 0, we capture various search assumptions such as the one-wayness of
factoring, (strong) RSA, discrete-logarithm (DL), computational Diffie-Hellman (CDH), search-SVP in
lattices etc. With ¢ = %, we capture various decisional assumptions such as the decisional Diffie-Hellman
(DDH), the decisional Learning with Errors (LWE) assumptions, etc.? The definition also captures more
complicated interactive assumptions, such as taking an arbitrarily complicated scheme and assuming that
it is a secure signature scheme or an identity-based encryption scheme (IBE). Although we focus on con-
crete assumptions, the definition also captures general existence assumptions (e.g. existence of one-way
functions, trapdoor permutations, IBE schemes, fully homomorphic encryption etc.) if they have at least
one instantiation.

Several examples of cryptographic assumptions are not obviously falsifiable. For example, we can take
some arbitrary proof system and assume that it is zero knowledge. This assumption is not obviously
falsifiable since it is not clear how to state it as a game between an efficient challenger and an adversary.
On the other hand, we have specific constructions of zero-knowledge proofs whose security is based on a
simple falsifiable assumption (existence of one-way functions) in a black-box way.

Directly related to the topic of this paper, the assumption that some construction of a SNARG is sound
is also not obviously falsifiable. Even though this assumption is stated as a game between a challenger
and an adversary, the challenger is not necessarily efficient since it needs to decide whether the received
statement z is in some NP language to decide whether the adversary wins. Unlike the case of zero-
knowledge proofs, the results in this paper show that the existence of SNARGs is also not implied by any
falsifiable assumption in a black-box way.

Another example of assumptions that are not obviously falsifiable are the various “Knowledge” as-
sumptions (e.g. Knowledge of Exponent) [Dam91, HT98, BP04], whose definitions postulate the existence
of some non-black-box extractor.

2.3 Black-Box Reductions

For concreteness, we only discuss black-box reductions showing the soundness of some SNARG system
IT = (G, P, V) based on some falsifiable assumption (C, c).

Definition 2.3. A (possibly inefficient) machine P is a H-adversary if there exists a polynomial p(-) and
(crs, priv) — G(1")

) ' .1. i = — > .
infinitely many n € N s.t. Pr [V(prlv, r,m)=1ANx ¢ L (2, 7) — P(1",crs) | = 1/p(n)

Definition 2.4. A black-box reduction showing the soundness of II based on a falsifiable assumption (C, c)
is an efficient oracle-access machine RO such that, for every (possibly inefficient) Il-adversary P the
machine RY breaks the assumption.

In general, if an adversary is stateful, a black-box reduction can also use rewinding in addition to oracle
access to an adversary. However, when it comes to SNARGs, we can (without loss of generality) restrict
ourselves to stateless adversaries for which rewinding is useless. In particular, we will only consider stateless
adversaries P and assume that the reduction R”(17) can only query the adversary with arbitrarily many
inputs of the form (1™, crs) and learn the output of P(1™,crs) with fresh random coins. Note that the
reduction need not set m = n and can query the adversary on inputs of arbitrary (polynomial) size.

5In fact, these assumptions can also be captured with ¢ = 0, using a clever idea described in [HH09]. For simplicity, we
just explicitly allow arbitrary constants c in our definition.



The order of quantifiers in the definition requires that there is a single reduction R that works for all
adversaries P. However, our impossibility result will actually construct a single adversary P for which no
reduction can succeed. Therefore, we can even rule out the weaker order of quantifiers.

2.4 Hard Subset Membership Problems
A subset membership problem consists of an NP language L with a corresponding relation R along with:

e A distribution-ensemble £ = {L,},en over the language L and £ = {L,}nen over L = {0,1}*\ L.
The latter need not be efficiently samplable.

e An efficient sampling algorithm (z,w) < Sam(1™) whose support lies in the relation R and whose
projection to the first coordinate yields the distributions £ = {£, }nen-

We do not put any additional requirements on the size of the statements x < L,, but since they can be
efficiently sampled via (x,-) «— Sam(1"™), their size must be polynomial in n. It will be easiest for us to
think of all sizes and hardness-measures as functions of the security parameter n.

Definition 2.5. Let (£,L£,Sam) be a subset-membership problem over the NP language L. We say
the at the problem is hard if the distribution-ensembles L,L are computationally indistinguishable. It
is (s(n),e(n))-hard if the distributions L, L, are (s(n),e(n))-indistinguishable. It is sub-exponentially
hard if there exists some constant 6 > 0 such that the problem is (s(n),e(n))-hard with s(n) = 20(n’)

e(n) = 1/29("6). It is exponentially hard if the above occurs and the size of the statements/witnesses
(z,w) + Sam(1™) is (|z| + |w|) = O(n?).

Note on Hardness. The existence of any (sub-)exponentially hard subset-membership problem Sam, L,
L implies the existence of (2”d, 2_”d)—hard subset-membership problems for any (arbitrarily large) constant
d, simply by defining Sam’(n) = Sam(m(n)), £, = Lm(n),Z; = Zm(n) for a large enough polynomial m(-).
Note that sub-exponential hardness does not attempt to relate hardness to the size of the isntance/witness
which may grow much faster than n¢. On the other hand, exponential hardness also guarantees that

hardness grows linearly with the size of the statement/witness.

Plausibility. The existence of hard subset membership problems is a relatively mild assumption. For
example, any pseudorandom generator (PRG) immediately gives us a subset membership problem by
setting £ to be the output-distribution of the PRG and £ to be uniform over all other strings. Hard
subset membership problems are also immediately implied by many assumptions such as DDH, LWE or
QR. Assuming sub-exponential hardness of these problems is also relatively mild (in practice, it is hard to
imagine any cryptography being possible without at least sub-exponential hardness). Exponential hardness
is a significantly stronger but still believable assumption. Although some examples, such as QR and DDH
over some groups are known to not be exponentially hard, many other candidates such as DDH over some
elliptic curves or the LWE problem are believed to be.

3 Indistinguishability with Auxiliary Information

Lemma 3.1. There is some polynomial poly for which the following holds. Let L., L,, be two arbitrary dis-
tributions that are (s(n), e(n))-indistinguishable. Let L} be some augmented distribution on tuples (z, ),
where x is distributed according to L, and 7 is some arbitrary correlated auxiliary information of length
|7| = £(n). Then there exists an augmented distribution L, on tuples (Z,7) with T distributed according to
Ly, such that £ and L, are (s*(n), €*(n))-indistinguishable for s*(n) = s(n)poly(e(n)/2/), e*(n) = 2¢(n).



Remarks on Lemma 3.1 In the above lemma, the distributions £,,, L, E;‘L,ZZ need not be efficiently
samplable. In fact, the lemma is trivial if the distribution £}, allows us to sample 7 efficiently given z. In
that case, it’s clear that ZZ should just sample Z « L£,, and sample 7 honestly using Z. When 7 is not
efficiently samplable from = (for example, 7 may depend on a witness w to the fact that x is sampled from
L,) it’s unclear how to define the distribution ZZ. In fact, our proof does not give a simple description of
the distribution Z:; either and instead shows its existence non-constructively using von Neumann’s min-
max theorem [vN28]. Technically, the proof bears similarity to the use of the min-max theorem in proofs
of seemingly unrelated results in complexity, including Nisan’s proof of the Impagliazzo hardcore lemma
[Imp95] and the proof of equivalence between HILL entropy and metric entropy in [BSW03]. We believe
that our basic lemma may be of independent interest. For example, it immediately yields an alternate
proof for a theorem of [DP08], showing that ¢ bits of auxiliary information (i.e. “leakage”) on the seed of
a PRG reduces the HILL entropy of its output by at most ¢ bits.

Proof of Lemma 3.1. Define size(m) be the set of all circuits of size m and let dist(m) be the set of all
distributions over size(m). Fix the distributions £,,, £,, and some joint-distribution L} over tuples (z,7)
as in the statement of the lemma. Define dist(£,,) be the set of all joint-distributions on tuples (Z, %) with
the component Z distributed according to L.

Assume, by contradiction, that there does not exist any £, € dist(Z,) that is (s*(n), €*(n))-indistinguishable

from L;,. Then:

€(n) < min max Pr  [Dy(z,7)=1—- Pr [Dp(z,7) =1]
L. edist(C,) DnEsize(s*(n)) (z,7)erly, (z,m)ERL,
< min max Pr [Dn(z,7)=1—- Pr [Dyp(z,m)=1 1
" Lledist(L,) Dnesize(s*(n)+1) (E,ﬁ)ERZZ[ (&) | (w,w)ERﬁz[ (@) : @
= min max E Dn(z,7)— Pr [Dp(z,m)=1]
L, edist(L,) Dn€size(s*(n)+1)  (z,7)erLly L (z,m)ERLS,
< min max E Dy(z,7)— Pr [Dy(z,7)=1] (2)
L, edist(C,) Dnéedist(s*(n)+1)  (z,7)egLl, L (z,m)ERLS, i
DneRDn
= max min E Dn(z,m)— Pr [Dy(z,m)=1 3
Dnedist(s*(n)+1) Zredist(L,)  (Z,7)erLly L (&) (w,W)GREZ;[ (@) ] )
DnERDn
= max min E [Duz,m)]—- E  [Dp(z,n)] (4)
Dnéedist(s*(n)+1) Zredist(L,) (z,7)€rL., (z,m)ERL,
DnGRDn DnERDn

Where (1) follows by (possibly) negating the output of the distinguisher to make the distinguishing
advantage positive, (2) follows since maximizing over distributions can only increase the advantage, (3)
follows by von Neumann’s min-max theorem [vIN28], and (4) follows by linearity of expectation.

Let D, € dist(s*(n) + 1) be a distribution that maximizes equation (4), and let Z, be a corresponding
minimizing distribution. For each pair (x,7), let

def

Val(z,7) < E  [Du(z,7)] , Valpin(z) = minVal(z, )

DneRDn

The minimality of Z:L implies that any (Z, 7) in the support of ZZ, satisfies Val(z, ) = Valyin (Z). Therefore,
equation (4) gives us p(n) — p(n) > €*(n) where:

pn) £ E [Nalpn(z)]= E [Nal(z,7)]= E  [Du(z,7)
FERLn (z,7)ERL,, (z,7)erL,,
DnGRD7L
def
= E [Valyn < E Val(x, = E D, (x,
p(n) - cn[ alimin(7)] o L::[ al(z, )] o %[ (z,7)]
DHERDn



This gives us a distinguisher D,, for the original subset-membership problem, which attempts to dis-
tinguish whether z is from £, or £, by estimating Val,;,(z). We first start by describing an inefficient,
randomized distinguisher which needs the ability to sample from D,.

Description of D,: On input z, try all possible strings 7 of size |x| = £(n). For each such 7, choose
q(n) = 6*1(2:)2 (0(n) +1n(16/€*(n))) different circuits DM, ..., D) at random from the distribution
D,, and run them all on (z, 7). Let p, » be the fraction of the g(n) circuits that output 1. Let p, be

the minimum of the estimates p, . over all the values w. Output 1 with probability p,.

In any single iteration of the above algorithm with a fixed x, 7, we can use Chernoff to bound the
difference between the estimate p, » and the true value Val(z, 7) with

Pr[|fenr — Val(z,7)| > €*(n)/8] < 2e~4M(M?/128 < o=ln) ¢* () /3

where the probability is over the random coins of D, used to compute pzx- Using the union bound over
all the iterations, we derive that, with good probability, all estimates are close to their true values:

Pr[3r € {0,1}™ s.t. |ppr — Val(z, )| > €*(n)/8] < €*(n)/8
This also tells us that

)/8] < €(n)/8 (5)

Pr[|ps — Valpin(z)| > €' (n
)| > €*(n)/8 So, using the above, analysis we get:

€
Let us define the event E, to be the event |p, — Valyin(x
x] <

i n[]jn(:c) =1] = ZPr = 1] Pr[L Z (Pr[D,(z) = 1|-E,] + €*(n)/8) Pr[£, = ]
< Z(Valmm(x) + €' (n)/4) Pr[Ln = z] = p(n) + " (n)/4
ﬁeprz [Dn(z) =1 = Y Pr[Du(z) = 1|Pr[L, = 2] > Y (Pr[Dn(x) = 1[~E.]|(1 - €*(n)/8) Pr[L,, = z]

> 3 (Valyin(@) — € (n)/4) Pr{L, = 2] > p(n) — € (n) /4

T

So the distinguishing advantage of D,, is

P Du(@) =1~ Py [Da(e) =1] 2 pln) —pln) — 5 =

as we wanted to show. But, so far, we have only constructed a randomized distinguisher D,, that needs
to sample from the arbitrarily complicated distribution D, over circuits. However, using an averaging
argument, we can always fix the optimal coins of D, (maximizing its distinguishing advantage) to get a

( )

description just consists of 2/(™g(n) different samples from D, con51st1ng of circuits D) of size s*(n) 4 1
each. Therefore, there exists a deterministic distinguisher for the original subset-membership problem
Ly, Ly, with advantage e(n) = # and size

s(n) = 5 ()0 (2g(n) ) = 5*(n)poly (2" /e(n))

%k

where the exact polynomial poly is independent of the choices of L,,, L, L%, L, .

deterministic circuit with distinguishing advantage at least Once we fix the randomness of D,,, its

4 A Simulatable Adversary For Any SNARG

We now use our basic indistinguishability with auxiliary information lemma to prove the existence of a
simulatable adversary for any SNARG.



Lemma 4.1. Let L be a language with a sub-exponentially hard subset-membership problem. Let 11 =
(G,P,V) be a non-interactive proof system for the language L that satisfies the completeness and succinct-
ness properties. Then, there is a machine P, called a simulatable II-adversary satisfying the following:

e P is a stateless and computationally unbounded IT-adversary. On input (1™, crs) it always outputs
some (x,m) with x & L of size |x| = lst(m), for some polynomial ls(-), and:

Pr[V(priv,z,7) =1 | (crs, priv) «— G(1™), (z,7) « P(1™,crs)] > 1 — negl(n).

e P is poly-time simulatable. That is, for every efficient distinguisher D there exists some efficient
simulator S such that: Pr[DF(1") = 1] — Pr[DSM")(1") = 1] < negl(n). The distinguisher D) (17)
can ask its oracle any query (1™, crs) and need not set m = n. The simulator S is given 1" as input
and can Tun in time polynomial in n on any query.

The same conclusion also holds if we assume that L has exponentially hard subset membership problems
and that 11 is only slightly succinct.

Proof Intuition. Given our lemma on indistinguishability with auxiliary information, the main idea of
the machines P and S is simple: on query (1™, crs), the machine S efficiently samples (x, w) < Sam(1™) and
computes an honest proof 7 using the SNARG, and P samples from the corresponding “fake” distribution
(z,7) «— L, defined by the lemma. The main difficulty is that, if the value m used in the query is small
enough compared to the actual security parameter n, then the answers from S and P can be distinguished.
Therefore, we modify our simulator to use a table of hard-coded responses (given as polynomial-sized
non-uniform advice) to answer all queries with a sufficiently small m.

Proof of Lemma 4.1. Fix the language L and the argument system IT = (G, P, V). Since II is succinct, we
can pick some sufficiently large constant d such that, the length of the common reference string crs «— V(1™)
is bounded by O(n?) and the length of a proof © « P(1",crs, z, w) is bounded by O(n®+1)(|z| 4 |w])°™M).
The existence of any sub-exponentially hard subset-membership problems implies that there exists a subset-
membership problem (Sam, £, £) which is (s(n),e(n))-hard with s(n) = 20" and e(n) = 2= 4 Let
Cof(n) be the length of 7 « P (1", crs, x,w) when crs < V(1"), (x,w) « Sam(1™). Then £y(n) = o(n?*2).
Note that, if the subset-membership problem is (s(n),e(n))-hard then it is also (s(n),€'(n)) hard for any
€/(n) > €(n). By applying Lemma 3.1 with a carefully chosen € (n), there exist some

s*(n) = s(n)poly(e/(n)Qpr(n)) — QQ(nd+2), e*(n) = €(n)/2 = 9= Q(n+2)

for which the following holds: for any distribution £} that augments £,, with auxiliary-information of length
lpe(n), there is a distribution L, that augments L, such that Lk, Ly are (s*(n),e*(n))-indistinguishable.
We are now ready to describe the simulatable II-adversary P and the simulator S.

The adversary P: For any query (1™, crs), we can define the (efficiently samplable) augmentation £, of
L, which samples (z,w) « Sam(1™), m < P(crs,z,w) and outputs (z, 7). By the above discussion,
there exists some (possibly inefficiently samplable) augmentation Z,, of £, which is (s*(m), e*(m))-
indistinguishable from £} . The machine P outputs a sample (Z,7) < Z:n.

The simulator S(1"): The simulator has a threshold m*(n) = [log"/ @Y n|. On input (1, crs) where
m > m*(n) it samples (z,w) < Sam(1™), © «— P(1™, crs, z,w) and outputs (z,7).

On inputs (1™, crs) with m < m*(n), the simulator needs some short non-uniform advice 7, to

answer the query. In particular, we fix a polynomial bound ¢(n) on the number of queries that the

4See discussion on sub-exponential hardness. The main idea is to just replace the security parameter n with a large enough
polynomial in n.
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distinguisher makes to its oracle. For each n € N, the simulator’s advice 7, is a table of tuples of the
form (i, m, crs, z, ) with one such tuple for each choice of i € {1,...,q(n)}, m € {1,...,m*(n)},crs €
{0, 1}fes(m)  If the ith oracle query made by D is of the form (1, crs) where m < m*(n) then the
simulator finds the corresponding tuple (i, m, crs, z, ) in the table 7, and outputs the corresponding
values (z, 7).

The table 7, is defined by considering a (stateful) machine P(7;,) which answers ith query (1™, crs)
in the same way as P when m > m*(n) and using the table 7,, when m < m*(n). By an averaging
argument, there exists some choice of 7, such that Pr[DP(72)(1") = 1] > Pr[D?(1") = 1] and we pick
this table as the advice.® Its size is

m*(n)
Tl = q(n) > 2™ (Loe(m) + Lee(m)) = poly(n). (6)
m=1

Therefore the simulator S(1™) is a poly(n)-time machine with poly(n)-sized advice.

To prove the first part of the Lemma, it is clear that P only outputs tuples (z,7) with z & L. Also,

=1 (z,7) — P(1", crs) N =1 7« Plcrs,x, )

> 1—negl(n)

The first inequality follows by thinking of the verifier as a distinguisher and recalling that, for a fixed
setting of crs, the distribution £ of the tuples (z,7) output by P is (s*(n), €*(n))-indistinguishable from
the distribution £ defined by (z,w) « Sam(1"),m « P(crs,z,w). The second inequality follows by
completeness.

To prove the second part of the Lemma, we first define a hybrid game where we replace P with the
(stateful) machine P(7,,) that uses the table 7,, to answer queries (1™, crs) with m < m*(n). The way we
constructed 7;, was exactly to ensure that Pr[DP(7»)(1)] > Pr[D”(1") = 1]. We now do a hybrid argument
over the number of queries g(n) that the distinguisher D(1™) makes to its oracle. That is, consider (stateful)
machines Oy, ..., Oy,) where Oy = P(7,), Ogny = S(17), and, in general, O; answers the first i queries
using the strategy of S(1") and the last (q(n) —i) queries using the strategy of P(7,,). Then we claim that,
for all i € {0,...,q(n) — 1},

| Pr[DY(1") = 1] — Pr[D9+1 (1")]| < negl(n) (7)

To show this, fix any index ¢ and fix any preamble of the experiment, consisting of the coins of D as
well as the first i queries/answers which were made/received by D. The preamble therefore also fixes the
(i + 1)st query (1™, ¢) made by D, but not the response. Conditioned on this preamble, if m < m*(n)
then experiments ¢ and i + 1 are identical. On the other hand, if m > m*(n), then the experiments only
differ in the distribution of the (i + 1)st response being either Z,, or £¥,. But these distributions are
(8(n), é(n))-indistinguishable where

§(n) _ Q(s*(m*(n))) _ 29(10g(d+2)/(d+1) n) _ nu}(l) , g(n) — Q(e*(m*(n))) _ n—w(l) (8)

Therefore, we see that equation (7) holds (even when conditioned on any fixed preamble) and, using the
hybrid argument, we get Pr[DP (1) = 1] — Pr[D°1") (1) = 1] < negl(n) as we wanted to show.

To prove the second version of the lemma, for exponential assumptions and slightly succinct arguments,
we only need to slightly modify the first paragraph of the proof. In particular, we choose a constant d such

5In particular, the advice to S depends on the distinguisher D. This is allowed since we are showing that for every D there
exists an S.
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that the length of the crs is bounded by O(n?) and the length of the proof is bounded by O(n4*1)o(|z|+|w|).
Then, the existence of any exponentially hard subset-membership problem implies that there also exists
a subset-membership problem (Sam, £, £) which is (s(n), e(n))-hard where s(n) = 2(nt?), e(n) = 9~ (n?)
and the statement /witnes size for (x,w) < Sam(1") is bounded by |z| = O(n4*2), |w| = O(n?*?). But this
means that the length of an argument 7 for (z,w) < Sam(1") is given by £y(n) = o(n?t2). The rest of
the proof proceeds the same way as before.

5 Black-Box Separation of SNARGs From Falsifiable Assumptions

We are now ready to state and prove the main result of the paper.

Theorem 5.1. Assume that an NP language L has a sub-exponentially hard subset-membership problem
and let I1 = (G, P, V) have the syntax of a SNARG for L and satisfy the completeness and succinctness
properties. Then, for any falsifiable assumption (C,c), one of the following must hold:

o The assumption (C,c) is false.
e There is no black-box reduction showing the soundness of I1 based on the assumption (C,c).

The same conclusion holds if we assume that L has an exponentially hard subset-membership problem, and
we allow II to only be slightly succinct.

Proof. Assume there is a black-box reduction R showing the soundness of Il based on the assumption
(C,c). Let P be the simulatable II-adversary as defined in Lemma 4.1 (we can apply this lemma with
either sub-exponential hardness and full succinctness or exponential hardness and slight succinctness).

Then there exists some polynomial ¢(-) and infinitely many n € N for which Pr [Rf(ln) wins C(1™)| >

¢+ 1/q(n). Since the challenger C is efficient, we can think of R and C together a single efficient oracle-
access distinguisher D) and, using Lemma 4.1, there is therefore a poly-time simulator S such that
Pr [R‘S(ln)(ln) wins C(1")] > ¢+ 1/q(n) — negl(n). So the efficient attacked RSU™) (1) shows that the
assumption (C, c¢) is false.

O

Corollary 5.2. Assuming the existence of sub-exponentially hard subset-membership problems, there is no
SNARG construction 11 for an N'P-complete language with a black-box reduction showing the soundness
of IT based on a falsifiable assumption (C,c) unless the assumption is false.

Proof. We use the fact that a SNARG for an N'P-complete language yields a SNARG for every NP
language. This is not the case if we consider slightly succinct arguments. O

6 Conclusions

In this work, we give a broad black-box separation result showing that one cannot prove the security of
SNARGs under any falsifiable assumption via a black-box reduction. The major open problem left by this
work is to come up with non-black-box techniques that could overcome this negative result. It would also
be interesting to see if our result can be extended to two-round and three-round interactive arguments with
static soundness, or if one can construct such arguments and prove them secure via a black-box reduction
from some falsifiable assumption. Our result can be used to show that any such reduction must necessarily
use rewinding to get many different proofs 7, under many different challenges, and for the same statement
x. For example, this gives further evidence that the natural approach of [ABORO00] for constructing such
two-round arguments using PIR will not work, even if we make a stronger falsifiable assumption on the
PIR, since it does not rely on rewinding.
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A Separation from Exponential Assumptions

In this section, we consider d-exponential versions of falsifiable assumptions (Definition 2.2) for constants
0 > 0 and show that one cannot prove the security of a SNARG even under such assumptions via a
black-box reduction. In particular, we can prove a variant of Theorem 5.1 showing that either (1) the o-
exponential version of the assumption is false, or (2) there is no black-box reduction from the §-exponential
version of the assumption to the soundness of a SNARG. Perhaps counter-intuitively, this separation result
is incomparable to our original one since, although conclusion (2) is stronger than before, conclusion (1) is
weaker than before. Our proof changes in only a few places.

Firstly, we need to modify our requirements on the simulatable adversary in Lemma 4.1. In particular,
we show that for every 20("°)_sized distinguisher D there exists some 20(n")_gized simulator S such that
Pr[DP(1") = 1] -Pr[D°0")(1") = 1] < 1/2‘“(”6). To show this, we can essentially reuse the proof of Lemma
4.1, but modify the simulator’s threshold for when to give true/false statement to m*(n) = n®(@+1) This
way, the size of the simulator S given by equation (6) becomes 20("") | On each query, the responses of
the simulator S and P are (5(n), &(n))-indistinguishable where 5(n), €(n) given in equation (8) now become
5(n) = gt _ gw(n®) and é(n) = 2~w(n") Using the hybrid argument over all 20("") queries that D
can make, we get the modified lemma.

Now, to prove our variant of Theorem 5.1 for d-exponential assumptions, we start with a reduction R

of size 2°0"°) 5o that Pr [Rf(ln) wins C(1™)| > ¢ + v(n) for some v(n) & 272(")  But that means that
Pr [RS(1") wins C(1")] > c+v(n)— 1/2“’(”6) which shows that the d-exponential version of the assumption
is false.

One interesting additional note is that, if we consider §-exponential assumptions, we can also allow the
. . . 8
challenger C of such assumption to run in time 200",
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