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Weight Distributions of Multi-Edge type LDPC Codes

Kenta KASAI†a), Member, Tomoharu AWANO†b), David DECLERCQ††c),

Charly POULLIAT††d), Nonmembers, and Kohichi SAKANIWA†e), Fellow

SUMMARY The multi-edge type LDPC codes, introduced
by Richardson and Urbanke, present the general class of struc-
tured LDPC codes. In this paper, we derive the average weight
distributions of the multi-edge type LDPC code ensembles. Fur-
thermore, we investigate the asymptotic exponential growth rate
of the average weight distributions and investigate the connection
to the stability condition of the density evolution.
key words: low-density parity-check code, structured codes,

weight distributions

1. Introduction

In 1963, Gallager invented low-density parity-check
(LDPC) codes [1]. Due to the sparseness of the repre-
sentation of the codes, LDPC codes are efficiently de-
coded by the sum-product (SP) decoders [2] or Log-SP
decoders [3]. The Log-SP decoding is also known as
the belief propagation. By the powerful method den-

sity evolution [3], invented by Richardson and Urbanke,
the messages of the Log-SP decoding are statistically
evaluated. The optimized LDPC codes can realize the
reliable transmissions at rate close to the Shannon limit
[4].

Recently, many structured LDPC codes have been
proposed: accumulate repeat accumulate codes [5],
irregular repeat accumulate codes [6], MacKay-Neal
codes [7], protograph codes [8], raptor codes [9], low-
density generator-matrix codes [10] and so on. These
structured codes are usually designed for exploiting the
structure to realize an excellent decoding performance,
efficient encoding, a fast decoding algorithm, a paral-
lel implementation and so on. Above all, the multi-
edge type LDPC (MET-LDPC) codes [11] give a gen-
eral framework that unifies all those structured LDPC
codes.

The average weight distribution of codewords,
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which is simply referred to as the average weight distri-

bution, helps the analysis of the average performance
of the maximum likelihood (ML) decoding [12] and the
typical minimum distance [1]. The decoding errors for
the high SNR regions are mainly brought by codewords
of small weight. Constructing LDPC codes without
small weight codewords helps to lower the error floors.
For the average weight distribution of the standard ir-
regular LDPC codes are studied in [12]–[16] and those
of structured codes are studied in [17]–[19]. Specifi-
cally for the standard irregular LDPC codes, the aver-
age weight distribution is derived in [15] as the coeffi-
cients of some polynomial. And many useful properties
[13], [16] are derived from the coefficient expression.

In [18], we have already derived the average
weight distributions for the MET-LDPC code ensem-
bles. However, the derived equation [18] is not as sim-
ple as that of the standard irregular LDPC codes [15]
and is hard to investigate further properties. Indeed the
derived equation in [18] is not written in a closed form
but given as a recursive form which concatenates the
weight distributions of constituent codes of the MET
code ensembles. In this paper, we derive the average
weight distributions of the MET-LDPC code ensembles
in a simple closed form. Furthermore, we investigate
the asymptotic exponential growth rate of the average
weight distributions and investigate the connection to
the stability condition of the density evolution.

The rest of this paper is organized as follows. Sec-
tion 2 gives the definition of the MET-LDPC code en-
semble. Section 3 gives the simple expression for the
average weight distributions of the MET-LDPC code
ensemble. In Section 4 we derive the asymptotic expo-
nential growth rate of the average weight distributions
and investigate it for the codeword of small weight in
Section 5. Furthermore, in Section 6, we show that
the connection between the the asymptotic exponen-
tial growth rate of the codeword of small weight and
the stability condition of the density evolution [4].

2. Multi-Edge type LDPC Codes

Before we give the general definition of the ME-LDPC
codes, we show a specific example of MET-LDPC code
for a better understanding. The Tanner graph of an
example of MET-LDPC code is shown in Fig. 1. We
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Fig. 1 The Tanner graph of a Multi-Edge type LDPC code.
NT and ET stand for variable node-type, check node-type and
edge-type, respectively.

use the terms, a “code” and its “Tanner graph” inter-
changeably. The edges in the graphs are divided into
5 types of edges labeled from “ET 1” to “ET 5”. Note
that there are two types of edges in the third row of
edges. With this classification, each edge is said to
have edge-type i for i = 1, . . . , 5. Furthermore variable
and check nodes are classified into types according to
the number of each edge-type they have. The types
are called variable and check node-types, respectively.
For example, the check nodes labeled “NT(2,2,1,0,0)”
are said to have node-type (2,2,1,0,0) since these check
nodes have two edges of edge-type 1, two edges of edge-
type 2 and 1 edge of edge-type 3. And the variable
nodes labeled “NT(0,0,0,0,1)” are said to have node-
type (0,0,0,0,1) since these variable nodes have 1 edge
of edge-type 5.

The original definition of MET-LDPC [11] codes
involves the transmissions over the nr types of parallel
channels. Since our interest in this paper is limited to
the average weight distributions, we restrict ourselves
to the transmissions over a single channel, i.e. nr = 1.

For simplicity of notation, we define 1 = (1, . . . , 1)
and 0 = (0, . . . , 0). And define that x ≥ 0 means that
xi ≥ 0 for i = 1, . . . , n. Moreover, we use the notation

xy :=

n
∏

i=1

xyi

i

for two vectors x = (x1, . . . , xn),y = (y1, . . . , yn) of size
n.

Now, we give the definition of an MET-LDPC code
ensemble. Analogously to the degree distribution pair

(λ(x), ρ(x)) [16] for the standard irregular LDPC code
ensemble, an MET-LDPC code ensemble is specified by
a multivariate polynomial pair (ν(r,x), µ(x)) which is
also referred to as the degree distribution pair.

ν(r,x) :=
∑

b,d≥0

νb,dr
bxd,

µ(x) :=
∑

d≥0

µdx
d,

b := (b0, b1, . . . , bnr
),d := (d1, . . . , dne

),

r := (r0, r1, . . . , rnr
),x := (x1, . . . , xne

)

where nr is the number of channel-types and ne is the
number of edge-types.

For a given degree distribution pair (ν(r,x), µ(x))
and code length n, we define an equi-probable ensemble
of LDPC codes with graphs G that satisfy the follow-
ings.

1. G has n variable nodes of channel-type b = (0, 1),
i.e. G has n un-punctured transmitted bits.

2. G has nνb,d variable nodes of channel-type b and
node-type d.

3. G has nµd check nodes of node-type d.

We denote this code ensemble by C(n, ν(r,x), µ(x)).
It is easy to see that the number of edges of edge-

type i incident to variable and check nodes of node-type
d are respectively given as

∑

b≥0

dinνb,d = dinν(1,0),d + dinν(0,1),d,

∑

d≥0

dinµd.

It follows that the number of edges of edge-type i inci-
dent to variable nodes and check nodes are respectively
given as

nνi(1,1) := n
∂

∂xi

ν(r,x)

∣

∣

∣

∣

r=1
x=1

= n
∑

b,d≥0

diνb,d,

nµi(1) := n
∂

∂xi

µ(x)

∣

∣

∣

∣

x=1

= n
∑

d≥0

diµd,

for i = 1, . . . , ne, where 1 := (1, . . . , 1). They are con-
strained to be identical, and we denote this number by
Ei, i.e. for i = 1, . . . , ne

Ei := nνi(1,1) = nµi(1).

Being permuted the connection among Ei edges of
edge-type i in a graph, the resulting Tanner graph
has the same degree distribution pair. The number of
graphs in the MET-LDPC ensemble is given as follows.

#C(n, ν(r,x), µ(x)) =

ne
∏

i=1

Ei!. (1)
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In this setting, we can see that the graph shown in
Fig. 1 is an MET-LDPC code in the MET-LDPC code
ensemble C(n = 40, ν(r,x), µ(x)), where

ν(r,x) = 0.5r1x
2
1 + 0.3r1x

3
2 + 0.2r0x

3
3x

3
4 + 0.2r1x5,

µ(x) = 0.4x2
1x

2
2x3 + 0.1x2

1x2x
2
3 + 0.2x3

4x5.

3. Weight Distribution of Multi-Edge type

Codes

In this section, we derive the average weight
distribution of the MET-LDPC code ensemble
C(n, ν(r,x), µ(x)). For readers who are unfamiliar with
the enumeration technique of the weight distributions
in LDPC code ensembles, we refer the readers to [1],
[12].

We consider all the 2N maps from each variable
node to {0, 1},

x : v 7→ xv ∈ {0, 1}.

We say a map x is a codeword of a code G if
∑

v∈Vc
xv is

an even number for every check node c in G, where Vc is
the set of variable nodes adjacent to the check node c in
G. The weight w(x) of a map x is defined as the number
of un-punctured variable nodes v such that xv = 1. Let
AG(ℓ) be the number of codewords of weight ℓ in a
code G. Let A(ℓ) be the average number of codewords
of weight ℓ for the MET-LDPC code ensemble C(n, ν(r,
x), µ(x)) defined as follows.

A(ℓ) =
∑

G∈C(n,ν(r,x),µ(x))

AG(ℓ)
/

#C(n, ν(r,x), µ(x)).

Theorem 1: For a given MET-LDPC code ensemble
C(n, ν(r,x), µ(x)), the average number of codewords of
weight ℓ is given as follows.

A(ℓ) =
∑

e≥0

coef((Q(t, s)P (u))n , tℓseue)
∏

i

(

Ei

ei

) , (2)

Q(t, s) =
∏

b,d≥0

(1 + tb1sd)νb,d ,

P (u) =
∏

d≥0

(

(1+ u)d + (1− u)d

2

)µd

,

where

e = (e1, . . . , ene
),

u = (u1, . . . , une
),

s = (s1, . . . , sne
).

And coef(g(x),xd) is the coefficient of a term xd in a
multivariate polynomial g(x).

Proof : An edge is said to be active, if the edge is in-
cident to a variable node v such that xv = 1. We will

count all the codewords of weight ℓ in all graphs in
the ensemble C(n, ν(r,x), µ(x)) with ei active edge of
edge-type i for i = 1, . . . , ne, and sum them up for all
e = (e1, . . . , ene

) ≥ 0. Counting all the codewords in-
volves the following 3 parts:

1. Count the active edge constellations satisfying all
the parity-check constraints.

2. Count the active edge constellations which stem
from maps of weight ℓ.

3. Count the edge permutations among active edges
and non-active edges.

Before we start counting the active edge constel-
lations satisfying all the parity-check constraints, first,
let us count the active edge constellations satisfying a
single parity-check constraint. Consider a check node c
of node-type d. In other words, the check node c has
di edges of edge-type i for i = 1, . . . , ne. The check
node c is satisfied if the total number of active edges is
even, i.e.

∑ne

i=1 ei = even. Let ac(e) be the number of
active edge constellations which satisfy the check node
c with given ei active incident edges of edge-type i for
i = 1, . . . , ne. It is easily checked that

ac(e) =

{
∏ne

i=1

(

di

ei

)
∑ne

i=1 ei = even

0
∑ne

i=1 ei = odd

Let fd(u) the generating function of ac(e) defined as

fd(u) :=
∑

e≥0

ac(e)u
e.

We can simply describe fd(u) as

fd(u) =

∏ne

i=1(1 + ui)
di +

∏ne

i=1(1− ui)
di

2

=
(1+ u)d + (1− u)d

2
.

Next, count the active edge constellations satisfying all
the nµ(1) parity-check constraints with given ei active
edges of edge-type i for i = 1, . . . , ne. Since there are
nµd check nodes of node-type d for d ≥ 0, the number
of active edge constellations to satisfy all the parity-
check constraints is given by

coef(
∏

d≥0

fd(u)
nµd ,ue). (3)

Secondly, we will count the active edge constel-
lations which stem from maps of weight ℓ. Count the
active edge constellations which stem from a single vari-
able node of weight ℓ = 0, 1 at first. This may be some-
what confusing since it is too trivial. Consider a vari-
able node v of channel-type b and node-type d. Assume
v is given ei active edges of edge-type i for i = 1, . . . , ne.
Let av(ℓ,b, e) be the number of constellations which
stem from the maps of weight ℓ ∈ {0, 1}. From the
definition of the active edges, it is easily checked that
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av(ℓ,b, e) =







1 (ℓ = 0, e = 0),
1 (ℓ = b1, e = d),
0 otherwise.

Therefore, the generating function of av(ℓ,b, e) is sim-
ply written as

∑

ℓ∈{0,1},b≥0,e≥0

av(ℓ,b, e)t
ℓse = 1+ tb1sd.

Next, consider all n variable nodes. There are nνb,d
variable nodes of channel-type b and of node-type d

for b ≥ 0 and d ≥ 0. It is consequent that for given ei
active edges of edge-type i, the number of active edge
constellations which stem from maps x : v 7→ xv ∈
{0, 1} of weight ℓ is given by

coef(
∏

b,d≥0

(1 + tb1sd)nνb,d , tℓse). (4)

In the third place, consider that we are given ei
active edges of edge-type i and hence there are Ei −
ei non-active edges of type i for i = 1, . . . , ne. For
these active edge and non-active edges, the number of
possible ways of permuting active and non-active edges
is given as

ne
∏

i=1

ei!(Ei − ei)!. (5)

Let Ae(ℓ) be the average number of graphs which
have codewords of weight ℓ for given ei active edges of
type i for i = 1, . . . , ne. By multiplying Eq. (3), Eq. (4)
and Eq. (5), and dividing by the number of codes in
the ensemble given in Eq. (1), we obtain

Ae(ℓ) =coef(
∏

d≥0

fd(u)
nµd ,ue)

· coef(
∏

b,d≥0

(1 + tb1sd)nνb,d , tℓse)
/

ne
∏

i=1

(

Ei

ei

)

.

The average number of codewords of weight ℓ for the
ensemble is obtained by summing up Ae(ℓ) over the all
possible active edge numbers.

A(ℓ) =
∑

e≥0

Ae(ℓ) (6)

2

4. Asymptotic Analysis

LDPC codes are usually used with large code length.
We are interested in the asymptotic average weight dis-
tributions in the limit of large code length. The average
number of codewords of weight ωn is usually increases
or decays exponentially in n. We focus our interest
in the asymptotic exponential growth rate of the A(ℓ)

which is simply referred to as the growth rate γ(ω) de-
fined as follows.

γ(ω) := lim
n→∞

1

n
logA(ωn),

where ω called is the normalized weight of codewords.
In this section, we derive the growth rate for the

MET-LDPC code ensemble. To this end, first introduce
the following lemma.

Lemma 1 ([12], III.2): For an m-variable polynomial
g(x1, . . . , xm) with non-negative coefficients, it holds
that

lim
n→∞

1

n
log coef(g(x)n,xαn) = inf

x>0
log

g(x)

xα
,

where x > 0 means xi > 0 for all i = 1, . . . ,m. The

point x that takes the minimum of g(x)
xα

is given by a
solution of the following equations.

xi

g(x)

∂g(x)

∂xi

= αi (i = 1, 2, . . . ,m)

The number of terms in Eq. (2) is upper-bounded
by

∏ne

i=1 Ei. Therefore the largest term alone con-
tributes the growth rate of A(ℓ). Therefore, from
Eq. (6) we have

max
e≥0

Ae(ℓ) ≤ A(ℓ) ≤
(

ne
∏

i=1

Ei

)

max
e≥0

Ae(ℓ) (7)

1

n
logA(ℓ) =

1

n
logmax

e≥0
Ae(ℓ) + o(1). (8)

Rewriting Ae(ℓ) as

Anβ(ωn) =
coef((Q(t, s)P (u))n , (tωsβ≥0uβ)n)

∏ne

i=1

(

µi(1)n
βin

)
,

β = (β1, . . . , βne
),

where e = nβ and using Lemma 1, we obtain that

lim
n→∞

1

n
logA(ℓ) = sup

β≥0

inf
t>0,s>0,u>0

[

logQ(s, t) + logP (u)−

ne
∑

i=1

βi log(ui)

−

ne
∑

i=1

βi log(si)− ω log(t)−

ne
∑

i=1

µi(1)h

(

βi

µi(1)

)]

=: sup
β≥0

γ(β) (9)

A point (u, s, t) that takes inft,s,u is given as a solution
of the following equations.

ω =
t∂Q
∂t

Q
=

∑

b,d≥0

νb,db1ts
d

1 + tb1sd
, (10)
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βi = ui

∂P
∂ui

P
= ui

∑

d≥0

µddi

(1+u)d

1+ui
− (1−u)d

1−ui

(1+u)d+(1−u)d
, (11)

βi = si

∂Q
∂si

Q
=

∑

b,d≥0

νb,ddit
b1sd

1 + tb1sd
, for i = 1, . . . , ne.

(12)

A point β = (β1, . . . , βne
) which gives supβ needs to

satisfy the stationary condition

βi

µi(1)− βi

= uisi. (13)

Thus, we obtain the following theorem.

Theorem 2: For a given MET-LDPC code ensemble
C(n, ν(r,x), µ(x)), the growth rate of the normalized
weight ω is given by

γ(ω) := lim
n→∞

1

n
A(ωn) = max

β∈B(ω)
γ(β),

where B(ω) is a set of β such that (10), (11), (12) and
(13) hold.

The derivative of γ(β) in terms of ω can be ex-
pressed in the following simple expression.

Lemma 2: For β and t such that t 6= 0 and equations
(10), (11) and (12) hold, we have the following.

d

dω
γ(β) = − log(t(ω))

Proof : Let x′ denote the derivation of x with respect
to ω. Differentiating γ(ω) defined in (9), we have

d

dω
γ(β) =

Q′

Q
+

P ′

P
− w

t′

t
−

ne
∑

i=1

log
µi(1)− βi

βi

β′
i

− log t−

ne
∑

i=1

(β′
i log ui + βi

u′
i

ui

+ β′
i log si + βi

s′i
si
),

where s is given by equations (10), (11) and (12). From
(13), we see

−β′
i log ui − β′

i log si − β′
i log

µi(1)− βi

βi

= 0.

Combining (11) and P ′ =
∑ne

i=1
∂P
∂ui

u′
i, we have

P ′

P
−

ne
∑

i=1

βi

u′
i

ui

= 0 (14)

From (10), (12) and Q′ = ∂Q
∂t

t′ +
∑ne

i=1
∂Q
∂si

s′i, we have

Q′

Q
− w

t′

t
+

ne
∑

i=1

βi

s′i
si

= 0

Thus, we can conclude the proof since the remaining

term in the right hand side of (14) is − log t. 2

5. Analysis of Small Weight Codeword

In this section we restrict ourselves to considering un-
punctured MET-LDPC codes, i.e.

b = (b0, b1) = (0, 1) for νb,d 6= 0. (15)

Furthermore, we assume that for every edge-type i
there exists a check node which has at least 2 edges
of edge-type i. In precise, for i = 1, . . . , ne,

∃d such that di ≥ 2 and µd 6= 0. (16)

For the standard irregular LDPC codes [20] with a de-
gree distribution pair (λ(x), ρ(x)), this assumption re-
duces to the condition of the non-existence of check
nodes of degree 1, i.e. ρ′(1) > 0.

We investigate how the growth rate behaves for
codewords of small weight, i.e. for small normalized
weight ω. From the linearity of MET-LDPC codes,
A(0) = 1 and γ(0) = 0, then from (9) and Lemma 2, it
follows that for ω → 0,

γ(ω) = γ′(0)ω + o(ω) (17)

= sup
t∈T

− log(t)ω + o(ω), (18)

where T is a set of t such that (10), (11), (12) and
(13) hold for ω → 0. From the assumption of non-
puncturing (15) and (10), for ω → 0, it holds that
tsd → 0 for d with νb,d 6= 0. Using this, it follows
that βi → 0 for i = 1, . . . , ne from (12). Using the as-
sumption of check node-types Eq. (16) and Eq. (11), it
is consequent that ui → 0 for i = 1, . . . , ne. Moreover,
from (11) it follows that as u → 0,

βi =
∑

d≥0

µduidi((di − 1)ui +
∑

j 6=i

djuj) + o((
∑ne

i=1 ui)
2).

Substituting this to (13), we have

si =
µi,i(1)

µi(1)
ui +

∑

j 6=i

µi,j(1)

µi(1)
uj + o(

∑ne

i=1 ui), (19)

µi,j(x) =
∂2

∂xi∂xj

µ(x).

As s → 0, from (12) we have

βi = tsi(νi,i(1,0)si +
∑

j 6=i

νi,j(1,0)sj) + o((
∑ne

i=1 si)
2)

Substituting this to (13), we obtain the following.

ui = t
(νi,i(1,0)

νi(1,1)
si +

∑

j 6=i

νi,j(1,0)

νi(1,1)
sj

)

+ o(
∑ne

i=1 si)

(20)
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νi,j(r,x) =
∂2

∂xi∂xj

ν(r,x)

We can represent (19) and (20) by matrices as s = Pu
and u = tΛ(1)s, respectively, where

Λi,j(r) :=

∂2ν(r,x)
∂xi∂xj

∣

∣

∣

x=0

νi(1,1)
,

Pi,j :=

∂2µ(x)
∂xi∂xj

∣

∣

∣

x=1

µi(1)
.

In summary, for t 6= 0 we obtain

1

t
u = Λ(1)Pu+ o(

∑ne

i=1 ui). (21)

This implies that 1
t
is an eigenvalue of Λ(1)P. Therefore

supt∈T of (17) is achieved by the largest eigenvalue 1
t

of Λ(1)P. Then we have the following theorem.

Theorem 3: For an MET-LDPC code ensemble
C(n, ν(r,x), µ(x)), assume the largest eigenvalue 1

t

of Λ(1)P is not zero. The growth rate γ(ω) :=
limn→∞

1
n
logA(ωn) of the average number A(ωn) of

codewords of weight ωn, in the limit of code length, is
given by

γ(ω) = log

(

1

t

)

ω +O(ω2).

Furthermore, there exists δ > 0 such that if 1
t
< 1,

there are exponentially few codewords of weight ωn for
ω < δ.

For a standard irregular LDPC code ensemble [16]
with a given degree distribution pair (λ(x), ρ(x)), can
be viewed as an MET-LDPC code ensemble

C
(

n, ν(r1, x) = r1

∑

i λix
i/i

∑

i λi/i
, µ(x) =

∑

i ρix
i/i

∑

i λi/i

)

.

The eigenvalue is given by λ′(0)ρ′(1) which is zero if
there are no variable nodes of degree 2. The condition
1
t
< 1 in Theorem 3 reduces to λ′(0)ρ′(1) < 1, which

coincides with the known result [13].

6. Relation with Stability Condition

In this section, we investigate the connection between
the growth rate and the stability condition [4]. For
simplicity, we assume the transmission takes place over
the binary erasure channels (BEC) with the erasure
probability ǫ.

For the standard irregular LDPC code ensemble
[16] with degree distribution pair (λ(x), ρ(x)), in the
limit of the code length, we denote the average decoding
erasure probability of messages sent from variable nodes
to check nodes at the ℓ-th iteration round by p(ℓ). From
density evolution [4], p(ℓ) is given by

p(0) = ε,

p(ℓ) = ελ(1 − ρ(1− p(ℓ−1))).

The following is shown in [4], if ελ′(0)ρ′(1) > 1, there
exists γ > 0 such that limℓ→∞ pℓ > γ. The inequality

ελ′(0)ρ′(1) < 1 (22)

is called the stability condition of density evolution.
Furthermore, it is shown in [21], the capacity-achieving
LDPC code ensemble have the degree distribution pair
(λ(x), ρ(x)) with ελ′(0)ρ′(1) = 1. Meanwhile, it is
known that the growth rate of the average number of
codewords of small linear weight ωn is given by

lim
n→∞

1

n
logA(ωn) = log(λ′(0)ρ′(1))ω + o(ω). (23)

Interestingly, the same parameter λ′(0)ρ′(1) appears in
both the stability condition Eq. (22) and the growth
rate Eq. (23). Does this correspondence also hold for
the MET-LDPC code ensembles?

For the MET-LDPC code ensemble with the degree
distribution pair (ν(r,x), µ(x)), in the limit of large

code length, let p
(ℓ)
i denote the erasure probability of

the message sent along the edges of edge-type i from
variable nodes to check nodes at the ℓ-th interation
round.

From the density evolution developed for the

MET-LDPC codes [11, Eq. (8)], p
(ℓ)
i is recursively given

by

p(ℓ) = λ((1, ε),1− ρ(1− p(ℓ−1))),

λ(r,x) : = (λ1(r,x), . . . , λne
(r,x)),

ρ(x) : = (ρ1(x), . . . , ρne
(x)),

λi(r,x) =
νi(r,x)

νi(1,1)
,

ρi(x) =
µi(x)

µi(1)
,

where p
(0)
i = ε for i = 1, . . . , ne. And it follows that [11,

Theorem 7] is given as follows. If the spectral radius of
Λ(1, ε)P is less than 1, there exists γ > 0 such that

lim
ℓ→∞

∑

i

p
(ℓ)
i > γ.

In short, the stability condition for the MET-LDPC
code is given as follows.

1 > the spectral radius of Λ(1, ε)P.

Since Λ(1, ε)P is a non-negative matrix, the spectral
radius of Λ(1, ε)P is an eigenvalue of Λ(1, ε)P, it follows
Λ(1, 1)P coincides with the parameter which appears in
Theorem 3.

7. Conclusion

We present a simple expression of the average weight
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distributions of MET-LDPC code ensembles which
gives us a general framework of LDPC codes. We
showed that the correspondence between the growth
rate of the weight distributions and the stability condi-
tion is also the case with the MET-LDPC codes.
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