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1 Introduction
Letg e C\{0}. A g-difference equation of orderis an equation irf of the form
f(a"2) +an1(2)- (" '2) +... +a(2) - f(2) =0, (1)

whereap(z),...,a,-1(z) € C(z) are given. In this paper, we study the algebraic behav-
ior of

f(2),1(¢2),...,1({" 12),

where( is a primitive root of unity of ordet. In particular, as an application of the
method of difference Galois groups with parameters estadd in this paper, our The-
orems4.1land4.11give an explicit, complete description of all first-ordpdifference
equations

f(a2 =a(2)f(2) (2)

with rational coefficients whose solutions afelifference algebraically independent
over the rational functions in variablawith coefficients belonging to the field of g-
invariant meromorphic functions dt\ {0}. This description is easy to use: the inputs
are simple functions in the multiplicities of the zeros amdleg ofa(z). Although our
proof requires a similar approach to that 8] Section 3], but is substantially modified
to take into account difference algebraic independenceaia the result it as explicit
as possible.

As an example of our methods, we include a deduction of sogebadic indepen-
dence properties of some theta functions. d.edditionally satisfylq| > 1. Jacobi’s
theta-function 15, 36, 25]

6(2) =~y (-1

nez

—n(n—1)
—

7', zeC,

is a solution of the following}-difference equation:

84(92) = —qz- 64(2),

whose analytic properties have been extensively studiedyule Galois theory in
[29, 30, 14], where more references will also be found. I{ebe a root of unity of
prime ordeit. We show in Theorem.6that if

t—1
_1.,\d
Yot 5 Mod-65(2)% +M1a-64(3D7+ ...+ A 1a-64(C" )" =0,  (3)
=1

whereAg, Ajj € k(z), thenAg = Ajj = 0. What this says is that there are no unexpected,
non-geometric relations between thg-iterates ofl;, except those coming from the
geometry of embeddings of the elliptic cur@é/g” into projective space.

Moreover, foray,...,ap € C* with aj # a; in C*/g* we further show in Exam-
ple4.7using the classical results abd4tthat if a finite sum

Z gnl’_'_‘np . eq(alz)nl Cee.t eq(apz)np = O,



..........

Beginning with the Lindemann-Weierstrass theorem (ggeSection 1]) on the
linear and algebraic independence of values of the exp@hé&mction at elements of
a number fielK, a great deal of work has been done on the values of otheradpeci
functions. In particular, in4], the problem of linear independence of the values of the

function
—n(n—1

h=ya 7
n=

The theorem says thatdf &, a1,...,0am,Bo, - .., Bm are elements of a number fielkd
and if thea; are pairwise distinct iflK* /g%, and if for every every place of K such
that|q|, > 1 theuv-adic function

Bo+ B1-Tq(@12) + -+ + Bm- Tq(am2)

has a zero af, thenfBy = --- = By = 0. Similar problems are dealt with iif] and

[34]. In particular, this result says that the functidiéa;z) are linearly independentin
K((2)). Our results orfy can be seen as analogues of this linear independence, where
we prove a stronger result in terms of algebraicity.

The first main component of our theory is a new Galois theomgystems of linear
difference equations with periodic (of finite order) diff@ece parameters, where the
Galois groups are linear difference algebraic groups. TEw®rsd main component
is the description we give (in Examplel13 of all difference-algebraic subgroups of
the difference multiplicative groufy,. In Theoremd.1, this comes together to give
necessary and sufficient conditions @i order for the solutions of equatiof)(to
be difference algebraically dependent over the base. Ilzinal Theorem4.11, we
give more concrete conditions, easily computable, wherb#se consists of rational
functions.

The approach of this paper resembles the Galois theoryfeféifce equations with
differential parameters studied ifi'j, 18, 19, 13], where algebraic methods have been
developed to test whether solutions of difference equatsatisfy polynomial differ-
ential equations. In particular, these methods can be wspobtve Holder’s theorem
which says that th€-function, which satisfies the difference equation

Mrx+1)=x-Tx),

satisfies no non-trivial differential equationxmwith coefficients inC(x).

However, when treating difference equations with difféia@iparameters, one may
use fields as the rings of constants. This is not availablewiseng difference param-
eters, as Example.6 and P8, Proposition 7.3] show. The constants in our theory are
rings that have zero-divisors, and this fact introduces enous additional subtleties
into our approach. The key idea is to find a suitable notion dffference closed
ring. We use the difference-closed pseudofields3&f,[which we review in SectioA.
Another approach to the question of difference algebraisuie is in 1], where dif-
ference versions of valuation rings are given. Howevecgesine require zero-divisors,
Lando’s approach is insufficient.



Picard-Vessiot extensions with zero divisors for systefiigear difference equa-
tion have been considered i1, 10, 24] with a non-linear generalization considered
in [16]. Also, Galois theories of linear difference equationgheut parameters, when
the ground ring has zero divisors have been studie§,ig, [, 2, 37, 33], where includ-
ing zero divisors into the ground ring is needed and provéadesich more transparent
Galois correspondence. In all the mentioned cases, thendnong must be a finite
product of fields (called Noetherian difference pseudasield

Our approach allows us not only to treat parameters, butmsmares a solid foun-
dation for studying the non-Noetherian case as we base dinoaieeon a natural geo-
metric approach to difference varieties developedif,[which has been further gen-
eralized to the non-Noetherian case 3d][

While the Noetherian hypothesis appears as a conditionsmtbrk, it is not truly
restrictive when dealing with finite parameter groups beeaany integral difference
ring may be embedded in a Noetherian difference pseudofigtdgood difference
properties, like uniqueness of Picard-Vessiot extensibosinstance, one can take the
product indexed by the finite parameter group of the algelnaisure of the fraction
field of the base ring. However, to extend the theory to irdiparameter groups, it is
necessary to treat the non-Noetherian case, as the santeuctios results in a non-
Noetherian ring. We hope that this generalization, whiclildde of great interest in
the study ofg-difference equations, will be carried out in the near fatur

The paper is organized as follows. We give basic definitionSection2.1. The
main properties of difference pseudofields are detailedeicti®ns2.2 and2.3. Sec-
tion 3 contains the development of our main technique, differédalois theory (also
called difference Picard-Vessiot theory) with periodicgraeters. Difference algebraic
groups are introduced and studied in Sectioh We finish by showing in Section
how to use our theory to study periodic difference algebdajgendencies among so-
lutions of difference equations. In particular, we applggé results to study Jacobi’s
theta-function in Sectiod.3 and to give a complete characterisation to all first-order
g-difference equations wité-difference algebraically independent solutions oveorat
nal functions in variable with coefficients belonging to the field gfinvariant mero-
morphic functions orC \ {0} in Section4.4.

2 Basic definitions

2.1 Difference rings

Most of the basic notions on difference algebra can be foarjd1, 23]. Below, we
will introduce those that we use here. Let

S0=2Z, Z1=7Z/4Z®..PL/tsZ, and T =ZgDZ;,

where each > 2. Leto be a generator afp andp;, 1<i < s, generate each component
of 2.

Definition 2.1. A ring R equipped with an action of a fixed subgrotfpc Z by auto-
morphisms is called &'-ring.



Example 2.2. LetR= C(x) anda(x) = px, p(x) = gxwith p,q € C*, |p| # 1 andq a
primitive mth root of unity for somen > 2. Then

So={0"|neZ} and 3= {id,p,....p"'}.
Let Rbe a¥’-ring and let
R[] = {err\rr ERTEY}
denote the ring of difference operatorsRnThe multiplication orR[Z’] is given by
T-r=1(r)T.

For a sely let
R{Y}y =R[...,ty,... [T€Z yeY]

denote the ring of’-polynomials oveR with Y as the set oF’-indeterminates.

Example 2.3. For example, i’ = ¥; = 7Z /2Z andp is a generator of; then

R{y}s = Rl py]
with the action ofp given byp(y) = py andp(py) =Y.

Definition 2.4. An ideala C Ris called a¥'-ideal if '(a) C a, whereZ'(a) denotes
the set{o(a)| o € Z',a€ a}.

The smallesE’-ideal containing a sét C Ris denoted byF]s. If ¥ =X then it
is also denoted simply biF].

Definition 2.5. Let R; andR; beZ’-rings. A ring homomorphisnfi: R; — Ry is called
aX’'-homomorphism if

f(r(r))=1(f(r)), 1€, reRy.

The following example shows that even if we start with a basld fithe constants
of the solution space as constructed in Sectitiave zero divisors.

Example 2.6. Let¥; = Z /47 with a generatop. Consider the equation
X = —X. 4

The procedure of constructing a solution space (calledrékgassiot extension) of
equation {) described in Sectio# first takes

C{x,1/x}p with ox=—x

and then quotients by
[ox—ix,x* - 1],

which is a maximak-ideal. Thus, we arrive at the ring

Cx/(X*~1), ox=-x and px=ix,



which is aZ-pseudofield generated by the solution of the equation. Theirsy of
constants is generated k§and is isomorphic to

Clt]/(t*~1),
which is not a field.

Denote the ring oE’-constants oR by R¥. In other words,
R¥={reR|t(r)=rforalltes'}.
The set of all'-ideals ofR will be denoted by
1d” (A).

Definition 2.7. A ¥'-idealp of Ris called pseudoprime if there exists a multiplicatively
closed subse$ C R such thap is a maximalk-ideal withpNS= .

Lemma 2.8. Let A and B be-rings and¢ : A — B be az-homomorphism. Then for
any pseudoprime idealin B the ideal$ —(q) is pseudoprime.

Proof. Let SC B be a multiplicative set such thais a maximak-ideal withqNS= 2.
Then there is a prime idealcontainingg such thap NS= @. Hence,p 1(q) C Ais
maximalZ-ideal with

¢ Ha)NA\ P H(p) = 2.
Indeed, lets C A be aZ-ideal such that
¢ Ha)Cac o H(p)
ThenB¢ (a) C p is aZ-ideal. ThereforeBe (a) C q. Thus,a C ¢ 1(q). O
The set of all pseudoprime idealsRfill be denoted by
PSpeR or PSpetR

Forse R
(PSpe®R)s

denotes the set of pseudoprime idealRafot containings. Let R; andR, be3’-rings
andf : Ry — Ry be a¥’-homomorphism. Then

defines amap* : PSped, — PSped?; by Lemma2.8. For an ideabh C Rdenote by
as

the largest’-ideal of R contained ina. Note that ifp is a prime ideal oR then the
idealps: is pseudoprime.



Definition 2.9. An R-moduleM with an action of2’ is called a=’-module if for all
1€, r € R andme M we have:

7(rm) = 1(r)T(m).
Definition 2.10. A ¥'-ring is called simple if it contains no propEf-ideals except for
(0).
Definition 2.11. A ring Ris called absolutely flat if everig-module is flat.
Definition 2.12. An absolutely flat simpl&’-ring k is called a&%'-pseudofield (se€})).
For every subseéE C R{yi,...,yn}s let
V(E)CcR"

be the set of common zeroes®in R". Conversely, for every subsktc R" let

H(X) C R{y17 ce ayn}zl

be theX'-ideal of all polynomials irR{yj,...,yn}s vanishing orX. One sees that for
any¥’-ideall C R{yi,...,Yn}s We have

VI CI(V(1)).

Definition 2.13. [32, Section 4.3] AY'-pseudofieldR is calleddifference closedf for
every¥'-ideall C R{y1,...,yn}s we have

VI=T(V(1)).

2.2 Properties of pseudofields

Proposition 2.14. [32, Proposition 25] Suppose th&f’| < «. Then, a¥’-pseudofield
U is difference closed if and only if, for every finite system

F=0,G#0 (5)

of 2’-equations and inequations, {&) has a solution in som&’-pseudofield O U
then it has a solution in U.

Theorem 2.15. [32, Proposition 19] Everyz’-pseudofield can be embedded into a
difference closed pseudofield and there exists a minimalgseudofield. In particular,
everys'-field can be embedded into a difference cloEegseudofield.

Proposition 2.16. Let L be’-simple ring and KC L be an absolutely flaf’-subring.
Then K is &’-pseudofield.

Proof. Let 0# a € K. We will show that theZ'-ideal of K generated b contains 1.
SinceK is absolutely flat, we may assume that

?=a, (6)



since every principal ideal is generated by an idempot&rExercise 11.27]. Since the
>'-ideal generated bain L contains 1, there exist € L, 0< i <r, such that

1=hoa+Mmoi(a)+...+hor(a) (7

for somegy € 2'. Setop = Id for notation. By induction ork < r we will show that
the hj’s can be selected so thiate K, 0 <i < k. The basé& = 0 is done in the same
way as the inductive step. Assume the statemerk for-1. We will show it fork+ 1.
Multiplying (7) by 1— ok;1(a) and using §), we obtain:

1-— 0k+1(a) 2(1 - ak+1(a))h0a+ et (1 - ak+1(a))hk0k(a)+
+(1-okr1(8))hks20k2(8) +...+ hror (a).

Hence,
1 =(1— 0k+1(a))hoa+ et (1— 0k+1(a))hk0k(a)+
+ 0k 1(8) + (1= Ok11() )Ny 20k 2() + ... + hror (@)
with (1— ogi1(a))ho, ..., (1— okr1(a))hg, 1 € K, which finishes the proof. O

Proposition 2.17. Let L be an absolutely flat ring and B Aut(L). Then the ring £
is absolutely flat.

Proof. Let 0+# a< LY. Then by b, Exercise 11.27] there exist unique an idempotent
anda’ in L such that
e=ad, a=ea anda =ed. (8)
To see uniqueness, note thatéfa’) is another such pair then
=~ ~

ee—ead —ad =€

and, similarly,

So, the elemenrdis unique. Now
d=ed=ed =add

and, in the same manner,

d =ead =ed =add.

We will show now that anda’ areH-invariant. Foro € H we have
a=o0(a)=0o(ae) =ao(e).

Multiplying by &, we obtain
e=eo(e). 9)

Similarly, we obtain



which implies that

g(e) =eo(e). (10)
Then, @) and (LO) imply that
ole)=e
We, therefore, have
e=ao(d), a=ea and (@) =-eo(d). (112)

Since the paife, @) is unique, §) and (L1) imply that

Applying [6, Exercise 11.27] again, we conclude that is absolutely flat. O

Proposition 2.18. Let A be a¥;-closed pseudofield. Then the ring=RA[Z;] is com-
pletely reducible:
RAD...0A (12)

as 2;-modules over A. In other words, eveXy-module over A has a basis af-
invariant elements. Moreover,
AlZ1] =2 Mp(C)

as rings, where G= A1,

Proof. By [32, Proposition 26], we only need to show that evEfymodule oveA has
a basis ofx;-invariant elements. For this, first recall that every lefidule of a ring
R is a direct sum of irreducible submodules if and only if thegrR is a direct sum
of irreducible left idealsZ2, Theorem 4.3, Chapter XVII]. Moreover, if the rifghas
decomposition

R=EVi®...0W

then everyR-module is a direct sum of submodules each isomorphic to sufntiee
Vi's [22, Theorem 4.4, Chapter XVII]. Ever¥;-module over &;-ring A is anA[X3]-
module. Each summand in%) has a>i-invariantA-basis consisting of just 1. Com-
bining this with the above isomorphisms, we have the desesudlt. O

Proposition 2.19. Let R be aZ-simple ring and A= R’ be aZ;-difference closed
pseudofield. Let B be any-A-algebra witho acting as the identity. Then the
homomorphism

B— R®aB, b—1®b,beB

induces a bijection
1d%1(B) +— 1d*(R®AB)

via
aCB—a®*:=R®aa
b :=bNB+— b C R®AB.



Proof. Let| be a>-ideal of the ringR®a B and let
1°=J.

We will show that
| =J8

In other words, by passing R®a (B/J), we will show that ifl® = (0) thenl = (0).
By Proposition2.18 there exists a basis

{bi}ics

of B over A consisting of2;-invariant elements. Then, every elemenRab B is of
the form
ar @b, +...+ay @b,

for someg; € R, 1 < i < n. Let0# u € | have the shortest expression of the form
u=a;®bj, +...+ax®@bj,.
Let
M={aeR|3cy,...,c ER/i1,...,IkE I 1a® b, + b, +...+ @by, €1}.

As 0+# a; € M, and sincex(b;) = bj, 1 < i< n, the setM is a non-zerc-ideal of R.
Hence, 1 M. Therefore, there existswith a; = 1. Since

u—o(u)=(az—0o(a))®bi,+...+ (ax—o(a)) @by, €1 (13)
and has a shorter expression thamwe have
u—o(u)=0. (14)
Since{bj}ic » is a basis 0B overA,
{1®bi}ics
is a basis o0R®a B overR. Therefore, {3) and (L4) imply that

O(a) = ag,...,0(a) = a,

that is,
a,...,a €A
Thus,
u=1® (bj, +azhi, + ...+ adbi,) -
Hence,

0# by, +abi, + ... +ab; €16,

contradictind © = (0). Therefore, we have shown that
(19°=1.

10



On the other hand, sindeis a freeA-module, theB-moduleR®a B is also free and,
therefore, faithfully flat. Thus, by Exercise 111.16] for every ideal C B we have

(39°=3,
which finishes the proof. O

Corollary 2.20. Let B be az-ring containing aZ-pseudofield L with C:= L being
a X;-closed pseudofield. Let € B be aZ;-subring such that Cc C. Then

L-C=L®cC.
Proof. The kernel of the>-homomorphism
Lo C—L-CCB, I®c—I-c,
is aZ-ideal with1¢ = (0) c C. By Proposition2.19 we conclude that = 0. O

2.3 Noetherian pseudofields

Lemma 2.21.Let AC B beX-rings such that for somesA the maBSpedBs — Speds
is surjective. Then the map

¢ : (PSpe®)s — (PSped)s
is surjective as well.

Proof. Let g C A be a pseudoprime ideal with¢ q. Then, since the maximal ideal
not intersecting a multiplicative subset is prime, by dé&fimi there exists a prime ideal

p D q such that
a=[)p"

TEX

with q being a maximak-ideal contained ip”, T € . Sinces ¢ g, there existg €
such thas ¢ p'. By our assumption, there exists a prime id€at- B with p’NA = pT.
Then, the ideaps is the pseudoprime ideal Bithat is mapped tp by ¢. O

Lemma 2.22. Let AC B beZ-rings such that A is Noetherian and reduced and B is a
finitely generated A-algebra. Then there exts s € A such that the map

(PSpe®)s — (PSped\)s
is surjective.

Proof. There exists € A such that is an integral domain. For instance, suppose that
(0) =p1n---Npt is the representation @D) as the intersection of the finitely many
minimal prime ideals in the Noetherian ridg Lets € p,N---Np; be such that ¢ p1.
Then,Ag is a reduced ring with a single minimal prime ideal. Thussiiritegral. By
[32, Lemma 30], there existsc A such that the map

SpedBst — Spedst

is surjective. The statement now follows from Leménal O

11



Theorem 2.23. Let L be a Noetheria@-pseudofield with C= L° being aZ;-closed
pseudofield. Let R beX -finitely generated-simple ring over L. Then

R =C.

Proof. Letb € RY. Since|Z;| < o, the ringRis finitely generated over. SinceR
is Z-simple, it is reduced. Therefore, the rihgb} is reduced as well. Hence, by
Lemmaz2.22, there exists a non-nilpotent elemart L{b} such that the map

(PSpe®R)s — (PSped.{b})s

is surjective. Therefore, since PSgee {(0)}, every non-zero pseudoprime ideal in
L{b} containss. By Corollary2.2Q we have

L{b} = L ®cC{b}.

By Proposition2.18 L is a freeC-module. Let{l; }ic» be aZj-invariant basis ove€.
Then there exist, ..., rx € C{b} such that

S=11®rn+...+krg.

Since the rind_{b} is reducedr; is not nilpotent. Therefore, bydP, Proposition 34],
there exists a maximak-idealm in C{b} such that

C{b}/m=C and r;¢m.
Let
¢ :L{b} =L®cC{b} - L®cC{b}/m=L®cC=L.

Then
o(s) =lir1+... + e,

wherer; are the images af modulom, 1 <i < k. Since

{l1,.., Ik}

are linearly independent ov€randr; # 0, the ideal. ®c m does not contais. Since
¢ is a>-homomorphism,

Lecm=¢~4((0)),

and(0) is a pseudoprime ideal ib, the idealL ®c m is pseudoprime by Lemmas.
Therefore,
L®cm = (0)

by the above. Thus, we see tha& C by taking g-invariants, since is an injective
>-homomorphism. O

Definition 2.24. An idempotent that is not a sum of several distinct orthodaeam-
potents is called indecomposable.

12



Proposition 2.25. Let L be a Noetheriai-pseudofield and let & L/ m, wherem is
a maximal ideal in L. Then
LEFx...xF.

Moreover,X acts transitively on the set of indecomposable idempotsrits

Proof. Since the rind. is Noetherian and dim = 0, by [6, Theorem 8.5], the ring is
Artinian. Therefore, by, Theorem VI1.7], it is a finite product of local Artinian risg
SincelL is reduced, by§, Proposition VIII.1],

L=Fx...xFy, (15)

whereF; is a field, 1< i < n. SincelL is Z-simple, the groug acts transitively on
Sped.. Thereforef = F1, 1 <i < n, as residue fields. Letbe an indecomposable
idempotentir_. Let

Orbs(e) = {ex,.... &}

Then the idempotent
E=e+...+¢&

is 2Z-invariant. Since. is Z-simple, we hav& = 1. DecompositionX5) implies thatl
hasn indecomposable idempotents, each indecomposable identpsof the form

(0,...,0,1,0,...,0)

and, thereforelk = n andX acts transitively on the set of indecomposable idempotents
of L. O

Let B be a>y-ring and let

F,(B) = B={f:%; > B}, (16)
HIG_L '

which is aXZp-ring with the component-wise action &§. Define
(uf)(r)=f(u 1), feFs(B)andu,1e3;.
The above makes;, (B) aZ-ring. For everyu € 34 define a>o-homomorphism
Yu:Fs(B) =B, T f(u). a7
Moreover, we have
Ve(uf) = (uf)(1) = f (H11) = yyo1,(F).

Proposition 2.26.Let A be &-ring, B be a>y-ring, and¢ : A— B be a>g-homomorphism.
Then for everyu € X there exists uniquE-homomorphism

®y:A—F(B)

13



such that the following diagram

is commutative.

Proof. Since
®p(a) (171u) = (Tdu(@) (1) = $(Ta),
wherea € A andr € %, the homomorphisr®,, is unique if it exists. Define

®y(a)(T) = ¢ (T 'a).

For everya € 2; we have

®,(aa)(1) = ¢ (ut laa) = ¢ (u (a*lr)’la) = o,(a) (a 1) = (ady(a))(7)
®y(va)(T) = ¢ (HT tva) = v (¢ (uT 1a)) = v(Pu(@)(T)) = v(Ppu(a))(T)
forall a,1 € 21, v € Zp, anda € A. Thus,®, is aZ-homomorphism. O

Proposition 2.27. Let L be a Noetheriaiz-pseudofield such thatLis a Z;-closed
pseudofield. Then there exists a Noethedgfpseudofield B such that

L=~ F (B).
Proof. By [32, Theorem 17(4)], there exists an algebraically closed feslich that
L7 = F5, (K).
Define _
ec s (K) by )= {; o
Let

B=el

which is a Noetherian absolutely flat ring as a quotient of @tNerian>-pseudofield.
By Proposition2.26 the homomorphism

L—B, a—ea

lifts to a uniqueX-homomorphism

@:L—F,(B).

14



Sincel is Z-simple,@ s injective. To show thap is surjective we will prove thap(L)
contains all indecomposable idempotent$gf(B). Every indecomposable idempo-
tent of the ringm, (B) is of the form

1, v=r,

o f, where &(v)z{o vt

andf is an indecomposable idempotent®flLet f = eh whereh € L. Since

e(t(e)h)(v) = (er(e)h)(v) = (1(e)f)(v) =e(T ') f = &(v)f,

we are done.

Finally, Bis Zo-simple. Indeed, leb C B be aZo-ideal. Letl C F5, (B) consist of
all functionsf with image contained . Sincel is an ideal and; is acting on the
domain,l is invariant under th&;-action. Sinceb is aXg ideal, thenl is aXg-ideal as
well. Therefore] is aZ-ideal, which contradicts th being a pseudofield. O

Proposition 2.28. Let L be a Noetheriaiz-pseudofield such thatLis a Z;-closed
pseudofield. Then

n

L=[]F(F)
"
asi-rings, where F is a field.

Proof. By Proposition2.27,
L= le(B)v

whereB is a Noetheriarty-pseudofield. Lef,..., f, be all indecomposable idempo-
tents ofB. Then

On the other hand,
fIle(B) - le(le) == le(Fl)v
whereF, = fiBandF, =2 F,1<i<n. O

Proposition 2.29. Let L be a Noetheria-pseudofield and K L be aZ-pseudofield
as well. Then K is Noetherian.

Proof. Note that a pseudofield is Noetherian if and only if it consaénfinite set of
indecomposable idempoters .. ., e, with

e+...+en=1 (18)

Necessity has been discussed above. To show sufficieneythmitife is an indecom-
posable idempotent of an absolutely flat rirRgheneRis a field. IndeedeRis an
absolutely flat ring without nontrivial idempotents, [Exercise 11.27]. Moreover, for
every elemenx € Rwe havex = ax’. Thereforeaxis an idempotent. So, either

ax=0 and,thus, x=ax¥X =0
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or
ax=1.

Hence, equalityX8) implies thatR is finite product of fields and, therefore, is Noethe-
rian.
Thus, since every idempotent Kfis an idempotent of,, which is Noetherian, the
ring K has finitely many indecomposable idempotefits. ., fx. Sincef + ...+ fcis
left fixed byZ, we have
f1+...+fk=1.

Again, by the above, the ring is Noetherian. O

Proposition 2.30. Let L be aZ-field such that the subfield & L is algebraically
closed. Then there exist2apseudofield A and a-embeddingp : L — A such that &
is theX;-closure of thex;-field ¢ (C).

Proof. SetA=Fs, (L) and letg (1), := pu (). We have:
T(@)u=9)r1, = (T 1)) = (D)) = ¢ (TN,

wherel € L andt, u € ¥;. ThenA? = F;,(C), which is theX;-closure ofC [32,
discussions preceding Proposition 19]. O

3 Picard-Vessiot theory

3.1 Picard-Vessiot ring

Let K be a Noetheriai-pseudofield and |6 = K be aZ;-closed pseudofield. Let
A € GLq(K). Consider the following difference equation

aY = AY. (29)
Let Rbe aZ-ring containingK.

Definition 3.1. A matrix F € GLy(R) is called a fundamental matrix of equatiar)
if oF = AF.

Let F; andF, be two fundamental matrices cff). Then forM := Fl*1F2 we have
o(M)=0(F) 'o(F) =F ‘A AR =F 'R=M,
that is,M € GL, (R?).
Definition 3.2. A Z-ring Ris called a Picard-Vessiot ring for equatidr®) if
1. there exists a fundamental matfixe GLn(R) for (19),
2. Ris az-simple ring, and

3. Ris Z-generated ove be the matrix entrieB;; and 1/ detfF.
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Proposition 3.3. Let K be a Noetherial-pseudofield, K be aZ;-closed pseudofield,
and R be a Picard-Vessiot ring for equatift). Then

R =K°.

Proof. SinceR is a 2;-finitely generated algebra ov&r and |Z;| < o, Ris finitely
generated ovek. Then the result follows from Theoref?23 O

Proposition 3.4. Let K be a Noetheriark-pseudofield with K being aZ;-closed
pseudofield. Then there exists a unique Picard-Vessiotfangquation(19).

Proof. We will show existence first. Define the actionabn theX;-ring
R:=K{Fj,1/detF}5,

by oF = AF. Letm be any maximak-ideal inR. ThenR/m is the Picard-Vessiot ring
for equation (9).

We will show uniqueness now. L& andR; be two Picard-Vessiot rings of equa-
tions (19). LetR= (R; ®k Rz)/m, wherem is a maximak-ideal. SinceR; is Z-simple,
theZ-homomorphism

P1:RR—R r—rel,

is injective. Similarly, the homomorphism
oo RR—R r—1®r,

is injective. LetF; andF, be fundamental matrices & andRy, respectively. Then
there existdV € GL, (R?) such that

¢1(F1) = ¢2(FR2)M.

Propositior3.3implies thatR? = K?. Thereforeg;(F1) C ¢2(Ry). Similarly, ¢»(F2) C
#1(Ry). Hence,
$1(R1) = ¢2(Re)

and, thusR; 2 R, =~ R. O

Proposition 3.5. Let K be a Noetheriarz-pseudofield with K being aZ;-closed
pseudofield and Let R be a Picard-Vessiot ring of equatid). Then the complete
quotient ring L:= Qt(R) is a Noetheriark-pseudofield with £ = K°.

Proof. We will first show thatL is 2-simple. Leta be a non-zer@-ideal ofL. Then
aNR# (0) and, therefore, & a.

We will now show that is a finite product of fields. Since the rikgis Noetherian
andRis finitely generated ovéf, the ringRis Noetherian as well by the Hilbert basis
theorem. Hence, there exists a smallest set of prime igeals ,p,, in Rsuch that

(0)=p1N...Npy.
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The set of non-zero divisors R coincides with
n
R\ Uni-
i=1

In Qt(R), all prime ideals correspond to thgs, that is, they are all maximal and their
intersection ig0). Therefore, by §, Proposition 1.10]

Qt(R) = QtR/py) x ... x QR/ py),

which is absolutely flat and Noetherian.

Letc= 2 € L9. Using Theoren?.23 it suffices to show thaR{c}s, is aZ-simple
Z-ring, since this would imply that € K°. For this, we will show that ever¥-subring
D C L containingK is 2Z-simple. Indeed, for every£ d € L there exista € Rsuch that
0+# ad € R, which is true because is the localization with respect to the set of non-
zero divisors. Therefore, for every nonzero idealf D we haveaNR # {0}. SinceR
is >X-simple, 1€ a. O
3.2 Picard-Vessiot pseudofield
LetK be a Noetherial-pseudofield witlK? beingZ;-closed.

Definition 3.6. A NoetherianZ-pseudofield. is called a Picard-Vessiot pseudofield
for equation {9) if

1. there is a fundamental matixof equation {9) with coefficients irL,
2. L9 =K?°,
3. L is generated ovedf by the entries of.

It follows from Propositior3.5that every equationl@) has a Picard-Vessiot pseud-
ofield. We will show that all Picard-Vessiot pseudofieldsafréhis form.

Proposition 3.7. Let K be a Noetheriak-pseudofield, with C= K7 being aZ;-closed
pseudofield, and L be a Picard-Vessiot pseudofield for equétid). Then

L= QIR),
where R is the corresponding Picard-Vessiot ring.

Proof. Let o act on thex;-ring
R:=L{Xj,1/detX}s, by oX=AX.
Let F be a fundamental matrix of. @) with coefficients inL. Define
Y =FX.
ThenR=L{Y;j,1/detY}s, andoY =Y. Therefore,
R% = C{Yj,1/detY}s,.
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Moreover, we have a-isomorphism
L@k K{Xj,1/detX}5, = L ®cC{¥j,1/dety}s,. (20)
Recall that the Picard-Vessiot ring is given by
R=K{X;,1/detX}s, /I,

wherel is a maximalz-ideal. By Propositior?.19and isomorphismZ(0), the ideal
L®k | corresponds to B-ideal of the formL ®@c J, whereJ is aZ;-ideal ofC{Y;j, 1/ detY }5,.
This induces &-isomorphism

@: Lk R— L®cB,

whereB = C{Y;j, 1/ detC}5, /J consists or-constants. Lei be a maximak-ideal in
B. By [32, Proposition 14], we have

y:B—=B/m~=C,
sinceC is aX;-closed pseudofield. Ldt be theX-homomorphism defined by

R r—1®r Lok R Q L&cB id_ ®y L®cC l@c—l-c L

SinceR is Z-simple, the homomorphism is injective. By the universal property,
extends to &-embeddingp of Qt(R) into L. SinceL is generated by the entries of its
fundamental matri¥, we finally conclude thap (Qt(R)) = L. O
3.3 Difference algebraic groups

3.3.1 Definitions

In analogy with differential algebraic groups, we make tiofving definitions. Through-
out,C will denote a>;-pseudofield. Recall that the category®#b ;-algebras

acs,
has as morphisms tl@@algebra maps that commute wiih.

Definition 3.8. A C-X;-Hopf algebra is £-2;-algebraH supplied with comultiplica-
tion, counit, and antipode morphisms that arezatalgebra morphisms.

Definition 3.9. An affineC-X;-algebraic grous is a functor
G: a5, — Groups

defined by
G(R) = Homy, (H,R),

whereH is aC-X;-Hopf-algebra.
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Definition 3.10. Define
Hm = C{Xj_l, <o Xmmy 1/detX}zl, (21)

TheC-%;-algebraHy, has a Hopf algebra structure that is defined orsthgenerators
in the usual way and is extended by commuting toXfxenonomials in the generators.
Then, we let

Glms,

be the affineC-2;-algebraic group corepresentediy; as above.

Example 3.11. Let
5 = {id,p,p%....p" "}

and consider
Hi = C{Xv 1/X}Zl =C [Xv 1/va(x)v 1/p(X), e vptil(x)a 1/ptil(x)] :

Then, the comultiplication is

p'(x)— p'(x) @ p'(x),

and the antipode map is
p' () — 1/p'(%).
Note that in this case
Gm,p = GLl,Zl = G’E‘n

asC-algebraic groups.

Definition 3.12. A linear C-Z;-algebraic group is an affin@-Z;-algebraic groups
such that there exists a morphism of functors

¢:G— Glms,
such that the kernel functor Ke) is the constant functqo).

In particular, this means that tl&>1-Hopf algebraH of G is a quotient ofHy,
by a radicalz;-Hopf-ideal by the Yoneda lemma (se6] Corollary 2, page 44] or
[20, Corollary 30.7, page 224]). More explicitly, the above iglence also follows
from the equivalence of the categories of affine pseudaveasiand the category of
>, -finitely generated algebra3%, Proposition 42].

3.3.2 Difference algebraic subgroups ofim 5,

Example 3.13. In the usual case of varieties over a figldhe algebraic subgroups of
G are given by equationd = 1. The corresponding ideal hf[x, x*l] is(xX —1). In
the case of-X;-groups, where

21=Z/tlz@...@2/th=Z {id=ay,...,at}, ti=t1-...-1p,
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there are more;-algebraic subgroups dfms,. Let C be an arbitrary Noetherian
>1-pseudofield. Let also

€0,---,651
be all indecomposable idempotentghivith
ai(ep) =€-1, 1<i<s
Then thez;-Hopf algebra ofGn 5, is
C{x,1/x}s, = (K x ... xK)[Xq,1/Xq | O € Zq],
whereK = C/m for a maximal ideai of C. We have
C{x,1/x}s, = eC{x,1/x}5, X ... x €-1C{X,1/X}5,,

and
R =eaC{x,1/x}s;, =K[Xa,1/Xq | a € Z1].

As we can see, eadR is a Hopf algebra. Lelt be theX;-ideal defining ou;-closed
subgroup ofGm 5, . Then
| = el x...xe51l.

For each, 0<i <s— 1, theideakl c R, is defined by equations

ki,Lal ki,l‘at

Xg, Feo X M =1,
m -

Xa) e -x‘é‘,{m"" =1

So, if we collect all equations of all ideadd, 0 < i < s— 1, we obtain the equations

eOXkO,Ll az (Xle,Z) e at (XkO,Lt) — eo7

85,1Xk5*1>m>1 ar (st—Lm)Z) N (Xk"rl,m,t) = €1.

Applying a(l to the equations witke, 0 < i < s, we can rewrite the above system in

the form
eoXaion (X42) o (X)) = e,

: (22)
eoXmia (Xm2) .o (Xm) = ey,

which generaté as aX;-ideal. The latter equations also give generators of thalide
el. So, by B5, Section 2.2] we must hava < t.
Now we claim that there is an equationlinf the form

$(x)-1=0,
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whereg (xy) = ¢ (X)¢ (y). Indeed, for this, denote the first equationa)by /(x) — ep.
Then the equation

lgngork(W(X) — &) = KZ@ak(w(X)) -1

is of the desired form, where the sum

l;gsork( Y(x))

is multiplicative because the's are orthogonal.

Now suppose that =t (this is the case, for example, wh€ns Z;-closed). In this
case, we know that the numberof equations does not exceed the numbef our
idempotents. Then the following system of equations definesdeall .

eoXiar, (xklz) L0 (xkﬂ) = e, (1)
epXmia, (kaZ) O (xk'“") =6y, (m)
€y = €p, (m+1)
eo. = €. ®

Applying a; to theith equation, X i <t, we obtain

eoXiay (xk1=2) O (xkl") = ey, 1)

€m_10m (ka’l) (amar) (x""LZ) o (amat) (ka"*l) =en_1, (m)
€m = €m, (m+1)

Q71.= a-1. ®

By taking the sum of the above equations, we arrive at an egquat the form

p(x =1 (23)

Since theg’s are orthogonal, the left-hand side is multiplicative. fdover, this equa-
tion defines the same subgroup. Vice versa, every multiple# (x) € C{x,1/x}s,
defines &;-subgroup ofGm 5, via (23). Note that it might happen that the set of solu-
tions is empty. For example, this is the casegor e, wheree is idempotent and not
equal to 1.
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Example 3.14.LetC = C x C x C with
p(ag,a1,a) = (a2,8p,21), & €C.
By [32, Proposition 15](C, p) is aZ;-closed pseudofield. Let
G={aeC|a-p(a) =1}, (24)
aXj-subgroup ofGm, considered in Exampl@.13 A calculation shows that
G={(1,11),(-1,-1,-1)}.

This demonstrates a major difference betwEgisubgroups and differential algebraic
subgroups (se€9[ Chapter 1V]) of Gy,. More precisely, in the differential case the
order of the defining equation coincides with the algebraitethsion of the subgroup.

In our case, the order @ in (24) is equal to 1, however, the group is finite. There-
fore, in order to compute the algebraic dimension af agroup one needs to do more
calculation than just to look at the-order of the equation.

3.4 Galois group
As before, leKK be a Noetherial-pseudofield withC := K9 beingZ;-closed.

Definition 3.15. Let L be a Picard-Vessiot pseudofield of equatia8)( Then the
group of Z-automorphisms of overK is called the difference Galois group dfg)
and denoted by AgfL /K).

LetL be a Picard-Vessiot pseudofield of equativf) @ndF € GLy(L) be a funda-
mental matrix. Then for any € Auts(L/K) we have

y(F) =FMy, (25)

whereMy, € GLn(C), which, as usual, defines an injective group homomorphism fr
Auts (L/K) into GL,(C). SincelL is generated by the entries Bf the action ofy on
L is determined by its action df. This induces an identification of At /K) with
Auts (R/K), whereR is the Picard-Vessiot ring correspondingio

We will now construct a map

Auts (R/K) — Maxs (R®k R).

For this, letF be a fundamental matrix of equatioh9) with entries inR andy €
Auts (R/K). As aboveyF = FMy, whereM, € GLy(C). We will then map

y— [F1-10FMs,
the smallesk-ideal containing= ® 1 — 1® FM,. Consider th&-homomorphism

(y,1d): Rek R— R,
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which is surjective. SincRis Z-simple, the kernel of the homomorphism, which is
[F®1l-1®FMys,

is a maximalz-ideal inR®k R. Indeed, ifR is aZ-simple ring andB is a Z-finitely
generated algebra ovBr that is,B = R{x,...,Xn}s, then eveny-ideal of the form

[Xl_a17-"7xn_an]27

whereg; € R, is aZ-maximal ideal. Moreover, for & s € B, every maximak-ideal of
B is either a maximat-ideal in

B* :=B{1/s}
or becomes trivial irB*. Hence, a nontrivial ideal
[X1—a1,...,Xn—an)s
of B* is a maximak-ideal. Now, the ring
R®k R
is anR-algebra with respect to the homomorphism
R—R®kR, r—1®r.

Then
Rk R=R{F®1}{1/def{F ®1)}.

Therefore, the idedF ® 1 - 1® FM,|s has the desired form. Moreover, this ideal is
nontrivial because it is the kernel of the surjecti#aomomorphisngy, Id).
To construct a map in the reverse direction, let

@, % R—>RekR r—r®l r—1®r, respectively
Letm be a maximak-ideal ofR@k R. Then
(RexkR)/m

is a Picard-Vessiot ring of equatiohd). As in Propositior8.4, the composition homo-
morphisms

¢ R—RekR— (R®kR)/m
are isomorphisms. This induces an automorphism of theRidgfined by
—1 J—
P =@y 0 Q.

Proposition 3.16. The correspondendsuts (R/K) — Maxs (R®k R) constructed above
is bijective. Moreover, these bijections are inverses cheather.
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Proof. Lety € Auts(R/K) andM € GL,(C) be such thay(F) = FM. Set
m=F®1-18FM]s.
Since

¢, (F)=F®1l, F®l=1®FMin(R®kR)/m, and @,(FM)=1®FM,

we have
@ (F) =FM.
That s,
- (RekR)/m _
2 N8
R R
G

Conversely, letm € Maxs(R®k R). Thengy, (F) = FM for someM € GL,(C). Hence,
901(F) = ¢5(FM).

Therefore,
[F®1-1®FM]z Cm.

Since, as above, the former ideakisnaximal, it coincides withm. O

Proposition 3.17. The Galois group G of equatidi9) is a closed subgroup &L,(C).
Moreover, if the ring ROk R is reduced then

Rk R~ RecC{G},

where J G} is the ring of regular functions on G and R is a Picard-Vessiag of (19).
Proof. As before, define on theX;-ring

R{Xj.1/detX}s,
by 0X = AX. LetF be a fundamental matrix of.f) with coefficients inR and let, as
above,

Y =F X,
which implies thatoY =Y. We have &-isomorphism
Rok {Xij,1/detX}s, = RocC{Yij,1/detY}s,.

As in the proof of Propositios.7, this induces &-isomorphism

R®k R~ R®c B, (26)

whereB = C{Yjj,1/detY}5, /J andJ is aX;-ideal.

By Propositior3.16 Auts (R/K) as a set can be identified with MefR®k R). The
latter set, by Propositio.19 and isomorphismZ6), can be identified with Max B.
SinceC is X;-closed, by B2, Proposition 14], the set MaxB can be identified with a
closed subset of GI(C). The group structure @ is preserved under this identification
due to 5). If the ringR®k Ris reduced then the idedlis radical and, therefor® is
the coordinate ring o®. O
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3.5 Galois correspondence

Proposition 3.18. Let L be a Picard-Vessiot pseudofield of equat{@f), R be its
Picard-Vessiot ring, and G be its Galois group. If the ringkRR is reduced then

LG =K.
Proof. Let a
pEL\K, (27)

wherea, b € Randb s not a zero divisor. Set
d=a®b-b®ac Rk R
We will show thatd # 0. For this, let
e1,...,6n

be all indecomposable idempotents of the NoetheXignseudofielK. Sinceb is not
a zero divisor,

eb#£0, 1<i<n. (28)
Suppose that for eadhl < i < n, gaandgb are linearly dependent oveiK, that is,
Aiga= Lieb
foralli. Then @8) implies thatA; # 0, 1< i < n. SincegK is a field, we have
_H
Ga= o eb
Hence,
n n
Hi
a= a= —g | b
i= . <i Aia)
Thatis,
a & i
~— -5 = K
b a0

i=
which is a contradiction toX/). Therefore, there existis1 < i < n, such thaga and
gb are linearly independent oveiK. If d = 0 in R®k Rthen

gapeb—gb®ea=0 in gR®qk&R (29)
Indeed, in general, i\ is a ring andB, C, andD areA-algebras then
(B®aC) 2AD =2 B@aAD®AC = B2aAD®pD®AC = (B®AD)®p (CRAD).
Moreover, we have the following commutative diagram

B®aC
AN

B C
N,
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Hence, for any element iB (or C) one can take its image B®aC. So, we choose
A=K, B=C=R, andD =¢gK

to obtain @9) contradicting that ® ga and 1x gb are linearly independent overR.
Thus,
a®b—b®a#0 in R®kR (30)

We will now show that there is a maximatideal inR®k R that does not contain
d. SinceR®k Ris reduced, then by Propositiénl7we have

Rk R RocC{G}.

Let
{litiesr
be a basis oR overK. Then there existy,...,rm € C{G} such that
d=hL®r+...Imrm.
Sincer is not nilpotent, there exists a maxinkl-idealm C C{G} such that
r1#0 in C{G}/m.
Then image ofl in R®cC{G}/m = Ris

Sincer; # 0, we haved # 0. Thusd ¢ R®cm.
Using the correspondence between maximaleals inR®k RandZz-automorphisms
of RoverkK, let

_71 J—

Pn =@y oy
correspond tan as in the proof of Propositiod.16& Then our choice ofiv implies that
(Rek R)/m > @y (a)@,(b) — ¢y (b)@,(a) # 0. (31)

Applying E;l to both sides of{1), we obtain that
n(@)b— g (b)a# 0.
Thereforegy, (2) # 8. O

Lemma 3.19. Let K C L be Noetheriarz-pseudofields. Let K- Auts (L) such that
LM = K. Suppose that

K;ﬁ@m)

as X;-rings, where F is a field. Lefe} be the corresponding idempotents. Then
for each i the abstract group generated By and H acts transitively on the set of
indecomposable idempotents of the rinig. e
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Proof. Lete € gL be an idempotent ar8be its; « H-orbit. The seScoincides with
the set of indecomposable idempotents if and only if

gsf =1

This sum isH-invariant and, therefore, it belongs g, (F). Since it is>-invariant
as well, it is equal to 1, becausexa-invariant idempotent oFs, (F) generates & ;-
ideal. O

Proposition 3.20. Let L be a Picard-Vessiot pseudofield for equati®f) and H be a
closed subgroup of the Galois group G. Théh= K implies H= G.

Proof. As before, lefr be a fundamental matrix with entrieslimndoX = AX define
the action o> on theX;-ring

D :=L{Xj,1/detX}s,.
Let alsoY = F~1X. Again, as before,
L @k K{Xij,1/detX}5, = L®cC{Yj,1/detY}s,.

Suppose that C G and let
1 CJ

be the defining ideals @ andH, respectively. Denote their extension&.§0;, 1/ detX }
by (1) and(J), respectively. By Proposition.19 we have

H &)
Explicitly, we have
(1) = {f(X) € L{Xj,1/detX}5, | f(FM) =0 for allM € G}

and
(9) = {F(X) € L{X;,1/detX}5, | f(FM) = 0forallM e H}. (32)

LetT = (JI)\(l) # 2.
Define the action oH onL @k K{X;j,1/detX}5, by

h(a@b)=h(a)®@b, heH.
Then equality 82) implies that(J) is stable under this action &f. By Propositior?2.28
K=F, (F)x...xF(F)

asX;-rings, wherd- is a field. Letey, ..., e, be the idempotents corresponding to the
components§s, (F) inthe above product. By Propositianl § the ringk {X;j, 1/ detX} 5,
has aX;-invariant basi§ Qq }. Then every element of the rifigis of the form

Q=01Qq; +...+0nQa,, (33)
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whereg; €L, 1<i < n. LetQ be an element i with the shortest presentation of the
form (33). Since

Q=>aQ

there exists such thaieQ € T. Denote the latter polynomial b® as well. Now we
have

Qe gD.
Let fy,..., fm be all indecomposable idempotents of the NoetheriangingThen

Q=3 fiQ
=1

Hence, there existgsuch thatf;Q € T. By Lemma3.19, there existy € Z1 +H such
that the coefficients of
QﬁZh@)

are invertible ingL. Therefore,

Q=eQ1+0Q2+...+gmQm.

Since the ideald) is stable under the action &f xH, we haveQ’ € T. Sinceg € K,
for everyh € H the polynomial

Q=Q -h@Q)
has a shorter presentation th@mand, thereforeQ)! ¢ T. That is,
Qe (1) forall heH. (34)

We will show now thatQy = 0 for all h € H. Suppose tha®}, # 0 for someh € H.
Then (34) implies that there existssuch that

0 fiQh e (1),

SinceZ; x H acts transitively on the indecomposable idempotentglgfthere exist
@ € 21+ H such that

Q= Z(Q (Qh) =r2Qo+...+rmQme (1),

wherers is invertible ing L. Therefore, there existse gL such that
02 =1IT2.

Then, the polynomial
Q-rQeT

has a shorter presentation th@h which is a contradiction.
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We have shown that
h(Q/) — Q/
for all h € H. Hence, all coefficients d@ are inK and, therefore, are invariant under
the action ofG as well. Since &= Q'(F -id) = Q' (F), we have

0=9(Q'(F)) =9(Q)(FMg) = Q' (FMg)
forall g € G. Thus,Q' € (l), which contradicts t@) € T. O
Lemma 3.21. Let M be a field,
D:=Mx...xM, (35)

F c D be a subfield and H- Aut(D) with D" = F. Let f:=(1,0,...,0) € D and
Hy, C H be the stabilizer of f. Then

fF =MM,
where M is from the first component(g5).
Proof. SincefF is Hi-invariant, we have

fF C ML,
We will show the reverse inclusion. Let

| € (fD)H1 = MM,
We need to show that there is an elemertF such that
| = fa

Let theH-orbit of | be
{l1,..., Ik},

wherel = 1. For each, 1 <i <k, there exist®; € D such that
li = afi,

where f; is the idempotent corresponding to tile factor inD (so we havef = f;),
since ifl # 0 thenH is the stabilizer of. Hence, for

q k
k
fd :i;flli =11 =1

andH permutes thé’s. Thus,d € D = F as desired. O

we have
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Proposition 3.22. Let K be a Noetheriad-pseudofield, R be A-simple Noetherian
algebra over K, and I= Qt(R). Then for the statements

1. thering Rok R is reduced,
2. thering Lok L is reduced,
3. there exists a subgroup H Auts(L/K) such that If =K.

we have:l is equivalent to2 and 3 implies2. Moreover, if R is a Picard-Vessiot ring
over K then the above statements are equivalent.

Proof. The equivalence of and2 follows from the fact thaR®@k R C L ®k L and that
the latter ring is a localization of the former one.

We will show now that3 implies2. Letey,..., e, be the indecomposable idempo-
tents ofK. Then

n
LekL= ﬂqL@aKqL.
i

Indeed,A = A; x Ay be a ring andB andC be A algebras. Denote bg and f the
idempotentg$1,0) and(0,1) of A, respectively. Then we have decompositions

B=eBx fB and C=eCx fC.
We will show now that
B®aC =eB®epeCx fB®ia fC.
For this, first note thaéB fC = 0. Indeed,
eb® fc=e(eb) ® fc=ebxe(fc) =0.

Hence,
B®aC = (eB® fB)®a(eCh fC) = eBoaeCd fB®a fC,

Since the homomorphism
A— eBxaeC

factors througleA we have
eBpeC=eB®eaeC.

It is enough to show that the ringl ®qk gL is reduced. Note thaK is a field.
Sinceg € K, they are all invariant undét and, moreover,

(@L)" =eK.

Letnowfy,..., fn be the indecomposable idempotents of the gihgand letH; be the
stabilizer off;. Lemma3.21with D = gL andF = gK implies that

(L) = fieK.
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Since
al®ekal=[]afsl@ekafl,
st

it remains to show that the ring
D:=gfsL®qk & ftL

is reduced. ByT, Corollary 1 of Proposition 7.3], with = g fsL, B= g fiL, N = B,
andK = gK, the Jacobson radical of the rifis zero. In particular, the rin® is
reduced.

The last statement follows from Propositigrig O

Definition 3.23. A Picard-Vessiot extensidn/K is called separable if one of the three
equivalent conditions in Propositich22is satisfied.

Theorem 3.24.Let R be a Picard-Vessiot extension of equafio?) and L= Qt(R) be
separable over K. Le# denote the set of all intermedia¥epseudofields F such that
L is separable over K an® denote the set of all;-closed subgroups H in the Galois
group G of L over K. Then the correspondence

F+—9, FeAuts(L/F), H—L"

is bijective and the above maps are inverses of each otheedwer, H is normalin G
if and only if theX-pseudofield F= L is G-invariant.

Proof. The map.# — ¢ is well-defined by Propositio.17. Propositions2.16
and2.17imply thatL" c L is a>-pseudofield. By Proposition.29, it is Noetherian
and, by Propositios.22, it is separable.

Let F € .#. Then the extensioh overF is separable and is a Picard-Vessiot
pseudofield for equatiori @) considered ovelf. Moreover,

E—= FAUtz(L/F)
by Propositior3.18

Conversely, leH be aZ;-closed subgroup db. SetF = L". ThenL is a Picard-
Vessiot pseudofield for equatioid) over F. By Proposition3.20 we haveH =

Auts (L/F).
The equality
g(F)={reL|ghgr=rforallheH}
implies the statement about normality. O

Remark3.25 The base pseudofiellis a product of the fields, sdyx ... x L. If the
field L is perfect, then for every pseudofieldsandE containingK the ringF ® E is
reduced. Indeed, l&, ...,q_1 be all indecomposable idempotentdafthen

t—1
FekE=[]eF ®_eE.
h
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Sincel is perfect and.-algebrasgF andgE are reduced, thegF ® E is reduced
as well (see§, A.V. 125, No. 6, Theorem 3(d)]). Therefore,lifis perfect, then any
Picard-Vessiot extension is separable. If the fleid finite, algebraically closed or of
characteristic zero, thdnis perfect. In this case, the sét contains all intermediate
>-pseudofields.

3.6 Torsors

LetC be aX;-closed pseudofield artd O C be a Noetheriak-pseudofield. LeG be
aXj-group ovelC be C{G} be itsZ;-Hopf algebra with comultiplicatios\, antipode
S, and counite.

Definition 3.26. A X;-finitely generated-algebraR supplied with a>-K-algebra ho-
momorphism
v :R— R®cC{G}

is called aG-torsor oveKK if the following statements are true:
1. Ris aC{G}-comodule with respect to*,

2. the vertical arrow in the following diagram

idp&,R(g)K R,/l\MiR
R l R
N

1xid
C{G}acR "

is an isomorphism.

In the above notation, the ring&andC{G} are finitely generated algebras over
Artinian rings. Then the Krull dimension is defined for themhich we will denote by
dimR and dinC{G}, respectively. The isomorphism fimplies that

dimR=dimC{G}.

Moreover, lete be an indecomposable idempotenCiandF := eCbe the correspond-
ing residue field. TheRr ®c C{G} is a finitely generaté&-algebra of dimension equal
to dimC{G}. Hence, for any minimal prime ideglof the ringF ®c C{G},

tr.degg k(p) = dimC{G} = dimR,
wherek(p) is the residue field of.

Proposition 3.27. Let K be a Noetheriart-pseudofield with K being aZ;-closed
pseudofield. Let R be a Picard-Vessiot ring for equati®) with L = Qt(R). Let G be
the Galois group of L over K. If R is separable over K then R is#fSor over K.

Proof. Follows from Propositior3.17. O
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4  Applications

4.1 General result

For any nonzero complex numbewe define an automorphisay : C(z) — C(z) by
0a(f)(2) = f(az).

Let ¥; C C* be a finite subgroup. The}, is a cyclic group generated by a root of
unity { of degree. Letq e C be a complex number such tHgt > 1. Now we have
an action of the group

S=2@LIZ

on C(z), where the first summand is generateddgyand the second one is generated
by ;. Throughout this section the rirg(z) is supplied with this structure of&ring.

Theorem 4.1. Let R be &-ring containing the fieldC(z) such thak := R% is a field.
Suppose additionally that R contains the figl@). Let f € R and ac C(z) be such
that f is an invertible solution of

gq(f) = af. (36)
Then f iso;-algebraically dependent ové(z) if and only if
¢(a) = 0q(b)/b @37
for some0 # b e C(z) and1 # ¢(x) = x007 (x)™ -...- oL 1(x)™ .
Proof. If (37) holds then
0q(¢(f)/b) = ¢(0q(f))/0q(b) = ¢ (af)/aq(b) = ¢ (a)¢(f)/aq(b) = ¢(f)/b.

Therefore,
¢(f)/b=ceR%=Kk.

Thus,
¢(f)=c-bek(2),

which gives & ;-algebraic dependence féroverk(z).
First, note that is algebraically independent ovier Indeed, suppose that there is
a relation
an-"+an1-271+...+a=0

for somea; € k. Applying gq n times, we obtain the following system of linear equa-

tions
1 1 .01 1

n n—1 an-z“
q q. e P
: .| =0
@™ @y et
@) (" qQ 1



Since the matrix is invertible, our relation is of the foar# = 0 for somea € k. Since
k is a field, we have® = 0. Howeverz € C(z), which is a contradiction.

Assume now that is ¥;-algebraically dependent ove(z). LetC be theX;-closure
of k andK be the total ring of fraction of the polynomial riri¢jZ], where

0q(2) =9z and o;(z)={z

So, the fieldk(z) is naturally embedded intd. Let D be the smallest-subring inR
generated b¥(z), f, and ¥/ f and let

m C K@y D

be a maximak-ideal. Then
L= (K®kzD)/m

is a Picard-Vessiot ring ové¢ for equation $6). The image off in L will be denoted
by f. Sincef is Z;-algebraically dependent ovie(z), f is Z;-algebraically dependent
overK.

It follows from Section3.6that f is Z;-algebraically dependent ovKrif and only
the Z-Galois groupG of equation §6) is a proper subgroup dms,. Then, by Exam-
ple 3.13 there exists a multiplicative

¢ € (R, Q{x1/x}s,

(see also16)) such thats is given by the equation
p(x) =1

Therefore, for allp in the Galois group, we have

P(9(1)) = (@(F) = d(cp- ) = d(cyp)- ¢ (F) = 1-9(F) = #(f).

Hence, by Propositiof.18 we have

b:=¢(f) e K=C(2).

as in [L9, Proposition 3.1]. Sincé is invertible, f is also invertible and, sincg is
multiplicative, ¢ (f) is invertible as well. Therefore,

¢(a) =0 (0q(F)/T) = aq(9(f)) /9(f) = oy(b)/b. (38)

We will show now thab can be chosen froitis, C)(2) satisfying ¢7) as in [L9, Corol-
lary 3.2]. We have the equalities

a=a/c and b=by/d,

whered,c € C[Z andb,d € C[Z. Consider the coefficients df andd as difference
indeterminates. Then, equatidsBf can be considered as a system of equations in the
coefficients ob andd. Indeed, equatior3g) is equivalent to

olare) - 2000,
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So, we have
$(a) 0g(d) -b—(c) Og(b)-d =0 (39)
The left-hand side of equatio¥) is a polynomial inz. The desired system of equa-
tions is given by the equalities for all coefficients.
Now note that the condition of € C[Z] being invertible in C(z) is given by the
inequality
y-07(y)- .. a7 (y) #0.

Therefore, the coefficients of the polynomiblandd are given by the system of equa-
tions and inequalities. Since the pseudoftgl(C is %;-closed, existence of invertible
b andd with coefficients inC implies existence of invertible andd with coefficients
in Fz, C (see B2, Proposition 25 (3)]).

We will now show thab € C(z) and¢ can be found of the desired form. We have

proven that
¢(a) = aq(b)/b (40)
for someb € (F5, C)(2). It follows from Example3.13that

$(x) = eo- X0 g (x)"01- ... gy H(x)rt 4.

a1 XN o ()M gy (),
Note that ifa € (Fs, C)(z) belongs taC(2) then
k(@ =a and y(0y(a)) = oy (ye(a)),
where thegg-homomorphism
Ye: (F5,C)(2) = C(2)
is defined in 7). Applying this homomorphism tai(), we obtain
alo0- gg (@) ... 0} (@) = o ye(b))/ ye(b),

which concludes the proof. O

4.2 Setup for meromorphic functions

Example 4.2. The ring of all meromorphic functions ofi* will be denoted by.#.
For any nonzero complex numbewe define an automorphisay : .# — .# by

oa(f)(2) = f(az).

Let
>, CC*

be a finite subgroup. Thexy is a cyclic group generated by a root of unityf degree
t. Letq e C be such thalg| > 1. Now, we have an action of the group

S =ZaINZ,
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where the first summand is generateddgyand the second one is generatedy

The set of allog-invariant meromorphic functions will be denotedloyAs we can
seek is aX;-ring. LetC be theX;-closure of the fieldk. Supply the polynomial ring
C[Z] with the following structure of &-ring:

0q(2) =9z and o;(z)=qz

LetK be the total ring of fractions @2, so,K is a Noetheriarz-pseudofield with,-
closed subpseudofield of-constant€. The meromorphic functionis algebraically
independent ovek. Hence, the minimak-subfield in.# generated bk andzis the
ring of rational functiong(z). Thus, this field can be naturally embedded iKtwith
zbeing mapped ta.

4.3 Jacobi’s theta-function
We will study>;-relations for Jacobi’s theta-function

64(2) = — ZZ(—l)”q

—n(n—1)
——

rd

with coefficients ink(z).

4.3.1 Relations forfy with g-periodic coefficients
First, we will show that there are many relations of such form
1. Suppose that> 3. Then, the function
A =64(2)-6,%(32)- 6(3%2)

is gg-invariant. Thereforef, vanishes the following nontrivial;-polynomial:
y-02(y) = A - (07(¥))? € k(2){y}-

2. Suppose that=m-n, wheremandn are coprime. Then, there exist two numbers
u # v such that the automorphismn%' * 0%’ but og” = 0%’“ #id. Then, the
function

A= 63(5”2) . 9(;”(("2)
is gg-invariant. Thereforef, vanishes the following nontrivial;-polynomial:

(0zu(y)" = A - (07v ()" € k(2){y}.
3. For any giver{, the function
A =6l(2)6,'(¢2)
is gg-constant. Therefordl; vanishes the following nontrivial;-polynomial:

Y =2 (07 (y) € k(@){y}.
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4.3.2 Periodic difference-algebraic independence fofy with g-periodic coeffi-
cients

We will show now that in some sense these relations are thyepmsisible ones.

Lemma 4.3. Suppose that for some rational functiortik(z) there is a relation

(a2 (—ql2)-...- (_qztflz)ktfl _ qu(Jb)

for some ke Z. Then

t-1
.iji =0.

Proof. The functionog(b)/bis of the following form

gg(b) h
b g
whereh andg have the same degree and the same leading coefficient. Thétgqu
follows from the condition on the degree. O

Lemma 4.4. Suppose that there existe k(z) andn, g € C such that
UQ(A ) = r’ : /\ 9
where|n| =1and|g| > 1. ThenA e kandn = 1.

Proof. Let
N —az (z—a)-...-(z—apn)
(z—by)-...-(z—bm)
be the irreducible representation/ofwherea;, by € k. By the hypothesis, we have

r+n-m_ (Z—%)-...-(Z—%): .(Z_al)'---'(z_an)
B ) B ) R

q q

Thereforeg™™" ™= . Thus,r +n—m= 0 andn = 1. Moreover, the sets

a1 an
ai,...,an and {—,...,—}
{a } q q

must coincide. IA ¢ k then, fromr +-n—m= 0, it follows that eithen > 0 orm > 0.
Suppose that the first inequality holds. There existsch that

e
ag = —.
q

If i =1 then we seip = 1. Otherwisej > 1 and, rearranging the elemerits;} for
j > 1 suppose that= 2. Again,

Ay = —.
7 q

38



If i =1, we setig =i. Otherwisej > 2 and rearranging the elemeds; } for j > 2,
suppose that= 3, and so on. Since there are only finitely many elements, ibeegs
will stop and we obtain a numbégy with the following system of equations:

a
a = —
q
az
ap = —
q
a
aio = E
Thereforeg'®© = 1. Thus,|q| = 1, which is a contradiction. O

Proposition 4.5. Let the pseudofield K be as above. Let R be a Picard-Vesst rin
over K for the equation

Oq(y) = —qz-y

and L be the corresponding Picard-Vessiot pseudofield. &gthat f is an invertible
solution in R. Then ¥k R is a graded ring such that f is of degré@nd oq and o,
preserve the grading.

Proof. It follows from Propositior3.17that
R®R=R®C{G},
K C
whereG is the corresponding Galois group. Multiplying bywr —, we obtain:
LOR=L®C{G}.
® 9C{G}
Since groupG is a subgroup o6,
C{G} =C{x,1/x}5,/3J,
where the ideal is generated by difference polynomials of the form

& - Xo. (crzx)k1 (0}’1x)kt71 —€

(see Example3.13for details). The ringC{x,1/x}s, is a graded ring such thatis
homogeneous of degree 1 aog preserves the grading. In the proof of Theorém
we have obtained that

%(b)

(—qz)ko . (_qZZ)kl . (_qztflz)kl—l _ )

for someb € C(z). Thus, it follows from Lemmat.3that

i;)ki =0.

39



Therefore, the ideal is homogeneous. Hencg{G} is graded. Thud, ®cC{G} is

graded. Sincd = f -y, wheref € L is a solution of the equation ib, thenf is a

homogeneous element of degree 1. Sirdg og-constant,gy preserves the grading.
o

Theorem 4.6. Let the pseudofield K be as above and suppose additionally tha
prime number. Let R be a Picard-Vessiot ring over K for theatigpm

Oq(y) = —qz-y.
Then every relation of the form
' d d 1.,)d
A0+[Z Aod - 64(2)" + A1d- 64({2) +...+/\t,1d-9q(Zt* 7) =0, (41)
=1
with Ag, Aij € k(2), implies thatAg = Ajj = 0.

The first proof.Let L be the corresponding Picard-Vessiot pseudofieldRfdt follows
from Propositiont.5thatD = L @k Ris a graded ring such that the imagedgfin D is
homogeneous of degree 1. Suppose now @haatisfies an equation of the formlj.
Then, the same equation holdsRrand, after embeddinginto D, it holds inD. Since
D is graded, our equation is homogeneous. Thus, it is of tha for

_1.,d
Ao- 642+ A1 66(22 %+ ...+ M 1-64(3 ) =0

for somed. Consider the shortest equation and rewrite it as follows

802" + A 64( D + ...+ A1 64( 1) =0,

where
Ar-64(272)

is the first nonzero summand immediately foIIowiﬁgz)d. Applying oq and dividing
by (—q2)9, we obtain

632 + Tg(Ar) - (') 64 (D% + ...+ (A1) - () 8(¢ 1) = 0

Therefore,
Gq(Ar) - Z*I’d ')\r.

Now, it follows from Lemma4.4 that
Zfrd -1

contradiction. Thus,
eq(z)d =0

must hold, but Picard-Vessiot pseudofield is reduced, whichcontradiction again.
O

40



The second proofSince.# is reduced, a relation of the form
A-64(2%2)% =0

is impossible. Consider an equality of the described formipfimal degreel. Then,
we may suppose that- é)q(z)d appears in this relation, whefec k(z). Dividing by
A, we may suppose that our relation is of the form

824+ - 64({%2)" +... =0,

wherept - 6,({52)" is another nontrivial summand. There are two cases:d with
0<s<torr<dwith 0<s<t. Applying oq and dividing on(—g2)¢, we obtain the
relation oz

—q{*z

60(2)" + Oy(1) - 6({%2) 4. =0,

e
Subtracting the second relation from the first one, we otdaielation of degree less
than the initial one. Thus, these relations coincide. Itipalar,

Og(1) - (—al%2)" = p- (—q2°.

Hence,
Oq(H) _

(—92- (—ag%) " =
If 0 < sthen it follows from Lemmat.3thatr = d = 0, contradiction. Ifs= 0 then
r < d and we obtain from Lemmé 3thatd — r = 0, contradiction. O
4.3.3 Difference-algebraic independence fof; over C(z)
We will now show difference-algebraic independencedpoverC(z).

Example 4.7. Consider an equation

FB)= >  On..np(@-By(a12™ ... 8y(ap2)™ =0,

to zero. Since the sum is finite, there exists a monomial
M(6q) = 64(a12)% -...- By(apz)%

such thatM(6y) - F (8;) contains monomials with negative powers. Now, we will cal-
culate the poles of a given monomial with negative power® fgdles of the-th factor
of the monomial

1 1
M%) = Bg(a12)™ T Gg(ap2)™

are orflqr for all r € Z and the multiplicity of each of the poles . The poles of
distinct factors are distinct. Indeed, suppose that



Then
aj=oi-q2

Thus,
ai=aj in C* /qZ,
which is a contradiction. Therefore, the set of all polest@ monomialM(8y) is
a1 - with multiplicity ny.
Every functiong € C(z) has only finitely many poles and zeros, so, all of them are

inside of a disk
Ug={zeC]||7 < d}.

So, the set of all poles fdvl(8,) andg- M(6y) coincides inC\Uq for somed. There
exists a diskJq such that this property holds for all summand&inWe can rewrite~
as follows

F(6g) =) < Y O np'eq(alz)nl'---'eq(apz)np> = Fny(6y) =0.

The pointorlflqrl (wherer is large enough positive @ > 1 and large enough negative
if q < 1) is a pole for all summands, and the multiplicity of this pole is different for

differentn;. To annihilate these poleB,, = 0 must hold for alh;. Repeating the same
argument for alh;, we arrive at

Ony....np(2) - Bg(a12)™ - ... Bg(ap2)™ =0

for eachny,...,np. Thereforegn,, .n, =0.

It follows from this result that for an arbitrary root of upif the functionfy is
oz-algebraically independent ovél(z) in the field of meromorphic functions ofi*.
However, to generalize this result to finitely many rootsmity) we need to require the
following:

foralliandj ¢f=¢" implies *=¢"=1.

Otherwise, the result is not true. IndeedZi’ff: ZJ-”‘ # 0 then the relation

0% (6q) - 07/(6g) =0

Gi
even in the difference polynomial rif@{x}s, in spite of the fact that they define the

same automorphisms of meromorphic functions.

is non-trivial. Indeed, note that the difference indeteratesoX x andagj‘x are distinct

4.4 General order oneg-difference equations

We will start by discussing several examplesiptdependence and independence and
finish by providing a general criterion in Theorehi 1
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4.4.1 |Initial examples

Example 4.8. Fora(z) = £54,t = 2, and{ = —1 we have

= s 1= 0y(1)/1
-1 7-1 gq(1)/

Theng(z) - g(—2) is gq invariant. Indeed,

z+1 (z+1 > z+1 —z+1
-0y —

Gq(g-az(g»:;lg 9\ =7 9-07(9) =9-07(9)-

=1 519
So, the functiory is oz -algebraically dependent ovir
Example 4.9. Fora(z) = 2 andt = 4 with { =i we have
07(a)(2)- 0Q(a)(2) =2 % 2 =1=0y(1)/1.
As before, leg be a meromorphic function 0@\ {0} such that
gq(9) =2°-g.

Theng(2) - g(—2) is gq invariant. Indeed,

0q (g~0?(g)) =2°.9-07(2*-9)=2"-2"%-9- 0%(9) = 9- GZ(9).
So, the functiory is oz -algebraically dependent ovir

Although the following example can be treated by Theo#eir, we provide a sep-
arate argumentfor it to prepare the reader for an involveapzdation in Theorem.11
(see also Corollary.12).

Example 4.10. We will show that there are no suthe C(z) and multiplicativeg €
Q{x,1/x}, of the form

P(x) =X gy (x)}- ... gt (ke

such that

wherea= (z—c)" andc # 0.
Suppose that sudinand¢ exist. Letb be of the form

a2
b=A.7 (z—by1)-...-(z—bm)
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wherea; # 0, b; # 0 andd € Z and this representation is irreducible. The elenygat)
is of the form
NP -z—cyd

N z—on

whered;, h; > 0. Hence, we have the equation

NEP-z—o% 4 (@-z—ay)-...-(q-z—ay) - (z—b1)-...- (z— bp)

M¢%-z—cof — ° (q-z—b1)-...-(q-z—bm) - (z—az)-...- (z—an)’

The above equation can be rewritten as follows

ZU,M:qd+n7m. (z—ar-qY)-...-(z—an-q ) -(z—by)-...- (z— bm)
M(z—c- %) (z—b1-qY)-...-(z—bm-qY)-(z—ay)-...- (z—an)

If the fraction in the right-hand side is irreducible theerd exist andj such that

z—a1-qt=z—c-¢" and z—a;=z—c-l9,

Thus,q = ¢ for somev, which is a contradiction.

Suppose that the factar- a; - q~* cancels with a factor from the denominator. The
latter factor is of the fornz— &. Rearranging the indices frofi2, ..., n}, suppose that
i = 2. Thus, we have the equality

z—a1-q l=z—a.

Then eithez— a, - g~ cannot be cancelled or it can be cancelled with same,;. If

j =1 then we setny = 2. Otherwise,j > 2 and rearranging the indices{8,...,n},
suppose that = 3. Proceeding in such a way we will arrive at one of the follagvi
two situations:

1. There exist& such that
z—a-ql=z—a,1, 1<I<k

and the factor

z—ac-qt
cannot be cancelled by any factor from the denominator {gsituation k might
be equal to 1), or

2. We will find mg such that
z—a g t=z-a;, 1<l<m

and
Z—am-q t=z—a.
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Suppose that the second case holds. Then we have the falleydtem of equations:

ap=a-q*
ag=a-q '
_ -1
amy = 8mp-1-0
al:anb'Crl

Therefore, we obtain thaf™® = 1, which is a contradiction. Hence, the first case holds.
This process is illustrated below:

z—a-qt z-ap-ql - o z-ap1qt z-azqgt

\\\

z—a Z—an_1 Z—an

We will repeat the process in the reverse direction now. Neg/consider the factor
Z—a;. Suppose it cancels with a factor from the numerator. Thigofas of the form
z—aj-q 1, wherek < j < n. Rearranging the indices frofik+ 1,...,n}, suppose that
j = n. Thus, we have the equality

z—ay=z—a,q"

Then, eitherz— a, cannot be cancelled with any factor or it coincides with adac
Z— a; -q~! for somej € {k+1,...,n—1}. Again, rearranging this set of indices,
suppose thaf = n— 1. Proceeding in such a way, we will fimd> k such thatz— a,
cannot be cancelled with any factor of the numerator. Thegswis illustrated below.

\al Q\' \Z—

Z—a Z—a

Z—2ar-

\ .\an q\

By the above construction, we have the following system of¢igns

a-q t=a.1
am1-q '=

am-q '=a
a1-q =

Now we see thay” = 1 for somev, which is a contradiction.
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4.4.2 General characterisation of periodic difference-ajebraic independence

Leta e C(z) andq,{ € C* be such thafq| > 1 and{ is a primitive root of unity of
ordert. Then,a can be represented as follows

t-1 N R Skd,i
a=A-7". z— %),
M. )
whereA,ri € C* and therj’s are distinct inC* /{% - . Let

N -1
ax= sai and dgi=S ¢
o2 2,

and
dg1  do2 doz ... dor
di1 dip  diz ... digr

D=| d1 do2 o3z ... d2Rr

dt;1,1 dtf'l,Z dt;1,3 dtf'l,R

The following result combined with Theorefl provides a complete characterisation
of all equations §6) whose solutions are;-algebraically independent.

Theorem 4.11. Let ac C(z) and D be as above. Then

1. If T=0and, eitheA” Ng” # L or A is a root of unity, then there existdC(z)
and a multiplicative function

n _ M1
P(x) =x"-(gx) " ... (0} 1x)
such thatp (a) = gq(b)/b if and only if the matrix D contains a zero row.

2. If either T#0 or, A2Ng% =1 and A is not a root of unity, then there exist
b € C(z) and a multiplicative function

000 =% (o)™ .- (0 )"

such thatp (a) = gq(b) /b if and only if D contains a zero row other than the first
one.

Proof. We will write ¢ andb with undetermined coefficients and exponents. Suppose

that
t-1 N R

b=p-ZV .kELd:I—JNiIJ (Z— k.o ri)'k,d,i

and -
$(x) =x" ()™ ... (aé’lx)
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are such that
¢(a) = aq(b)/b.
Let us calculate the right and left-hand sides of this etyualile see that
-1 N R

t lkdi
gn(b) = 1 - gV +2kdilkdi . M. |—| rl 77K g8 1. )
Q( ) H-q AN ( Z q |)

Hence,

OQ(b) M+Z|<d|||<d|.t S d .. hedrai
b 1 T rl( “dfn)

t-1 N

I_!Jd er(Z—Zk-qd.ri)lk,d,i:
=—NI
= qM+Zk,d,i|k,d,i _II!—ELEH(Z_ Zk'qufl,ri)'k,—Nri |

N-1

. |—| ( kg )'kd+1| lkdl~(Z—Zk-qN-ri)7|k’N‘i]

d=—N

X

Now, we calculate the left-hand side. We see that
o R Skd,i
aga: A THSkdimSkdi . 7T |—L |—| ﬂ( 7Tl ) _
k=0d=—N-1i=
t—1 N R

=A .ZFTJer)d}il"Sk,d,i i '!:Ld;r,l\liliﬂ (z— Zk-qd . ri)%m .

Hence,
B (a) = AZ-om . 2 (T+3kaiscai)-(57orm) . 77-(Scom).
t-1 N R

$r0NrSkirdi
.‘!:Ld:frll\lflil:l( - ) :

Now, the equatiom (a) = gq(b) /b gives the following system of equations

1
ZOS(Jrr,fol,i e =l N
=
-1
Z)SKJrr,d,i My = leagsi —lkd,is -N<d<N-1
-1
ZOSkJrr,N,i N ==l
=

ATEA . 7T+ Teasscar) (35730) _ g Sk

t-1
T . zonr -
r=
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In this system, the unknown variables &rg;, nr, andM. If
led,is Ne, M
is a solution of the system such that notralk are zeroes then
t-legi, t-n, t-M

is a solution with the same property. Therefore, we can oepthe second equation
with the following:
AShoonr — oMt Zkailkai,

The first subsystem can be rewritten as follows:

S-N-1 Skil,-N-1,i --- Sk-1,-N-1; No le—N,i
SN, SHL-Nji -0 SkeL-Ni m I —N1i =k -N,i
SN SKELNi - SKCLN Ne_1 =l N

This system has a solution gy ; if and only if the sum of all equations is zero. Thus,
we can replace this system with the following:

No
N N N Ny
< > Skdi > Skeidi --- > Sk-l,d,i) . =0
d="N-1 d="N-1 d="N-1 :
N—1

Using the definition of they j’s, we obtain the following system:

o &1 ... &it-1 No
i1 &2 ... &ip n

. . . . | =0
dit—1 4o ... ajt-2 N—1

Thus, we have the following:
do a1 ... &it-1 No
d1 &2 ... @ap N1
. . . . | =0

dit-1 4o ... ait-2 Ni—1

A Yoo _ qM+Zk,d,i lkd,i
t—-1
r=
t—-1
lkai = Z))'kd,i,r Ny
r=
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wherey q; j's are some integers.
Consider the first case

T=0 and AZngf#1.
Then, for someu,v e Z\ {0}
AU=q".
Hence, the second equation is equivalent to

t—1

V.r;n, =u- <M+k%i|k,d,i>

Suppose thatty andlyq; form a solution of all equations except for the second one,
where not alh,’s are zero. Then,

t—1

u-ne, u-lggj, M:ZO(V'nr)_%(U'lk,d,i)
r= K

form a solution of the whole system. Thus, in this case, we mayude the second
equation.

Now we will check the cas& = 0 andA" = 1 for somew € Z\ {0}. In this
situation, ifny, Iy q; is a solution of all equations except for the second one then

W-np, W-lggi, M=— % W- i di
KTi

is a solution of the whole system.
Therefore, in this case, the existencepodndb is equivalent to the condition that
the systems

o &1 ... &it-1 No
Qi1 Q2 ... aip n

. - . . . =0 (42)
dit-1 4o ... Qit-2 N—1

have a nontrivial common solution.
Consider the second case

T#0 or ()\quzzland)\ isnotarootofunitg.

If T £ 0 then the third equation gives

t-1
%nr = 07
r=

and ifA2N g% =1 andA is not a root of unity, then the second equation gives

t—

rZOnr =0.
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Therefore, in both cases, the second equation is of the form

M + % |k,d,i =0
Kdi

Again, if ny, I g ; form a solution of all equations except the second one, whetrall
n;’s are zeroes, then

N, lkdi, M=— ZJ’ ld,i
KT,

form a solution of the whole system with the same propertyusTlin this case, we
need to show the existence of a nontrivial solution of theesys

do Q1 ... Qit-1 No
di1 Q2 ... ap Ny
) . ) ) =0

t-1 4o ... Qit-2 N—1 (43)
No
M

(1 1 1) . =0

N—1

Since all the coefficients in4@) and @3) are integers, there is a nontrivial solu-
tion with integral coefficients if and only if there is a namial solution with complex
coefficients. Define

1 1 1 1
1 C 22 1
E, = 1 ZZ 62-2 o ZZ-(tfl) ’
i Ztll Z(t;l)-Z Z(tfli-(tfl)
1 1 1 1
1 571 572 Zf(tfl)
E — 1 672 572-2 o 572-(t71)
i Zf(.tfl) Zf(t;l)-Z Z—(t—i)-(t—l)
and
do a1 Q2 ... 4t doi O ... 0
a1 a2 &3 ... ap ’ )
A=| &2 &3 &4 ... &1 | D= ] :
: : : . : 0 0 7
dit-1 4o Q&1 ... &Qit-2 G-
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A straightforward calculation shows that
E.-A=Dj-E_.

Let n be the vector with coordinateg,n;,...,n,_1. Hence, in thdirst case the sys-
tems
E,-A-n=Dij-E_-n=0

have a nontrivial solution. This is equivalent to the coiodithat the systems
D;-m=0

have a nontrivial solution, whema = E_ - n. Since theD;’s are diagonal, there is a
common solution of all systent3; - m= 0 if and only if the matrice®; have a zero in
the same place. In other words, there is an intégsuch that for all we have

dio,i =0.

The latter condition is equivalent to the condition thatréhis a zero row in the matrix
D.
Consider thesecond casel et

with t coordinates. We must to show that the systems

A-n=0
l-n=0

have a nontrivial solution. Multiplying bi, , we have

Di-E_-n=0
[-n=0
Let py,..., pu be the positions of all zero rows in the matfx And letEy,... E, be

the columns irE— with the pi’s as indices. Since the matricBs are diagonal, every
common solution of the systems

Di-E_-n=0
is of the form
H1
n=W-u, W:=(Ey...,Ey), u:=1":
Hu
Then, the equatioh-n =0 gives

-W-u=0

51



Now, we find a condition wheh: E; is zero. For this, note that

and, therefore,
(1,1,...,1)-E"1=(1,0,...,0)

Hence, only the first column of the matri_* gives nonzero elements in the vector
| -W. The system
[-W-u=0

has only the zero solution if and only\¥ is just one column antl- W # 0. Thus,
this system has a nontrivial solution if and onl\f contains a row oE~* other than
the first one. In other words, the elemedis are zeroes for somk# 0 and alli,
1<i <R Thisis equivalent to the condition thBtcontains a zero row other than the
first one. O

Corollary 4.12. In the situation of Theorerh.1, if the zeros and poles ofaC(z) are
pair-wise distinct modulo the group generateddwand g, then any solution f to the
equation

oq(f) =af

is gz-independent ovek(z).
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