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ON QUASICONFORMAL SELFMAPPINGS OF THE UNIT DISK AND
ELLIPTIC PDE IN THE PLANE

DAVID KALAJ

ABSTRACT. In this paper we prove the following theorem:uifis a quasicon-
formal mapping of the unit disk onto itself satisfying etlppartial differential
inequality |L[w])| < B|Vw|* + T, thenw is Lipschitz continuous. This re-
sults extends some recent results, where instead of eltiffferential operator
is considered Laplace operator only. By using this resudtshow that a quasi-
conformal selfmapping of the unit disk is Lipschitz contius provided that the
Beltrami coefficient is Lipschitz continuous.

1. INTRODUCTION AND NOTATION

11 a12

1.1. Quasiconformal mappings. Let A = <Zzl a22> . We will consider the

matrix norm:

|A| = max{|Az| : z € R?,|2| = 1}
and the matrix function

I(A) = min{|Az| : z € R? |2| = 1}.

Let D andf2 be subdomains of the complex pla@gandw = u+iv : D — ) be
a function that has both partial derivatives at a peirt D. By Vw(z) we denote

the matrix (u“’” uy) . For the matrixVw we have

Uy Uy
(1.1) |Vw| = [0w| + |0w|
and
(1.2) [(Vw) = ||ow] — |0w]|,
where
ow = w, := % <wx + %wy> andow = w; := % <wx — %wy> .

We say that a functiom : D — R is ACL (absolutely continuous on lines) in
the regionD, if for every closed rectangl& C D with sides parallel to the and
y-axes,u is absolutely continuous on a.e. horizontal and a.e. \&rliice in R.
Such a function has of course, partial derivativgsu,, a.e. inD.
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A sense-preserving homeomorphism D — , where D and() are subdo-
mains of the complex plan€, is said to bek -quasiconformal §-g.c), K > 1, if
w is ACL in D in the sense that the real and imaginary part are ACL in D, and

(1.3) |[Vw| < KI(Vw) a.e.onD,
(cf. [1], pp. 23—24). Notice that the conditidn (I1.3) can heétten as

K-1. 1+k
| < a.e.onDwherek = ——ie. K = ——.
|lwsz| < klw,| a.e wherek K+1|e T %

If in the previous definition replace the conditiow’ls a sense-preserving home-
omorphism” by the condition % is continuous” we obtain the definition of a
quasiregular mapping.

1.2. Elliptic operator. Let A(z) = {a"/(2)}7,_, be a symmetric matrix function

defined in a domai® C C (a¥ = a’%). Assume that
(1.4) At < (A(2)h,h)y <A for |h| =1,

whereA is a constant> 1 or in coordinates

2 2
(1.5) A<D a(2)hihy < Afor > hE =1

i,j=1 i=1
In addition we assume that

(1.6) |A(z) — A(C)| < £|¢ — 2| forany z,{ € D.
For

2 ..
@7 Llu] := Z a"” (z)Diju(z),

ij=1
subjected to condition$ (1.5) arid (11.6) we consider theotlg differential in-
equality

(1.8) |L[u]| < B|Vul> +T,
or, by using Einstein convention
(1.9) |a" (2)Dyju| < B|Vul> +T,

and call itelliptic partial differential inequality. Observe that, ifA is the identity
matrix, thenL is the Laplace operatak. A C? solutionsu : D — R(C) of the
equationAwv = 0 is called a harmonic function (mappings) and the corresipgnd
inequality [1.7) is calledPoisson differential inequalityThe class of harmonic qua-
siconformal mappings (HQC) has been one of recent maingayinvestigation
of some authors. See the subsection below. For the conndmigveen quasicon-
formal mappings and PDE we refer to the book [2]. See also f@pter 12],([6],
[40] and [46].
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1.3. Background and statement of the main results.Let v be a Jordan curve.
By the Riemann mapping theorem there exists a Riemann goafanapping of
the unit disk onto a Jordan domdih= int . By Caratheodory’s theorem it has a
continuous extension to the boundary. Moreover  C™*, n € N,0 < a < 1,
then the Riemann conformal mapping l{&%* extension to the boundary (this re-
sult is known as Kellogg's theorem), seel[41],1[42].][450]4nd [50] for related
results. Conformal mappings are quasiconformal and hammeétence quasicon-
formal harmonic (shortly HQC) mappings are natural getieatibn of conformal
mappings. O. Martio [35] was the first who considered harmaopiasiconformal
mappings on the complex plane. Hengartner and Schober havanghat, for a
given second dilatatioru(= f/f., with ||a|| < 1) there exist a g.c. harmonic map-
ping f between two Jordan domains with analytic boundary! ([13 ofdma 4.1]).

Recently there has been a number of authors who are workitigedopic. The
situation in which the image domain is different from thetuhsk firstly has been
considered by the author ih [22]. There it is observed that i$ harmonick -
guasiconformal mapping of the upper half-plane onto itselfimlized such that
f(00) = o0, thenImf(z) = cy, wherec > 0; hencef is bi-Lipschitz. In [22]
and [25] also characterization of HQC automorphisms of theeu half-plane by
means of integral representation of analytic functionsviery

Using the result of Heinz [([12]): liv is a harmonic diffeomorphism of the
unit disk onto itself withw(0) = 0, then|w.|? + Jwz[> > Z;, it can be shown
that, every quasiconformal harmonic mapping of the unik disto itself is co-
Lipschitz. Further, Pavlovi€ [44], proved that every quaaformal selfmapping
of the unit diskU := {z € C : |z| < 1} is Lipschitz continuous, using the
Mori’s theorem on the theory of quasiconformal mappingsrtyRa and Sakan
([43]) yield explicit Lipschitz and co-Lipschitz constaniiepending on a constant
of quasiconformality. Using the Hilbert transforms of theridative of boundary
function, the first characterizations of HQC automorphisifrthe upper half-plane
and of the unit disk have been given in[44] 25]; for furthesulecf. [36]. Among
the other things Knezevic and Mateljevi¢ in_[16] showédtta g.c. harmonic
mapping of the unit disk onto itself is@ /K, K) quasi-isometry with respect to
Poincaré distance. See also the paper of Chen and Fang @pfneralization of
the previous result to convex domains.

Since the composition of a harmonic mapping and of a confomagping is
itself harmonic, using the case of the unit disk and Kellegheorem, these the-
orems can be generalized to the class of mappings from ampidiordan domain
with C'® boundary onto the unit disk. However the composition of afaonal
and a harmonic mapping is not, in general, a harmonic mappifgs means in
particular that the results of this kind for arbitrary imagemain do not follow
from the case of the unit disk or the upper half-plane anddggjts theorem.

Using some new methods the results concerning the unit digkree half-plane
have been extended properly in the papers [24]-[20], [3d][88]. In particu-
lar, in [26] (and in subsequent paper [28]) it was shown howagply Kellogg's
theorem and that simple proof in the case of the upper hatigphas analogy for
C? domains; namely, by using a Heinz-Berensetin theorern [h&pflem 4] it was
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proved a version of "inner estimate” for quasi-conformdfegimorphisms, which
satisfies a certain Poisson differential inequality. Aswliaation of this estimate,
it was shown that quasi-conformal harmonic mappings betveeeooth domains
(with respect to the approximately analytic metric), haeeifded partial deriva-
tives; in particular, these mappings are Lipschitz.

For related result about quasiconformal harmonic mappivigsrespect to the
hyperbolic metric we refer to the paper of Wanl[47] and of Mmik [34].

Very recently, lwaniec, Kovalev and Onninen [in [14] havewshdhat, the class
of quasiconformal harmonic mappings is also interestingceming the modulus
of annuli in complex plane.

In this paper we study Lipschitz continuity of the clasgo{g.c. self-mappings
of the unit disk satisfying elliptic differential inequiti This class contains con-
formal mappings and quasiconformal harmonic mappings.

The main result of this paper is the following theorem whieh be considered
as an extension of Kellogg theorem and results of Martiold®#y Partyka, Sakan,
Mateljevi¢ and the author.

Note that, we replace the laplace operatoby a strictly elliptic operator..

Theorem 1.1.1f w : U — U, w(a) = 0is a K g.c. solution of the elliptic partial
differential inequality

|L[w]| < B|Vw|* +T,
thenVw is bounded by a constant depending only®i* K, A, £ anda andw
is lipschitz continuous.

By using Theoreni 111, Riemann measure mapping theorem anfadh that
Beltrami equation (under certain smoothness of Beltrameffament) reduces to
an elliptic partial differential inequality, we obtain ttellowing result which we
believe could be of interest for the experts in the quasmonél mappings.

Theorem 1.2. Letw be a g.c. mapping of the unit disk onto itself such that the
Beltrami coefficienty = g— is Lipschitz continuous ilJ. Thenw is lipschitz
continuous inU.

The proof of Theorerh 111 is given in the Section 3. The metluddke proof
differ from the methods of the proof of corresponding restdt the class HQC. In
Section 2 we make some estimates concerning the Greenduoraftthe disk, and
some estimates concerning the gradient of a solution tatiellpartial differential
inequality, satisfying certain boundary condition simila those of the excellent
paper of Naguma_ [39]. We first prove interior estimates of ghadient of a so-
lution v of elliptic PDE in terms of constants of elliptic operatondamodulus of
continuity ofu (Theoren 2.b). After that we recall a theorem of Nagumol([39]
which shows that, i is a solution of elliptic PDE, with vanishing boundary con-
dition defined in a domai® whose boundary has bounded curvature from above
by a constank, then|Vu(z)| < v, z € D, wherey is a constant depending not
depending on providing thatl68T ||ull» < 1 (Theoren2.B). In order to prove
Theoreni Lll, we previously show that the functior- |w| satisfies a certain el-
liptic differential inequality near the boundary of the udisk. In order to show a
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priory bound, we make use of Mori’'s theorem which impliest tt@ modulus of
continuity of aK-g.c. self-mapping of the unit disk depends onlyign By using

Theoreni 26 we show that the gradient is a priory boundedrimpeats of the unit
disk, while Theorerh 218 serve to obtain the a priory boundraéignt ofu in some

"neighborhood” of the boundary of the unit disk. By using theasiconformality,
we prove thalVw is a priory bounded as well.

2. AUXILIARY RESULTS

2.1. Green function. If h(z,w) is a real function, then by .» we denote the
gradient(hy, hy).

Lemma 2.1. Let

h(z,w) = log "12 _Z;U",
then
1— |w|?
(2.1) V.h(z,w) = G o) wz =1
and
(2.2) 0wV h(z,w) = —% OsV:h(z,w) = —%-
’ (1 —wz)?’ ’ (w— 2)?

Proof. First of all
Vh = (hg, hy) = hy + ihy,.
Since
hs = %(hm + ihy)a
it follows that

Since ) B
2h(z) =log <1 — W 1__ in> .
Z—w Z—W

Differentiating we obtain

2hz(z) = log <
This implies [2.1). From

1 — |w|? __w 1
z-w)(wz—1) wz—-1 w-2

it follows (2.2). O

Corollary 2.2. LetG((,w) be the Green’s function of the digK : [ — (o] < R}
defined by

1—z CwP-1z-w
. (F-w)?1-zw’

gl

z —

0(C) — o)
G((,w) :=log —————,
]
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where
1
e(C) = E(C —Co)-
Then
2
(2.3) |V4G(§,w)| < m
and
2
Proof. Let
P(0) = £ (¢ )
Then
, 1
©(C) = i
Takez = ¢(¢) andw = ¢(w) and defingi(z, w) = G((,w). It follows that
(25) VGG w) = Vah(z,w) - #/(0) = 1 Veh(z,w).
Thus
(26) V(GG w) = £IVsh(z,w)
Since

1w 1w
1 —Zzw| = 1—|w| —

Combining with [2.6) and (2]1), we obtailn (P.3). To det{2abserve first that, for

w = w1 + two

(27) awl = aw + a{f}
and
(2.8) Oy = (0 — O)-

On the other hand foe| < 1 and|w| < 1 we have

‘(1 —1102)2 - ‘(w —1 2|

From (2.7),[(2.B),[(Z]2)[(Z215) we deduce (2.4). O
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2.2. Interior estimates of gradient.

Lemma 2.3. Letu : U — C be a continuous mapping. Then there exists a positive
functionw = w,(t), t € (0,2), such thatim;_,o @, (¢) = 0 and

u(z) —uw(w)] < @(]z —wl), z,wel.
The functionw is called the modulus of continuity of

Lemma 2.4. LetY : D — U be aC? mapping of a domairD c U. Let
U(zo,p) C D and letZ € C be any constant number. Then we have the estimate:

2.9) Wansé/’ Y (y) — Z|dH (y)

ly—zo|=p

whereh(z), |z — 29| < p is the Poisson integral dof |, ,~ anddH! is the Haus-
dorff probability measure.

Proof. Assume that € C?(U) and define

(2.10) H(2) = | P! ()
T
where
(2.11) Py = B <t
’ |z —n[?’ ’

ThenH is a harmonic function. It follows that

2.12)  (VH(2),e) = /T (V. P(2,n),¢) v(m)dH (n), e c RZ.

By differentiating [(2.111), we obtain
-2z 2(1—|2*)(z —n)

V.P(z,n) = —
Sl P e P L
Hence
2n
va 0777 =T =40

(©.m) |t
Therefore
(2.13) [ {(V.P(0,n),¢e) | < [V.P0,n)le] = 2le].

Using (2.12),[(2.1), we obtain
(VH©).¢) | < [ [9POmelloln)ldH! (1)
T
Hence we have

(2.14) |VH®»s2[mewH%m
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Letv(z) = Y(20+pz)— Z andH (z) = Plv|t|(z). ThenH (z) = h(zo+pz)—Z
andVH (0) = pVh(zp). Inserting this into[(2.14) we obtain

@15)  pIVhG0l = [VHO) <2 [ V(o + pm) - Z1dH! ().
Introducing the change of variablés= z; + pn in the integral[(2.15) we obtain
2
(2.16) VYGall <5 [ Q) - Ziant(©)
P JI¢—z0l=p
which is identical with[(2.D). O

Theorem 2.5. Let D be a bounded domain, whose diametetlisLet A(z) =

{a"(2)}},_, be a symmetric matrix function defined in a dom@irc C (o’ =

a’?) satisfying the conditio.8)and (I.6). Letu(z) be anyC? solution of elliptic
partial differential inequality(Z.8) such that

(2.17) lu(z)| < Min D.

Then there exist constant&?) andC' ("), depending on modulus of continuity:gf
A, £, B, T, M andd such that

(2.18) Vu(z)| < COp(z)~} max

{[u(Q)} +CV

[¢—2<p(z)

wherep(z) = dist(z,9D).

Proof. Fix a pointa € D and letB,, 0 < p < 1, be a closed disk defined by
B, ={z; ]z — a| < pdist(a,0D)}.

Its radius is

R, = p dist(a,0D).
Define the functionu,,:
(2.19) pp = max{|Vulr,(z)}
z€Byp

wherer,(z) = dist (z,0B,) = R, — |z — a|. Then there exists a poin}, € B,
such that

(2.20) IVu(zp)|rp(2p) = pp  (2p € By).
We need the following result in the sequel.

Lemma 2.6. The functiory, is continuous orf0, 1) and has continuous extension
at0: pg = 0.

Proof of Lemma@a 2l6Let p,, be a sequence converging to a numpelet 1, =
|Vu(z,)|rp, (2,) and assume it converges fg. Prove thatu, = u,. Passing
to a subsequence, we can assume that— z;,. Then z;, € B,. Thusu; <
ip- On the other hang,, > |Vu((1 — €,)2p)|rp, ((1 — en)2p), Wheree, is a
positive sequence converging to zero. It follows thgt> lim,, o [Vu((1 —
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en)2p)|Tp, (1 — €n)2p) = pp. Furthermore, since, < R, = pdist(a,dD), we
obtain that
i iy < !VU(O)!plgég Ry =0.

Now let Tz = ¢ be a linear transformation of coordinates such that
2

(2.21) > a¥(z) Diju = Av,

i,j=1
wherev(¢) = u(z). By [29, Lemma 11.2.1] the transformatidhcan be chosen
to so that

_1
(2.22) (M7 Y )R
0 Ay~ 2
where\; and )\, are eigenvalues of the matrix(z,) and R is some orthogonal
matrix. Then )
— <A, A2 <A
A= 1,12 >

Let V2« denotes the Hessian matrix of

Diiu Disu
2, 11 12
VU—<D21u D22’LL>.

Since
Viu = T'VuT,
we obtain:

Tr(AtV2u) = Tr(AtTtV%T)
= Tr((TA)!'V?uT)
= Tr(V2T(TA))
= Tr(V2T A'TY)
= TT(BtVQU),

where
(2.23) B(¢) = TA(2)T".
Then
B(Cp) =1,
(2.24) b7 () Diju(¢) = a”(2)Dyju(z)
and
(2.25) Av = (6;; — b7 (¢))Dijv + b7 (¢) Dyjv.

FurtherT'(D(zp, 7)) C T(Bp) C T(D) =: D'. From [2.22) we see that
T(D(zp, 1)) is an ellipse with axes equal tg /% -, andA; '/ - r, and with the
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center at, = T'(z,). ThenD) := {( : | — (| < Ar,,} is a closed disk ifT'(B),)
provided that

1
2.26 <A< —.
(2.29) 2vVA
Let G(¢,w) be the Green’s function of the didR,. So that from[(2.25)
v=—= [ GGy — b)) Dyv(w)dL?(w)
s D,
1 g
—— | G(¢w)bY (W) Dijo(w)dL? (@) + h(C),
T Dy

whered(?(z) = dzdy is the Lebesgue two-dimensional measure in the complex
plane andh(¢) is the harmonic function which takes the same value(g$ for
¢ € OD)y. Then

(2.27) Vo((p) <P+ Q+ R,
where
Pt [ VGG Do)
Dy
Q= % b VeG(Gpyw)(Bij — b7 (w) Dijv(w)dL? (w))|
R = ‘Vch(Cp)"

Further, it follows by[(1.b) and (2.23) that
VB()-T=T-VA(z)-T"
SinceA~1/2|z| < |Tz| < AY/2|z|, we obtain

(2.28) IVB(Q)| < |TP|VA| < A*?g.

Thus

(2.29) IB() = B(G)Il = [1B() =TIl < A*?£|¢ — ¢
As

d(T(2), T(zp)) < Arp(2p),
by using the inequalities

rp(2p) < d(z,2p) +1p(2),

d(z,2) < AV2d(T(2), T(2))
and
(Vu(2)|rp(2) < pp,
we obtain

IVu(z)| < (1= AAY2) "y (2) "'y for z € T7H(D))(C By).
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From [2.26) we obtain that

(2.30) (1—AYH72 <4,

Having in mind the formul&vu(z) = Vv(¢) - T we obtain
(2.31) Vo(Q)] < 2021y (2) sy
forw € D,.

Since

|aij(z)DZ-ju| < B|Vu|2 + T,

6 (¢)Dijv(C)| = |a™ (z) Diju(2)],
it follows that

(2.32) 16 (¢)Dijo(¢)| < BIT|*|Vol> + T = BA|Vv|* +T
and
(2.33) 67(C) Dijo(Q)| < 2Brp(zp) iy + T

From now on we divide the proof into four steps:
Step 1: Estimation dP. From [2.3) and (2.32) we first have.

=] VeG(G @) Dyoe) e )

2 / 1 p 9
< - 0% (w) Dijv(w)|dL (w)
T Jlwo—Gol<Arp(zp) [@0 — Cpl ’
2 1
< _/ (BAIVol? +T)dL2(w)
T Jlo—Gol <o (z) @ = Gl
Proceeding as in the proof ¢f [39, Theorem 2] we obtain that
48)\/1%
(2.34) P < " +2Irp .
p

Step 2: Estimation 0f. Letn, = (cosai,cos asz) be the unit inner vector of
0D, atw. Then from Green formula

2
/ Z ui(w) cos aydH (w) = / (Doy 1 + Oy tin)d L (w),
oDy i1 D)
proceeding as in [39, Theorem 2], we obtain

o<t / VG () (81 — b (w))Or0(w) cos a;dH (w)
‘W_Cp‘:ATp(Zp)

™

1 .
(235 +|= / GGy )i, b ()05 ()AL (w)|
‘W_CP‘SATP(ZP)

s

1 .
L / O VGG ) (837 — b9 () B0(w) AL (w)].
‘W_CP‘SATP(ZP)

s
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By using the Cauchy-Schwarz inequalify, (2.8).12.4), 13 &nd the fact that, —
w| = Arp(zp) We obtain

(2.36) Q < 16ALA .

Step 3: Estimation oR.

Let w(t) = w,(t) be the modulus of continuity afas in Lemma2J3. From (2.9),
for Z = v(¢p) (Z =0), Y({) = v(¢) andp = Arp(2p), by using Lemm@a 2]4 and
[2.3 we obtain

2
R < |Vh — — Z|dH!
SR S gt [ e - 2l @)
2
(2.37) < oz max{[v(C) — Z| : [( = Gp| = Arp(2p)}
min{2w(Ar,(zp)), 2K}
B Arp(2zp) 7
where
(2.38) K= sup Ju(z)].
|2—al<p(a)

Step 4: The finish of the proodhs

Vu(¢) = A_1/2|Vu(zp)| = A_1/2Tp(zp)_lﬂp
andry(z,) < 2p(a) < d, we get from[(2.217)[(2.34). (2.B6) arid (2.37),
(2.39) Aot + Bopp + Co = 0,

where
Ay = 4B,

By = 16ALAry(2,) — A™1/2
and

CO — 2I17,p2(2p))\ + 2mln{w()\;P(Zp))7K}.

We can take\ > 0 depending onw, A, £, B, I' andd so small that

(2.40) B2 > 44,Cy
and
(2.41) 16ALN < 1/2A7Y/2.

Let u1 andus (11 < pe) be the distinct real roots of the equation

(2.42) Aop® 4 Bop+ Cy = 0.
Then we have froni(2.39)

fp < g OF pip > po(pin < pa).
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Lemmd 2.6 asserts thaf, depends op continuously fo < p < 1 andlim,_,o p, =
0. Then we have only,, < u;. And, lettingp tend tol, by the definition ofu,
(2.43) Vu(a)| < pap(a)™".

As 111 is the smaller root 0f (2.42),

—By — \/Bg —4A0Cyh

M=

240
B 2C)
—By + \/Bg — 4A0Cy
< Xo
=B,
From [2.43) and (Z.38) we get
(2.44) Vu(a)] < CWp(a)™'  sup  |u(z)]+CP
|z—al<p(a)

whereC™ andC'® depend om\, £, B, M, T, d and on modulus of continuity of
Uu.
O

2.3. Boundedness of gradient.

Definition 2.7. We say that a domaiP satisfies thexterior sphere conditiofor
somex > 0, if: To any pointp of 9D there corresponds a bdh, C C with radius
k such thatD N B, = {p}.

Theorem 2.8(A priory bound) [39, Lemma 2]Let D be a complex domain with
diameterd satisfying exterior sphere condition for some> 0. Letu(z) be a
twice differentiable mapping satisfying the elliptic difintial inequality(1.8) in
D satisfying the boundary conditiom = 0 (z € G). Assume in addition that
lu(z)| < M,z €D,

(2.45) 4 16Brv <1
™

andu € C(D). Then
(2.46) |[Vu| <=, z€ D,
wherey is a constant depending on M, B, I, £, A andd only.

Remark 2.9. See[[9, Theorem 15.9] for a related result. In the statemiei®9H
Lemma 2] instead of condition (Z.45) appears

16BIM < 1,

however its proof lays on [39, Theorem 2], whose proof, ingse¢hat, works only
under the conditio (2.45). Indeed the right hand side ofribquality in the first
line on [39, p. 214] should be multiplied by
2I'(1 + m/2)
Vrl((m +1)/2)°
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wherem is the dimension of the space (in our case= 2) and
2(1+2/2) 4

Val((2+1)/2) «
3. PROOF OF THE MAIN THEOREMS
We need the following lemmas.

Lemma 3.1. [23] Every K —q.r. mappingw(z) = p(2)S(z) : D — Q, D, Q, C C,
p=|w|, S(z) = e s(z) € [0,2n), satisfies the inequalities

(3.1) pIVS| < K|Vp|

and

(3.2) Vol < Kp|VS|

almost everywhere oP. Inequalities(3.1) and (3.2) are sharp: the equality
(3.3) pIVS| = |Vp|

holds ifw is a 1-quasiregular mapping. We also have

(3.4) K™ V| < |Vp| < [Vuw.

Lemma3.2. If w = pS: U — U, p = |w|, is twice differentiable, then

1
(3.5) Llpl = p(a'|pf* + 20" (p, q) + a®|q*) + 5 (L[w], ),
wherep = DS andq = D5 S.
If in addition w is K — q.c. and satisfies

2
(3.6) L[w]| = | > a"(2)Dijw| < B|Vw|* +T,
2,7=1
then there exists constartisandIT depending ors, B andT" such that

o
(3.7) IL[p]| < ;\VPP + 1L

Proof. Letw = (w1, ws) (herew; are real), letS = (51, S2) and letf = (f1, f2).
For real differentiable functions andb define the bi-linear operator

2
D[a,b] = ) a*(2)Dya(2) Dib(2).

k=1
Sincew; = pS;, i € {1,2} and

2
p= Z Siw;,
=1
we obtain:
(3.8) L{w;) = S;L{p] + pL[S;] + 2Dp, Si], i € {1,2}
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and
2 2 2
(3.9) Llp] = Z w; L[S;] + Z SiL[w;] +2 Z DIS;, wi].
i=1 i=1 i=1

From [3.8) we obtain
Lip) = L[p]|S|?

= Si - SiL
(3.10) ; 2
2 2 2
= Z SZ'L[’LUZ'] —pP Z SZL[SZ] -2 Z SZ'D[p, Sz]
i=1 i=1 i=1

By adding [(3.9) andz_(le) we obtai;]
2
Ll = S (D[S1,wi] — SiDlp. 1) + 5 {Llu], )
=1

On the other hand

2 2
D[S, wi] = SiD[Si,p] = Y a*(z)DySiDyw; — S; Y~ aM(2)DySiDyp
k=1

2
= > ") DiSi(pDiSi + SiDip) — Si Y a*'(2) Dy SiDip

=1 k=1
2
=p Z a"(2)DyS;D;S;, i =1,2.
=1
Thus
2 1
Llp] =p Z a"(2) Dy S; Dy S; + 3 (L[w], S)
ided=1
1
= p(a't|p|* + 2a"% (p, @) + a®|q|*) + = (L[w], S),

2
Wherep = (DlSl, Dng) andq = (Dgsl, DQSQ). Therefore

1
ILIp]l < Ap(lpl* + 4l?) + 5(15’|le2 +T)
1
= Ap||VS|? + 5(B;wa? +1).

Here|| - || is Hilbert-Schmidt norm which satisfies the inequaljti?|| < v/2|P|. If
w is K—q.c., then according t6 (3.1) arid (B.3) we have
V2KA
p
Taking® = v2K A + BK /2 andIl = T'/2 we obtain [3.). a

[Lip]| <

1
|Vp|? + 5(BKyvpy? +1).
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Lemma 3.3.If f = uw + iv is a K g.c. mapping satisfying elliptic differential
inequality, then: andv satisfy the elliptic differential inequality.

Proof. Let

A= [Vuf? = 2 o+ JusP) = 3(1fe + TP + 1z + FoP)

and
1 — _
B = |Vol* = 2(Jv.* + |vz]?) = §(|fz — P+ 11— ).

Then

A_D+uf

B |1 —pf?
wherey = fz/f.. Sincelu| < k = £

1-k?2 A  (1+Ek)?
: < <

(3.11) I+k? B - (1_k?
As

ILIf]l = |Llu] +iL[]| < BIVf? +T < B(|Vul? + |Vo]?) + T,
the relation[(3.111) yields

(1+ k)2
(1—k)?

|L[u]| < B <1 + > |Vu> +T

and
(1+ k)2
(1—Fk)?

|L[v]| §B<1+ >|Vv|2—|—I‘.

d

Before proving the main theorems of this paper let us reaad of the most
fundamental results concerning quasiconformal mappings

Proposition 3.4(Mori). If w : U — U, w(0) = 0, is a K quasiconformal har-
monic mapping of the unit disk onto itself, then

lw(z1) — w(z2)| < 16|21 — 2|5, 21,20 € U.

Theorem 35.1f w : U — U, w(a) = 0, is a K ¢g.c. solution of the elliptic
differential inequality
|L[w]| < B[Vw]* +T,

thenVw is bounded by a constait(K, B,T', A, £, a) andw is lipschitz continu-
ous.

Proof. The idea of the proof is to estimate the gradientwoin some "neighbor-
hood” of the boundary together with some interior estimatéhe rest of the unit
disk. Let™d < o < 1andg = 2. DefineD, = {- : || < 8} and
Ay ={z:a<|z| < 1}.
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Let w = (wy,w2). According to Theorerh 2|5 and Lemimal3.3, there exists a
constant’; depending only on modulus of continuity of, B, I, K, A, £ anda
such that

(3.12) [Vw;(2)| < Ci, z € Dgy,i=1,2.

By Mori’s theorem, the modulus of continuity af; depends only ori anda.
Thus

(3.13) |[Vw(z)| < |Vwi|+|Vwe| < C1+Cy = C5(K,B,T',A, £,a), z€ D,.

As w is K quasiconformal selfmapping of the unit disk, by Mori's them ([48])
it satisfies the inequality:

K
a—z

(3.14) yl1=-K

< Y <17
L2 < ), e

wherea = w=1(0). Letu = |w|. From Lemma3]2 and(3.114)

1 K
(3.15)  |L[u]| <232 <1 7_L ;ZD O|Vul? +11I, (1 + |a])/2 < |2| < 1.

Let g be a function

g:D—-R
defined such that
1, if <]z <1;
_ exp — L
9 =3 14 (u(z) - DD o< |2 < 8
oxpm
Let .
€XP gz
9(z) = = T
P g
Then

0, if B <z <1;
Hol = { (u(z) = 1)L[¢] + ¢L[u] + Dlu, ¢], if a <|[z| < p.

Therefore

0, if B <2 <1;
(3.16) IL[gl| < { By|Vul2 + Ty, ifa<]|z| <8,
where K
By = 23K-2 1+l Vara 4+ BE
1 |al 2

andI'; is a constant depending only da, B, T', A, £ anda. By (3.4), [3.138) and
(3.186) we have

(3.17) |L[g]| < C4(K,B,T A, L), z€ A,
and
(3.18) Vgl < C5(K,B,T,A, £,a), z€ A,.
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Furthermore, by using the inequalitidgs (3.15), (8.17) &d8) and|a + b|?> <
2(|al? + |b|?) we have

| Llu = g]| < [Llul| + |L[g]|
< Bi|Vul|* + C7(K,B,T, A, £,0)
< 2B, |Vu — Vg|* + Cs(K,B,T, A, £,0), z€ A,.
By Mori’s theorem, there exists a constant «(K,a) < 1 such that if
M = max{|u(z) — g(2)| : z € Ay}

then there holds

(3.19) O o MA < 1.

T
Thusu = u — g satisfies the conditions of Theorém]2.8 in the domain= A,.
The conclusion is tha¥w is bounded i < |z| < 1 by a constant depending only
on K, B, T, A, £ anda and on modulus of continuity af. From Mori’s theorem,
the modulus of continuity of depends only o anda. From [3.18), the modulus
of continuity of g do not depends on. Combining the last fact and the relation
(3.4) we obtain

(3.20) |[Vw| < Co(K,B,T,A, £,a), <]z <1.

From [3.13) and_ (3.20) we obtain the desired conclusion.
O

Mori’s theorem for g.c. selfmappings of the unit disk hasrbgeneralized in
various directions in the plane and in the space. See for gheatine papers [15],
[8] and [7].

In the following theorem we show that, a q.c. mapping is Liijigccontinuous
under certain regularity condition on Beltrami coefficient

Theorem 3.6. Letw be aK-q.c. mapping of the unit disk onto itself such that
the Beltrami coefficient = {= is Lipschitz continuous iJ. Thenw is Lipschitz
continuous inU.

Remark 3.7. Under the condition of Theoref 3.6, the functianis C**(U),
a < 1, ([2, Theorem 15.0.7]) but the last fact of course do not iegpthatw is
Lipschitz inU.

Proof. Let
1 .
B(z) = Cexp <—|Z|2_1> , if |z] <-1
0, otherwise.
Here the constar’ is chosen so thaf, ®(z) = 1. Lete > 0,

26 (2
¢ =< (2),
u(z) =0,z € C\ U, and define

e(2) = e+ p(2) = /C be(z — T)u(r)dL2(r), 2 € U.
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Theny. is C*°(U) and satisfies the inequalities

(3.21) e lloo < lllso
and
(3.22) [Vitelloo < [[Viullo =T

According to Riemann measure mapping theorem there exmsisn@omorphic
solutionw, : U — U of Beltrami equationv; = p.w, normalized byw.(a) =
w(a) = 0 andw.(1) = w(1) (see e.g.[[2, Theorem 9.0.3]). The solutiop is
C>°(U) because:. € C (see e.g.[[2, Theorem 15.0.7]). Then converges
uniformly on compact subsets &f to the mappingv ase — 0.

Let y. = a+if andw. = u + iv. Thenw.; = p.w,, iS equivalent to the
system:

(1—a)u; — (1 +a)v, = B(uy —vy)
1+ a)uy + (1 —a)vy = Blug +vy).
Hence
Vp = —a22uy — a'%u,
Uy = atlu, + alzuy,
where
pRi e +1 - 2a
1- ’Na‘z ’
oo lpe* +142a
- ‘Na‘z
and )
2l g2 T 52'
1- |ﬂ€|
Sincev,, = vy, it follows
(3.23) L[u] == L[u] + (al! + a?lf)uzp + (az2 +at?)u, =0,

where
Llu] := atug, + 2a12uxy + a22uyy.
It is easily to see that, the matrik. = {aij}ij:1 satisfies the elliptic condition
—— < (A (2)h,h) < K hl=1
7 < ) S KG), h=1,
where, because df (3.21)

1
K(z) = Lt lmell _ pe
1 — |pe(z)|
Furthermore, sincg, is lipschitz with Lipschitz constarif, < 7T, it follows that
[Ae(2) = Ae(w)] < £]z — w),
where£ depends only off and onkK.
Similarly we obtain that satisfies the same PDE

(3.24) L[] = 0.
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Thus

(3.25) Llwe| = Llu] +iL[v] = 0.

It follows thatw. is a solution of elliptic partial differential inequality
|Llwe]| < B[Vw.|* +T,

for someB > 0 andI’ > 0 depending ol andK but not depending on(because
of (8.22)). From Theorein 3.5 it follows that

|we(z1) — we(2z2)| < C(K,Y,a)|z1 — 22| 21,20 € U.
As w,. converges tav we obtain the desired conclusion. O
An immediate consequence of Theorem 3.6 is the followingltay:

Corollary 3.8. If w is a g.c. selfmapping of the unit disk with constant Beltrami
coefficient, thenw is bi-Lipschitz continuous.

Remark 3.9. Under the conditions of Corollafy 3.8 we can say much morenélg,
w = p(az + bZ), wherea, b are two complex constants apds a conformal map-
ping of an elipse to the unit disk.

By using Theorerh 36, Kellogg theorem and the formula

Hpof = Hf,
wherey is a conformal mapping we obtain

Corollary 3.10. Letw be a K-g.c. mapping of the unit disk] onto a Jordan
domain) with C* boundary such that the Beltrami coefficignt is Lipschitz
continuous iNU. Thenw is lipschitz continuous iU.

Example 3.11.[2, p. 391]. Letg(z) = —zlog|z|%, where|z| < r = e 2, then
g : rU — 4rU is a homeomorphism and
dg z Og 9 z
—Z=—-=, =Z=-1-1 = .
0z z' 0z oglzl’s 1g(z) Z(1 + log |2[?)
Thusg is quasiconformal with continuous Beltrami coefficientigetg is not Lip-
schitz. The mapping(z) = 4—1709(7‘,2) is a g.c. mapping of the unit disk onto itself
with continuous Beltrami coefficient, bytis not Lipschitz neither locally Lips-
chitz. Thus the condition is Lipschitz continuous in Theorein 3.6 is important
even for local Lipschitz behavior of a solution to Beltramuationw;: = p(2)w,.
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