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ON QUASICONFORMAL SELFMAPPINGS OF THE UNIT DISK AND
ELLIPTIC PDE IN THE PLANE

DAVID KALAJ

ABSTRACT. In this paper we prove the following theorem: ifw is a quasicon-
formal mapping of the unit disk onto itself satisfying elliptic partial differential
inequality |L[w]| ≤ B|∇w|2 + Γ, thenw is Lipschitz continuous. This re-
sults extends some recent results, where instead of elliptic differential operator
is considered Laplace operator only. By using this result, we show that a quasi-
conformal selfmapping of the unit disk is Lipschitz continuous provided that the
Beltrami coefficient is Lipschitz continuous.

1. INTRODUCTION AND NOTATION

1.1. Quasiconformal mappings. Let A =

(

a11 a12

a21 a22

)

. We will consider the

matrix norm:
|A| = max{|Az| : z ∈ R

2, |z| = 1}
and the matrix function

l(A) = min{|Az| : z ∈ R
2, |z| = 1}.

LetD andΩ be subdomains of the complex planeC, andw = u+ iv : D → Ω be
a function that has both partial derivatives at a pointz ∈ D. By ∇w(z) we denote

the matrix

(

ux uy
vx vy

)

. For the matrix∇w we have

(1.1) |∇w| = |∂w|+ |∂̄w|
and

(1.2) l(∇w) = ||∂w| − |∂̄w||,
where

∂w = wz :=
1

2

(

wx +
1

i
wy

)

and∂̄w = wz̄ :=
1

2

(

wx −
1

i
wy

)

.

We say that a functionu : D → R is ACL (absolutely continuous on lines) in
the regionD, if for every closed rectangleR ⊂ D with sides parallel to thex and
y-axes,u is absolutely continuous on a.e. horizontal and a.e. vertical line in R.
Such a function has of course, partial derivativesux, uy a.e. inD.
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A sense-preserving homeomorphismw : D → Ω, whereD andΩ are subdo-
mains of the complex planeC, is said to beK-quasiconformal (K-q.c),K ≥ 1, if
w is ACL in D in the sense that the real and imaginary part are ACL in D, and

(1.3) |∇w| ≤ Kl(∇w) a.e. onD,

(cf. [1], pp. 23–24). Notice that the condition (1.3) can be written as

|wz̄| ≤ k|wz| a.e. onD wherek =
K − 1

K + 1
i.e. K =

1 + k

1− k
.

If in the previous definition replace the condition ”w is a sense-preserving home-
omorphism” by the condition ”w is continuous” we obtain the definition of a
quasiregular mapping.

1.2. Elliptic operator. LetA(z) = {aij(z)}2i,j=1 be a symmetric matrix function
defined in a domainD ⊂ C (aij = aji). Assume that

(1.4) Λ−1 ≤ 〈A(z)h, h〉 ≤ Λ for |h| = 1,

whereΛ is a constant≥ 1 or in coordinates

(1.5) Λ−1 ≤
2
∑

i,j=1

aij(z)hihj ≤ Λ for
2
∑

i=1

h2i = 1.

In addition we assume that

(1.6) |A(z) −A(ζ)| ≤ L|ζ − z| for any z, ζ ∈ D.

For

(1.7) L[u] :=

2
∑

i,j=1

aij(z)Diju(z),

subjected to conditions (1.5) and (1.6) we consider the following differential in-
equality

(1.8) |L[u]| ≤ B|∇u|2 + Γ,

or, by using Einstein convention

(1.9) |aij(z)Diju| ≤ B|∇u|2 + Γ,

and call itelliptic partial differential inequality.Observe that, ifA is the identity
matrix, thenL is the Laplace operator∆. A C2 solutionsu : D → R(C) of the
equation∆u = 0 is called a harmonic function (mappings) and the corresponding
inequality (1.7) is calledPoisson differential inequality. The class of harmonic qua-
siconformal mappings (HQC) has been one of recent main topics of investigation
of some authors. See the subsection below. For the connection between quasicon-
formal mappings and PDE we refer to the book [2]. See also [9, Chapter 12], [6],
[40] and [46].
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1.3. Background and statement of the main results.Let γ be a Jordan curve.
By the Riemann mapping theorem there exists a Riemann conformal mapping of
the unit disk onto a Jordan domainΩ = int γ. By Caratheodory’s theorem it has a
continuous extension to the boundary. Moreover ifγ ∈ Cn,α, n ∈ N, 0 ≤ α < 1,
then the Riemann conformal mapping hasCn,α extension to the boundary (this re-
sult is known as Kellogg’s theorem), see [41], [42], [45], [49] and [50] for related
results. Conformal mappings are quasiconformal and harmonic. Hence quasicon-
formal harmonic (shortly HQC) mappings are natural generalization of conformal
mappings. O. Martio [35] was the first who considered harmonic quasiconformal
mappings on the complex plane. Hengartner and Schober have shown that, for a
given second dilatation (a = fz̄/fz, with ‖a‖ < 1) there exist a q.c. harmonic map-
pingf between two Jordan domains with analytic boundary ([13, Theorem 4.1]).

Recently there has been a number of authors who are working onthe topic. The
situation in which the image domain is different from the unit disk firstly has been
considered by the author in [22]. There it is observed that iff is harmonicK-
quasiconformal mapping of the upper half-plane onto itselfnormlized such that
f(∞) = ∞, thenImf(z) = cy, wherec > 0; hencef is bi-Lipschitz. In [22]
and [25] also characterization of HQC automorphisms of the upper half-plane by
means of integral representation of analytic functions is given.

Using the result of Heinz ([12]): Ifw is a harmonic diffeomorphism of the
unit disk onto itself withw(0) = 0, then |wz|2 + |wz̄|2 ≥ 1

π2 , it can be shown
that, every quasiconformal harmonic mapping of the unit disk onto itself is co-
Lipschitz. Further, Pavlović [44], proved that every quasiconformal selfmapping
of the unit diskU := {z ∈ C : |z| < 1} is Lipschitz continuous, using the
Mori’s theorem on the theory of quasiconformal mappings. Partyka and Sakan
([43]) yield explicit Lipschitz and co-Lipschitz constants depending on a constant
of quasiconformality. Using the Hilbert transforms of the derivative of boundary
function, the first characterizations of HQC automorphismsof the upper half-plane
and of the unit disk have been given in [44, 25]; for further result cf. [36]. Among
the other things Knežević and Mateljević in [16] showed that a q.c. harmonic
mapping of the unit disk onto itself is a(1/K,K) quasi-isometry with respect to
Poincaré distance. See also the paper of Chen and Fang [3] for a generalization of
the previous result to convex domains.

Since the composition of a harmonic mapping and of a conformal mapping is
itself harmonic, using the case of the unit disk and Kellogg’s theorem, these the-
orems can be generalized to the class of mappings from arbitrary Jordan domain
with C1,α boundary onto the unit disk. However the composition of a conformal
and a harmonic mapping is not, in general, a harmonic mapping. This means in
particular that the results of this kind for arbitrary imagedomain do not follow
from the case of the unit disk or the upper half-plane and Kellogg’s theorem.

Using some new methods the results concerning the unit disk and the half-plane
have been extended properly in the papers [24]–[20], [33] and [36]. In particu-
lar, in [26] (and in subsequent paper [28]) it was shown how toapply Kellogg’s
theorem and that simple proof in the case of the upper half-plane has analogy for
C2 domains; namely, by using a Heinz-Berensetin theorem [11, Theorem 4] it was
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proved a version of ”inner estimate” for quasi-conformal diffeomorphisms, which
satisfies a certain Poisson differential inequality. As an application of this estimate,
it was shown that quasi-conformal harmonic mappings between smooth domains
(with respect to the approximately analytic metric), have bounded partial deriva-
tives; in particular, these mappings are Lipschitz.

For related result about quasiconformal harmonic mappingswith respect to the
hyperbolic metric we refer to the paper of Wan [47] and of Marković [34].

Very recently, Iwaniec, Kovalev and Onninen in [14] have shown that, the class
of quasiconformal harmonic mappings is also interesting concerning the modulus
of annuli in complex plane.

In this paper we study Lipschitz continuity of the class ofK-q.c. self-mappings
of the unit disk satisfying elliptic differential inequality. This class contains con-
formal mappings and quasiconformal harmonic mappings.

The main result of this paper is the following theorem which can be considered
as an extension of Kellogg theorem and results of Martio, Pavlović, Partyka, Sakan,
Mateljević and the author.

Note that, we replace the laplace operator∆ by a strictly elliptic operatorL.

Theorem 1.1. If w : U → U, w(a) = 0 is aK q.c. solution of the elliptic partial
differential inequality

|L[w]| ≤ B|∇w|2 + Γ,

then∇w is bounded by a constant depending only onB, Γ K, Λ, L anda andw
is lipschitz continuous.

By using Theorem 1.1, Riemann measure mapping theorem and the fact that
Beltrami equation (under certain smoothness of Beltrami coefficient) reduces to
an elliptic partial differential inequality, we obtain thefollowing result which we
believe could be of interest for the experts in the quasiconformal mappings.

Theorem 1.2. Let w be a q.c. mapping of the unit disk onto itself such that the
Beltrami coefficientµ = wz̄

wz
is Lipschitz continuous inU. Thenw is lipschitz

continuous inU.

The proof of Theorem 1.1 is given in the Section 3. The methodsof the proof
differ from the methods of the proof of corresponding results for the class HQC. In
Section 2 we make some estimates concerning the Green function of the disk, and
some estimates concerning the gradient of a solution to elliptic partial differential
inequality, satisfying certain boundary condition similar to those of the excellent
paper of Nagumo [39]. We first prove interior estimates of thegradient of a so-
lution u of elliptic PDE in terms of constants of elliptic operator, and modulus of
continuity ofu (Theorem 2.5). After that we recall a theorem of Nagumo ([39]),
which shows that, ifu is a solution of elliptic PDE, with vanishing boundary con-
dition defined in a domainD whose boundary has bounded curvature from above
by a constantκ, then|∇u(z)| ≤ γ, z ∈ D, whereγ is a constant depending not
depending onu providing that16BΓ‖u‖∞ < 1 (Theorem 2.8). In order to prove
Theorem 1.1, we previously show that the functionu = |w| satisfies a certain el-
liptic differential inequality near the boundary of the unit disk. In order to show a
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priory bound, we make use of Mori’s theorem which implies that the modulus of
continuity of aK-q.c. self-mapping of the unit disk depends only onK. By using
Theorem 2.5 we show that the gradient is a priory bounded in compacts of the unit
disk, while Theorem 2.8 serve to obtain the a priory bound of gradient ofu in some
”neighborhood” of the boundary of the unit disk. By using thequasiconformality,
we prove that∇w is a priory bounded as well.

2. AUXILIARY RESULTS

2.1. Green function. If h(z, w) is a real function, then by∇zh we denote the
gradient(hx, hy).

Lemma 2.1. Let

h(z, w) = log
|1− zw̄|
|z − w| ,

then

(2.1) ∇zh(z, w) =
1− |w|2

(z̄ − w̄)(wz̄ − 1)

and

(2.2) ∂w∇zh(z, w) = − 1

(1− wz̄)2
, ∂w̄∇zh(z, w) = − 1

(w̄ − z̄)2
.

Proof. First of all
∇h = (hx, hy) = hx + ihy.

Since

hz̄ =
1

2
(hx + ihy),

it follows that
∇h = 2hz̄ .

Since

2h(z) = log

(

1− zw̄

z − w

1− z̄w

z̄ − w̄

)

.

Differentiating we obtain

2hz̄(z) = log

(

1− z̄w

z̄ − w̄

)

z̄

=
|w|2 − 1

(z̄ − w̄)2
z̄ − w̄

1− z̄w
.

This implies (2.1). From

1− |w|2
(z̄ − w̄)(wz̄ − 1)

=
w

wz̄ − 1
+

1

w̄ − z̄

it follows (2.2). �

Corollary 2.2. LetG(ζ, ω) be the Green’s function of the disk{ζ : |ζ − ζ0| ≤ R}
defined by

G(ζ, ω) := log
|ϕ(ζ)− ϕ(ω)|
|1− ϕ(ζ)ϕ(ω)|

,
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where

ϕ(ζ) =
1

R
(ζ − ζ0).

Then

(2.3) |∇ζG(ζ, ω)| ≤ 2

|ζ − ω|

and

(2.4) |∂ωj
∇ζG(ζ, ω)| ≤ 2

|ζ − ω|2 , j = 1, 2.

Proof. Let

ϕ(ζ) =
1

R
(ζ − z0).

Then

ϕ′(ζ) =
1

R
.

Takez = ϕ(ζ) andw = ϕ(ω) and defineh(z, w) = G(ζ, ω). It follows that

(2.5) ∇ζG(ζ, ω) = ∇zh(z, w) · ϕ′(ζ) =
1

R
∇zh(z, w).

Thus

(2.6) |∇ζG(ζ, ω)| = 1

R
|∇zh(z, w)|

Since

1− |w|2
|1− z̄w| ≤

1− |w|2
1− |w| ≤ 2.

Combining with (2.6) and (2.1), we obtain (2.3). To get (2.4), observe first that, for
ω = ω1 + iω2

(2.7) ∂ω1
= ∂ω + ∂ω̄

and

(2.8) ∂ω2
= i(∂ω − ∂ω̄).

On the other hand for|z| ≤ 1 and|w| ≤ 1 we have
∣

∣

∣

∣

1

(1− wz̄)2

∣

∣

∣

∣

≤
∣

∣

∣

∣

1

(w − z)2

∣

∣

∣

∣

.

From (2.7), (2.8), (2.2), (2.5) we deduce (2.4). �
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2.2. Interior estimates of gradient.

Lemma 2.3. Letu : U → C be a continuous mapping. Then there exists a positive
function̟ = ̟u(t), t ∈ (0, 2), such thatlimt→0 ̟u(t) = 0 and

|u(z)− u(w)| ≤ ̟(|z −w|), z, w ∈ U.

The function̟ is called the modulus of continuity ofu

Lemma 2.4. Let Y : D → U be aC2 mapping of a domainD ⊂ U. Let
U(z0, ρ) ⊂ D and letZ ∈ C be any constant number. Then we have the estimate:

|∇h(z0)| ≤
2

ρ2

∫

|y−z0|=ρ
|Y (y)− Z|dH1(y)(2.9)

whereh(z), |z − z0| ≤ ρ is the Poisson integral ofY |z0+ρT anddH1 is the Haus-
dorff probability measure.

Proof. Assume thatv ∈ C2(U) and define

(2.10) H(z) =

∫

T

P (z, η)v(η)dH1(η),

where

(2.11) P (z, η) =
1− |z|2
|z − η|2 , |η| = 1, |z| < 1.

ThenH is a harmonic function. It follows that

(2.12) 〈∇H(z), e〉 =
∫

T

〈∇zP (z, η), e〉 v(η)dH1(η), e ∈ R
2.

By differentiating (2.11), we obtain

∇zP (z, η) =
−2z

|z − η|2 − 2(1− |z|2)(z − η)

|z − η|2+2
.

Hence

∇zP (0, η) =
2η

|η|4 = 2η.

Therefore

(2.13) | 〈∇zP (0, η), e〉 | ≤ |∇zP (0, η)‖e| = 2|e|.
Using (2.12), (2.13), we obtain

| 〈∇H(0), e〉 | ≤
∫

T

|∇zP (0, η)||e||v(η)|dH1(η).

Hence we have

(2.14) |∇H(0)| ≤ 2

∫

T

|v(η)|dH1(η)
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Let v(z) = Y (z0+ρz)−Z andH(z) = P [v|T](z). ThenH(z) = h(z0+ρz)−Z
and∇H(0) = ρ∇h(z0). Inserting this into (2.14) we obtain

ρ|∇h(z0)| = |∇H(0)| ≤ 2

∫

T

|Y (z0 + ρη)− Z|dH1(η).(2.15)

Introducing the change of variablesζ = z0 + ρη in the integral (2.15) we obtain

|∇Y (z0)| ≤
2

ρ2

∫

|ζ−z0|=ρ
|Y (ζ)− Z|dH1(ζ)(2.16)

which is identical with (2.9). �

Theorem 2.5. Let D be a bounded domain, whose diameter isd. Let A(z) =
{aij(z)}2i,j=1 be a symmetric matrix function defined in a domainΩ ⊂ C (aij =

aji) satisfying the condition(1.5)and (1.6). Letu(z) be anyC2 solution of elliptic
partial differential inequality(1.8)such that

(2.17) |u(z)| ≤ M in D.

Then there exist constantsC(0) andC(1), depending on modulus of continuity ofu,
Λ, L, B, Γ, M andd such that

(2.18) |∇u(z)| < C(0)ρ(z)−1 max
|ζ−z|≤ρ(z)

{|u(ζ)|}+ C(1)

whereρ(z) = dist(z, ∂D).

Proof. Fix a pointa ∈ D and letBp, 0 < p < 1, be a closed disk defined by

Bp = {z; |z − a| ≤ p dist(a, ∂D)}.
Its radius is

Rp = p dist(a, ∂D).

Define the functionµp:

(2.19) µp = max
z∈Bp

{|∇u|rp(z)}

whererp(z) = dist (z, ∂Bp) = Rp − |z − a|. Then there exists a pointzp ∈ Bp

such that

(2.20) |∇u(zp)|rp(zp) = µp (zp ∈ Bp).

We need the following result in the sequel.

Lemma 2.6. The functionµp is continuous on(0, 1) and has continuous extension
at 0: µ0 = 0.

Proof of Lemma 2.6.Let pn be a sequence converging to a numberp, let µpn =
|∇u(zn)|rpn(zn) and assume it converges toµ′

p. Prove thatµ′
p = µp. Passing

to a subsequence, we can assume thatzn → z′p. Thenz′p ∈ Bp. Thusµ′
p ≤

µp. On the other handµpn ≥ |∇u((1 − εn)zp)|rpn((1 − εn)zp), whereεn is a
positive sequence converging to zero. It follows thatµ′

p ≥ limn→∞ |∇u((1 −
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εn)zp)|rpn((1 − εn)zp) = µp. Furthermore, sincerp ≤ Rp = p dist(a, ∂D), we
obtain that

lim
p→0+

µp ≤ |∇u(0)| lim
p→0+

Rp = 0.

�

Now letTz = ζ be a linear transformation of coordinates such that

(2.21)
2
∑

i,j=1

aij(zp)Diju = ∆v,

wherev(ζ) = u(z). By [29, Lemma 11.2.1] the transformationT can be chosen
to so that

(2.22) T =

(

λ1
− 1

2 0

0 λ2
− 1

2

)

· R,

whereλ1 andλ2 are eigenvalues of the matrixA(zp) andR is some orthogonal
matrix. Then

1

Λ
≤ λ1, λ2 ≤ Λ.

Let∇2u denotes the Hessian matrix ofu:

∇2u =

(

D11u D12u
D21u D22u

)

.

Since
∇2u = T t∇2vT,

we obtain:

Tr(At∇2u) = Tr(AtT t∇2vT )

= Tr((TA)t∇2vT )

= Tr(∇2vT (TA)t)

= Tr(∇2vTAtT t)

= Tr(Bt∇2v),

where

(2.23) B(ζ) = TA(z)T t.

Then
B(ζp) = I,

(2.24) bij(ζ)Dijv(ζ) = aij(z)Diju(z)

and

(2.25) ∆v = (δij − bij(ζ))Dijv + bij(ζ)Dijv.

FurtherT (D(zp, rp)) ⊂ T (Bp) ⊂ T (D) =: D′. From (2.22) we see that

T (D(zp, rp)) is an ellipse with axes equal toλ−1/2
1 · rp andλ−1/2

2 · rp and with the
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center atζp = T (zp). ThenDλ := {ζ : |ζ − ζp| ≤ λrp} is a closed disk inT (Bp)
provided that

(2.26) 0 < λ <
1

2
√
Λ
.

LetG(ζ, ω) be the Green’s function of the diskDλ. So that from (2.25)

v = − 1

π

∫

Dλ

G(ζ, ω)(δij − bij(ω))Dijv(ω)dL2(ω)

− 1

π

∫

Dλ

G(ζ, ω)bij(ω)Dijv(ω)dL2(ω) + h(ζ),

wheredL2(z) = dxdy is the Lebesgue two-dimensional measure in the complex
plane andh(ζ) is the harmonic function which takes the same value asv(ζ) for
ζ ∈ ∂Dλ. Then

(2.27) |∇v(ζp)| ≤ P +Q+R,

where

P = | 1
π

∫

Dλ

∇ζG(ζp, ω)b
ij(ω)Dijv(ω)dL2(ω)|

Q = | 1
π

∫

Dλ

∇ζG(ζp, ω)(δij − bij(ω))Dijv(ω)dL2(ω)|

R = |∇ζh(ζp)|.
Further, it follows by (1.5) and (2.23) that

∇B(ζ) · T = T · ∇A(z) · T t.

SinceΛ−1/2|z| ≤ |Tz| ≤ Λ1/2|z|, we obtain

(2.28) |∇B(ζ)| ≤ |T |3|∇A| ≤ Λ3/2
L.

Thus

‖B(ζ)−B(ζp)‖ = ‖B(ζ)− I‖ ≤ Λ3/2
L|ζ − ζp|(2.29)

As
d(T (z), T (zp)) ≤ λrp(zp),

by using the inequalities

rp(zp) ≤ d(z, zp) + rp(z),

d(z, zp) ≤ Λ1/2d(T (z), T (zp))

and
|∇u(z)|rp(z) ≤ µp,

we obtain

|∇u(z)| ≤ (1− λΛ1/2)−1rp(zp)
−1µp for z ∈ T−1(Dλ)(⊂ Bp).



ON QUASICONFORMAL MAPPINGS AND ELLIPTIC PDE IN THE PLANE 11

From (2.26) we obtain that

(2.30) (1− λΛ1/2)−2 < 4.

Having in mind the formula∇u(z) = ∇v(ζ) · T we obtain

(2.31) |∇v(ζ)| ≤ 2Λ1/2rp(zp)
−1µp

for ω ∈ Dλ.
Since

|aij(z)Diju| ≤ B|∇u|2 + Γ,

|bij(ζ)Dijv(ζ)| = |aij(z)Diju(z)|,
it follows that

(2.32) |bij(ζ)Dijv(ζ)| ≤ B|T |2|∇v|2 + Γ = BΛ|∇v|2 + Γ

and

(2.33) |bij(ζ)Dijv(ζ)| ≤ 2Brp(zp)−2µ2
p + Γ.

From now on we divide the proof into four steps:
Step 1: Estimation ofP. From (2.3) and (2.32) we first have.

| 1
π

∫

Dλ

∇ζG(ζp, ω)b
ij(ω)Dijv(ω)dL2(ω)|

≤ 2

π

∫

|ω−ζp|≤λrp(zp)

1

|ω − ζp|
|bij(ω)Dijv(ω)|dL2(ω)

≤ 2

π

∫

|ω−ζp|≤λrp(zp)

1

|ω − ζp|
(BΛ|∇v|2 + Γ)dL2(ω)

Proceeding as in the proof of [39, Theorem 2] we obtain that

(2.34) P ≤
4Bλµ2

p

rp
+ 2Γrpλ.

Step 2: Estimation ofQ. Let nω = (cosα1, cosα2) be the unit inner vector of
∂Dλ atω. Then from Green formula

∫

∂Dλ

2
∑

i=1

ui(ω) cosαidH1(ω) =

∫

Dλ

(∂ω1
u1 + ∂ω2

u2)dL2(ω),

proceeding as in [39, Theorem 2], we obtain

Q ≤ | 1
π

∫

|ω−ζp|=λrp(zp)
∇ζG(ζp, ω)(δij − bij(ω))∂iv(ω) cosαjdH1(ω)|

+ | 1
π

∫

|ω−ζp|≤λrp(zp)
∇ζG(ζp, ω)∂ωj

bij(ω)∂iv(ω)dL2(ω)|

+ | 1
π

∫

|ω−ζp|≤λrp(zp)
∂ωj

∇ζG(ζp, ω)(δij − bij(ω))∂iv(ω)dL2(ω)|.

(2.35)
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By using the Cauchy-Schwarz inequality, (2.3), (2.4), (2.31) and the fact that|ζp−
ω| = λrp(zp) we obtain

(2.36) Q ≤ 16ΛLλµp.

Step 3: Estimation ofR.
Let̟(t) = ̟v(t) be the modulus of continuity ofv as in Lemma 2.3. From (2.9),
for Z = v(ζp) (Z = 0), Y (ζ) = v(ζ) andρ = λrp(zp), by using Lemma 2.4 and
2.3 we obtain

R ≤ |∇h(zp)| ≤
2

λrp(zp)2

∫

|ω−ζp|=λrp(zp)
|v(ω)− Z|dH1(ω)

≤ 2

λrp(zp)
max{|v(ζ) − Z| : |ζ − ζp| = λrp(zp)}

≤ min{2̟(λrp(zp)), 2K}
λrp(zp)

,

(2.37)

where

(2.38) K = sup
|z−a|≤ρ(a)

|u(z)|.

Step 4: The finish of the proof.As

|∇v(ζ) ≥ Λ−1/2|∇u(zp)| = Λ−1/2rp(zp)
−1µp

andrp(zp) < 2ρ(a) ≤ d, we get from (2.27), (2.34), (2.36) and (2.37),

(2.39) A0µ
2
p +B0µp + C0 ≥ 0,

where
A0 = 4Bλ,

B0 = 16ΛLλrp(zp)− Λ−1/2

and

C0 = 2Γrp
2(zp)λ+

2min{̟(λrp(zp)),K}
λ

.

We can takeλ > 0 depending on̟ , Λ, L, B, Γ andd so small that

(2.40) B2
0 > 4A0C0

and

(2.41) 16ALλ ≤ 1/2Λ−1/2.

Let µ1 andµ2 (µ1 < µ2) be the distinct real roots of the equation

(2.42) A0µ
2 +B0µ+C0 = 0.

Then we have from (2.39)

µp ≤ µ1 or µp ≥ µ2(µ1 < µ2).
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Lemma 2.6 asserts thatµp depends onp continuously for0 < p < 1 andlimp→0 µp =
0. Then we have onlyµp ≤ µ1. And, lettingp tend to1, by the definition ofµp

(2.43) |∇u(a)| ≤ µ1ρ(a)
−1.

As µ1 is the smaller root of (2.42),

µ1 =
−B0 −

√

B2
0 − 4A0C0

2A0

=
2C0

−B0 +
√

B2
0 − 4A0C0

≤ −2C0

B0
.

From (2.43) and (2.38) we get

(2.44) |∇u(a)| ≤ C(1)ρ(a)−1 sup
|z−a|≤ρ(a)

|u(z)| + C(2)

whereC(1) andC(2) depend onΛ, L, B, M , Γ, d and on modulus of continuity of
u.

�

2.3. Boundedness of gradient.

Definition 2.7. We say that a domainD satisfies theexterior sphere conditionfor
someκ > 0, if: To any pointp of ∂D there corresponds a ballBp ⊂ C with radius
κ such thatD ∩Bp = {p}.

Theorem 2.8(A priory bound). [39, Lemma 2]LetD be a complex domain with
diameterd satisfying exterior sphere condition for someκ > 0. Let u(z) be a
twice differentiable mapping satisfying the elliptic differential inequality(1.8) in
D satisfying the boundary conditionu = 0 (z ∈ G). Assume in addition that
|u(z)| ≤ M , z ∈ D,

(2.45)
4

π
· 16BΓM < 1

andu ∈ C(D). Then

(2.46) |∇u| ≤ γ, z ∈ D,

whereγ is a constant depending onκ, M , B, Γ, L, Λ andd only.

Remark 2.9. See [9, Theorem 15.9] for a related result. In the statement of [39,
Lemma 2] instead of condition (2.45) appears

16BΓM < 1,

however its proof lays on [39, Theorem 2], whose proof, it seems that, works only
under the condition (2.45). Indeed the right hand side of theinequality in the first
line on [39, p. 214] should be multiplied by

2Γ(1 +m/2)√
πΓ((m+ 1)/2)

,
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wherem is the dimension of the space (in our casem = 2) and

2Γ(1 + 2/2)√
πΓ((2 + 1)/2)

=
4

π
.

3. PROOF OF THE MAIN THEOREMS

We need the following lemmas.

Lemma 3.1. [23] EveryK−q.r. mappingw(z) = ρ(z)S(z) : D → Ω,D,Ω,⊂ C,
ρ = |w|, S(z) = eis(z), s(z) ∈ [0, 2π), satisfies the inequalities

(3.1) ρ|∇S| ≤ K|∇ρ|
and

(3.2) |∇ρ| ≤ Kρ|∇S|
almost everywhere onD. Inequalities(3.1)and (3.2)are sharp: the equality

(3.3) ρ|∇S| = |∇ρ|
holds ifw is a1-quasiregular mapping. We also have

(3.4) K−1|∇w| ≤ |∇ρ| ≤ |∇w|.
Lemma 3.2. If w = ρS : U → U, ρ = |w|, is twice differentiable, then

(3.5) L[ρ] = ρ(a11|p|2 + 2a12 〈p, q〉+ a22|q|2) + 1

2
〈L[w], S〉 ,

wherep = D1S andq = D2S.
If in additionw isK − q.c. and satisfies

(3.6) |L[w]| = |
2
∑

i,j=1

aij(z)Dijw| ≤ B|∇w|2 + Γ,

then there exists constantsΘ andΠ depending onK, B andΓ such that

(3.7) |L[ρ]| ≤ Θ

ρ
|∇ρ|2 +Π.

Proof. Let w = (w1, w2) (herewi are real), letS = (S1, S2) and letf = (f1, f2).
For real differentiable functionsa andb define the bi-linear operator

D[a, b] =

2
∑

k,l=1

akl(z)Dka(z)Dlb(z).

Sincewi = ρSi, i ∈ {1, 2} and

ρ =

2
∑

i=1

Siwi,

we obtain:

(3.8) L[wi] = SiL[ρ] + ρL[Si] + 2D[ρ, Si], i ∈ {1, 2}
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and

(3.9) L[ρ] =

2
∑

i=1

wiL[Si] +

2
∑

i=1

SiL[wi] + 2

2
∑

i=1

D[Si, wi].

From (3.8) we obtain

L[ρ] = L[ρ]|S|2

=

n
∑

i=1

Si · SiL[ρ]

=

2
∑

i=1

SiL[wi]− ρ

2
∑

i=1

SiL[Si]− 2

2
∑

i=1

SiD[ρ, Si].

(3.10)

By adding (3.9) and (3.10) we obtain

L[ρ] =
2
∑

i=1

(D[Si, wi]− SiD[ρ, Si]) +
1

2
〈L[w], S〉 .

On the other hand

D[Si, wi]− SiD[Si, ρ] =

2
∑

k,l=1

akl(z)DkSiDlwi − Si

2
∑

k,l=1

akl(z)DkSiDlρ

=

2
∑

k,l=1

akl(z)DkSi(ρDlSi + SiDlρ)− Si

2
∑

k,l=1

akl(z)DkSiDlρ

= ρ

2
∑

k,l=1

akl(z)DkSiDlSi, i = 1, 2.

Thus

L[ρ] = ρ

2
∑

i,k,l=1

akl(z)DkSiDlSi +
1

2
〈L[w], S〉

= ρ(a11|p|2 + 2a12 〈p, q〉+ a22|q|2) + 1

2
〈L[w], S〉 ,

wherep = (D1S1,D1S2) andq = (D2S1,D2S2). Therefore

|L[ρ]| ≤ Λρ(|p|2 + |q|2) + 1

2
(B|∇w|2 + Γ)

= Λρ‖∇S‖2 + 1

2
(B|∇w|2 + Γ).

Here‖ · ‖ is Hilbert-Schmidt norm which satisfies the inequality‖P‖ ≤
√
2|P |. If

w isK−q.c., then according to (3.1) and (3.3) we have

|L[ρ]| ≤
√
2KΛ

ρ
|∇ρ|2 + 1

2
(BK|∇ρ|2 + Γ).

TakingΘ =
√
2KΛ+ BK/2 andΠ = Γ/2 we obtain (3.7). �
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Lemma 3.3. If f = u + iv is a K q.c. mapping satisfying elliptic differential
inequality, thenu andv satisfy the elliptic differential inequality.

Proof. Let

A := |∇u|2 = 2(|uz|2 + |uz̄|2) =
1

2
(|fz + fz̄|2 + |fz̄ + fz|2)

and

B := |∇v|2 = 2(|vz |2 + |vz̄|2) =
1

2
(|fz − fz̄|2 + |fz̄ − fz|2).

Then
A

B
=

|1 + µ|2
|1− µ|2

whereµ = fz̄/fz. Since|µ| ≤ k = K−1
K+1

(3.11)
(1− k)2

(1 + k)2
≤ A

B
≤ (1 + k)2

(1− k)2
.

As
|L[f ]| = |L[u] + iL[v]| ≤ B|∇f |2 + Γ ≤ B(|∇u|2 + |∇v|2) + Γ,

the relation (3.11) yields

|L[u]| ≤ B
(

1 +
(1 + k)2

(1− k)2

)

|∇u|2 + Γ

and

|L[v]| ≤ B
(

1 +
(1 + k)2

(1− k)2

)

|∇v|2 + Γ.

�

Before proving the main theorems of this paper let us recall one of the most
fundamental results concerning quasiconformal mappings

Proposition 3.4 (Mori). If w : U → U, w(0) = 0, is aK quasiconformal har-
monic mapping of the unit disk onto itself, then

|w(z1)− w(z2)| ≤ 16|z1 − z2|1/K , z1, z2 ∈ U.

Theorem 3.5. If w : U → U, w(a) = 0, is a K q.c. solution of the elliptic
differential inequality

|L[w]| ≤ B|∇w|2 + Γ,

then∇w is bounded by a constantC(K,B,Γ,Λ,L, a) andw is lipschitz continu-
ous.

Proof. The idea of the proof is to estimate the gradient ofw in some ”neighbor-
hood” of the boundary together with some interior estimate in the rest of the unit
disk. Let 1+|a|

2 ≤ α < 1 andβ = α+1
2 . DefineDα = {z : |z| ≤ β} and

Aα = {z : α ≤ |z| < 1}.
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Let w = (w1, w2). According to Theorem 2.5 and Lemma 3.3, there exists a
constantCi depending only on modulus of continuity ofwi, B, Γ, K, Λ, L andα
such that

(3.12) |∇wi(z)| ≤ Ci, z ∈ Dα, i = 1, 2.

By Mori’s theorem, the modulus of continuity ofwi depends only onK anda.
Thus

(3.13) |∇w(z)| ≤ |∇w1|+|∇w2| ≤ C1+C2 = C3(K,B,Γ,Λ,L, α), z ∈ Dα.

As w is K quasiconformal selfmapping of the unit disk, by Mori’s theorem ([48])
it satisfies the inequality:

(3.14) 41−K

∣

∣

∣

∣

a− z

1− zā

∣

∣

∣

∣

K

≤ |w(z)|, |z| < 1,

wherea = w−1(0). Letu = |w|. From Lemma 3.2 and (3.14)

(3.15) |L[u]| ≤ 23K−2

(

1 + |a|
1− |a|

)K

Θ|∇u|2 +Π, (1 + |a|)/2 < |z| < 1.

Let g be a function
g : D → R

defined such that

g(z) =







1, if β < |z| ≤ 1;

1 + (u(z)− 1)
exp 1

|z|2−β2

exp 1

α2−β2

, if α ≤ |z| ≤ β.

Let

φ(z) :=
exp 1

|z|2−β2

exp 1
α2−β2

.

Then

L[g] =

{

0, if β < |z| ≤ 1;
(u(z) − 1)L[φ] + φL[u] +D[u, φ], if α ≤ |z| ≤ β.

Therefore

(3.16) |L[g]| ≤
{

0, if β < |z| ≤ 1;
B1|∇u|2 + Γ1, if α ≤ |z| ≤ β,

where

B1 = 23K−2

(

1 + |a|
1− |a|

)K (√
2KΛ+

BK
2

)

andΓ1 is a constant depending only onK, B, Γ, Λ, L andα. By (3.4), (3.13) and
(3.16) we have

(3.17) |L[g]| ≤ C4(K,B,Γ,Λ,L, α), z ∈ Aα

and

(3.18) |∇g| ≤ C5(K,B,Γ,Λ,L, α), z ∈ Aα.
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Furthermore, by using the inequalities (3.15), (3.17) and (3.18) and|a + b|2 ≤
2(|a|2 + |b|2) we have

|L[u− g]| ≤ |L[u]|+ |L[g]|
≤ B1|∇u|2 + C7(K,B,Γ,Λ,L, α)
≤ 2B1|∇u−∇g|2 + C8(K,B,Γ,Λ,L, α), z ∈ Aα.

By Mori’s theorem, there exists a constantα = α(K,a) < 1 such that if

M = max{|u(z) − g(z)| : z ∈ Aα}
then there holds

(3.19)
64

π
· 2B1MΛ < 1.

Thusũ = u − g satisfies the conditions of Theorem 2.8 in the domainD = Aα.
The conclusion is that∇u is bounded inβ < |z| < 1 by a constant depending only
onK, B, Γ, Λ, L anda and on modulus of continuity of̃u. From Mori’s theorem,
the modulus of continuity ofu depends only onK anda. From (3.18), the modulus
of continuity of g do not depends onu. Combining the last fact and the relation
(3.4) we obtain

(3.20) |∇w| ≤ C0(K,B,Γ,Λ,L, a), β < |z| < 1.

From (3.13) and (3.20) we obtain the desired conclusion.
�

Mori’s theorem for q.c. selfmappings of the unit disk has been generalized in
various directions in the plane and in the space. See for example the papers [15],
[8] and [7].

In the following theorem we show that, a q.c. mapping is Lipschitz continuous
under certain regularity condition on Beltrami coefficient.

Theorem 3.6. Letw be aK-q.c. mapping of the unit diskU onto itself such that
the Beltrami coefficientµ = wz̄

wz
is Lipschitz continuous inU. Thenw is Lipschitz

continuous inU.

Remark 3.7. Under the condition of Theorem 3.6, the functionw is C1,α(U),
α < 1, ([2, Theorem 15.0.7]) but the last fact of course do not implies thatw is
Lipschitz inU.

Proof. Let

Φ(z) =

{

C exp
(

1
|z|2−1

)

, if |z| < 1

0, otherwise.

Here the constantC is chosen so that
∫

C
Φ(z) = 1. Let ε > 0,

φε = ε2Φ
(z

ε

)

,

µ(z) := 0, z ∈ C \U, and define

µε(z) = φε ∗ µ(z) =
∫

C

φε(z − τ)µ(τ)dL2(τ), z ∈ U.
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Thenµε is C∞(U) and satisfies the inequalities

(3.21) ‖µε‖∞ ≤ ‖µ‖∞
and

(3.22) ‖∇µε‖∞ ≤ ‖∇µ‖∞ = Υ.

According to Riemann measure mapping theorem there exists ahomeomorphic
solutionwε : U → U of Beltrami equationwz̄ = µεwz normalized bywε(a) =
w(a) = 0 andwε(1) = w(1) (see e.g. [2, Theorem 9.0.3]). The solutionwε is
C∞(U) becauseµε ∈ C∞ (see e.g. [2, Theorem 15.0.7]). Thenwε converges
uniformly on compact subsets ofU to the mappingw asε → 0.

Let µε = α + iβ andwε = u + iv. Thenwεz̄ = µεwεz is equivalent to the
system:

(1− α)ux − (1 + α)vy = β(uy − vx)
(1 + α)uy + (1− α)vx = β(ux + vy).

Hence
vx = −a22uy − a12ux

vy = a11ux + a12uy,

where

a11 =
|µε|2 + 1− 2α

1− |µε|2
,

a22 =
|µε|2 + 1 + 2α

1− |µε|2
and

a21 = a12 =
−2β

1− |µε|2
.

Sincevxy = vyx it follows

(3.23) L[u] := L[u] + (a11x + a12y )ux + (a22y + a12x )uy = 0,

where
L[u] := a11uxx + 2a12uxy + a22uyy.

It is easily to see that, the matrixAε = {aij}2i,j=1 satisfies the elliptic condition

1

K(z)
≤ 〈Aε(z)h, h〉 ≤ K(z), |h| = 1,

where, because of (3.21)

K(z) =
1 + |µε(z)|
1− |µε(z)|

≤ K.

Furthermore, sinceµε is lipschitz with Lipschitz constantΥε ≤ Υ, it follows that

|Aε(z)−Aε(w)| ≤ L|z − w|,
whereL depends only onΥ and onK.

Similarly we obtain thatv satisfies the same PDE

(3.24) L[v] = 0.
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Thus

(3.25) L[wε] = L[u] + iL[v] = 0.

It follows thatwε is a solution of elliptic partial differential inequality

|L[wε]| ≤ B|∇wε|2 + Γ,

for someB > 0 andΓ > 0 depending onΥ andK but not depending onε (because
of (3.22)). From Theorem 3.5 it follows that

|wε(z1)− wε(z2)| ≤ C(K,Υ, a)|z1 − z2| z1, z2 ∈ U.

Aswε converges tow we obtain the desired conclusion. �

An immediate consequence of Theorem 3.6 is the following corollary:

Corollary 3.8. If w is a q.c. selfmapping of the unit disk with constant Beltrami
coefficient, thenw is bi-Lipschitz continuous.

Remark 3.9. Under the conditions of Corollary 3.8 we can say much more. Namely,
w = ϕ(az + bz), wherea, b are two complex constants andϕ is a conformal map-
ping of an elipse to the unit disk.

By using Theorem 3.6, Kellogg theorem and the formula

µϕ◦f = µf ,

whereϕ is a conformal mapping we obtain

Corollary 3.10. Let w be aK-q.c. mapping of the unit diskU onto a Jordan
domainΩ with C1,α boundary such that the Beltrami coefficientµw is Lipschitz
continuous inU. Thenw is lipschitz continuous inU.

Example 3.11. [2, p. 391]. Letg(z) = −z log |z|2, where|z| ≤ r = e−2, then
g : rU → 4rU is a homeomorphism and

∂g

∂z̄
= −z

z̄
,

∂g

∂z
= −1− log |z|2, µg(z) =

z

z̄(1 + log |z|2) .

Thusg is quasiconformal with continuous Beltrami coefficient, and yetg is not Lip-
schitz. The mappingf(z) = 1

4rg(rz) is a q.c. mapping of the unit disk onto itself
with continuous Beltrami coefficient, butg is not Lipschitz neither locally Lips-
chitz. Thus the conditionµf is Lipschitz continuous in Theorem 3.6 is important
even for local Lipschitz behavior of a solution to Beltrami equationwz̄ = µ(z)wz .
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