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1 Introduction

Let q∈ C\{0}. A q-difference equation of ordern is an equation inf of the form

f (qnz)+an−1(z) · f
(

qn−1z
)

+ . . .+a0(z) · f (z) = 0, (1)

wherea0(z), . . . ,an−1(z) ∈ C(z) are given. In this paper, we study the algebraic behav-
ior of

f (z), f (ζz), . . . , f
(

ζ t−1z
)

,

whereζ is a primitive root of unity of ordert. In particular, as an application of the
method of difference Galois groups with parameters established in this paper, our The-
orems4.1and4.11give an explicit, complete description of all first-orderq-difference
equations

f (qz) = a(z) f (z) (2)

with rational coefficients whose solutions areζ -difference algebraically independent
over the rational functions in variablez with coefficients belonging to the fieldk of q-
invariant meromorphic functions onC\{0}. This description is easy to use: the inputs
are simple functions in the multiplicities of the zeros and poles ofa(z). Although our
proof requires a similar approach to that of [18, Section 3], but is substantially modified
to take into account difference algebraic independence andmake the result it as explicit
as possible.

As an example of our methods, we include a deduction of some algebraic indepen-
dence properties of some theta functions. Letq additionally satisfy|q| > 1. Jacobi’s
theta-function [15, 36, 25]

θq(z) =−∑
n∈Z

(−1)nq
−n(n−1)

2 zn, z∈ C,

is a solution of the followingq-difference equation:

θq(qz) =−qz·θq(z),

whose analytic properties have been extensively studied using the Galois theory in
[29, 30, 14], where more references will also be found. Letζ be a root of unity of
prime ordert. We show in Theorem4.6that if

λ0+
t−1

∑
d=1

λ0d ·θq(z)
d +λ1d ·θq(ζz)d + . . .+λt−1d ·θq

(

ζ t−1z
)d

= 0, (3)

whereλ0,λi j ∈ k(z), thenλ0 = λi j = 0. What this says is that there are no unexpected,
non-geometric relations between theσζ -iterates ofθq, except those coming from the
geometry of embeddings of the elliptic curveC∗/qZ into projective space.

Moreover, forα1, . . . ,αp ∈ C∗ with αi 6= αi in C∗/qZ we further show in Exam-
ple4.7using the classical results aboutθq that if a finite sum

∑
n1,...,np

gn1,...,np ·θq(α1z)n1 · . . . ·θq(αpz)np = 0,
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wheregn1,...,np ∈ C(z), thengn1,...,np = 0. This sort of result can also be deduced from
[25].

Beginning with the Lindemann-Weierstrass theorem (see [4, Section 1]) on the
linear and algebraic independence of values of the exponential function at elements of
a number fieldK, a great deal of work has been done on the values of other special
functions. In particular, in [4], the problem of linear independence of the values of the
function

Tq = ∑
n>0

q
−n(n−1)

2 zn

The theorem says that ifq,ξ ,α1, . . . ,αm,β0, . . . ,βm are elements of a number fieldK,
and if theαi are pairwise distinct inK∗/qZ, and if for every every placeυ of K such
that|q|υ > 1 theυ-adic function

β0+β1 ·Tq(α1z)+ · · ·+βm ·Tq(αmz)

has a zero atξ , thenβ0 = · · · = βm = 0. Similar problems are dealt with in [12] and
[34]. In particular, this result says that the functionsTq(αiz) are linearly independent in
K((z)). Our results onθq can be seen as analogues of this linear independence, where
we prove a stronger result in terms of algebraicity.

The first main component of our theory is a new Galois theory ofsystems of linear
difference equations with periodic (of finite order) difference parameters, where the
Galois groups are linear difference algebraic groups. The second main component
is the description we give (in Example3.13) of all difference-algebraic subgroups of
the difference multiplicative groupGm. In Theorem4.1, this comes together to give
necessary and sufficient conditions ona in order for the solutions of equation (2) to
be difference algebraically dependent over the base. Finally, in Theorem4.11, we
give more concrete conditions, easily computable, when thebase consists of rational
functions.

The approach of this paper resembles the Galois theory of difference equations with
differential parameters studied in [17, 18, 19, 13], where algebraic methods have been
developed to test whether solutions of difference equations satisfy polynomial differ-
ential equations. In particular, these methods can be used to prove Hölder’s theorem
which says that theΓ-function, which satisfies the difference equation

Γ(x+1) = x ·Γ(x),

satisfies no non-trivial differential equation inx with coefficients inC(x).
However, when treating difference equations with differential parameters, one may

use fields as the rings of constants. This is not available when using difference param-
eters, as Example2.6and [28, Proposition 7.3] show. The constants in our theory are
rings that have zero-divisors, and this fact introduces numerous additional subtleties
into our approach. The key idea is to find a suitable notion of adifference closed
ring. We use the difference-closed pseudofields of [32], which we review in Section2.
Another approach to the question of difference algebraic closure is in [21], where dif-
ference versions of valuation rings are given. However, since we require zero-divisors,
Lando’s approach is insufficient.
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Picard-Vessiot extensions with zero divisors for systems of linear difference equa-
tion have been considered in [27, 10, 24] with a non-linear generalization considered
in [16]. Also, Galois theories of linear difference equations, without parameters, when
the ground ring has zero divisors have been studied in [5, 3, 1, 2, 37, 33], where includ-
ing zero divisors into the ground ring is needed and providesa much more transparent
Galois correspondence. In all the mentioned cases, the ground ring must be a finite
product of fields (called Noetherian difference pseudofields).

Our approach allows us not only to treat parameters, but alsoprepares a solid foun-
dation for studying the non-Noetherian case as we base our methods on a natural geo-
metric approach to difference varieties developed in [32], which has been further gen-
eralized to the non-Noetherian case in [31].

While the Noetherian hypothesis appears as a condition in this work, it is not truly
restrictive when dealing with finite parameter groups because any integral difference
ring may be embedded in a Noetherian difference pseudofield with good difference
properties, like uniqueness of Picard-Vessiot extensions. For instance, one can take the
product indexed by the finite parameter group of the algebraic closure of the fraction
field of the base ring. However, to extend the theory to infinite parameter groups, it is
necessary to treat the non-Noetherian case, as the same construction results in a non-
Noetherian ring. We hope that this generalization, which would be of great interest in
the study ofq-difference equations, will be carried out in the near future.

The paper is organized as follows. We give basic definitions in Section2.1. The
main properties of difference pseudofields are detailed in Sections2.2 and2.3. Sec-
tion 3 contains the development of our main technique, differenceGalois theory (also
called difference Picard-Vessiot theory) with periodic parameters. Difference algebraic
groups are introduced and studied in Section3.3. We finish by showing in Section4
how to use our theory to study periodic difference algebraicdependencies among so-
lutions of difference equations. In particular, we apply these results to study Jacobi’s
theta-function in Section4.3 and to give a complete characterisation to all first-order
q-difference equations withζ -difference algebraically independent solutions over ratio-
nal functions in variablez with coefficients belonging to the field ofq-invariant mero-
morphic functions onC\{0} in Section4.4.

2 Basic definitions

2.1 Difference rings

Most of the basic notions on difference algebra can be found in [11, 23]. Below, we
will introduce those that we use here. Let

Σ0 = Z, Σ1 = Z/t1Z⊕ . . .⊕Z/tsZ, and Σ = Σ0⊕Σ1,

where eachti > 2. Letσ be a generator ofΣ0 andρi , 16 i 6 s, generate each component
of Σ1.

Definition 2.1. A ring R equipped with an action of a fixed subgroupΣ′ ⊂ Σ by auto-
morphisms is called aΣ′-ring.
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Example 2.2. Let R=C(x) andσ(x) = px, ρ(x) = qxwith p,q∈ C∗, |p| 6= 1 andq a
primitive m-th root of unity for somem> 2. Then

Σ0 = {σn |n∈ Z} and Σ1 =
{

id,ρ , . . . ,ρm−1} .

Let Rbe aΣ′-ring and let

R
[

Σ′
]

=
{

∑ rτ τ
∣

∣ rτ ∈R, τ ∈ Σ′
}

denote the ring of difference operators onR. The multiplication onR[Σ′] is given by

τ · r = τ(r)τ.

For a setY let
R{Y}Σ′ = R

[

. . . ,τy, . . . | τ ∈ Σ′, y∈Y
]

denote the ring ofΣ′-polynomials overR with Y as the set ofΣ′-indeterminates.

Example 2.3. For example, ifΣ′ = Σ1 = Z/2Z andρ is a generator ofΣ1 then

R{y}Σ′ = R[y,ρy]

with the action ofρ given byρ(y) = ρy andρ(ρy) = y.

Definition 2.4. An ideala ⊂ R is called aΣ′-ideal if Σ′(a) ⊂ a, whereΣ′(a) denotes
the set{σ(a) |σ ∈ Σ′,a∈ a}.

The smallestΣ′-ideal containing a setF ⊂ R is denoted by[F ]Σ′ . If Σ′ = Σ then it
is also denoted simply by[F].

Definition 2.5. Let R1 andR2 beΣ′-rings. A ring homomorphismf : R1→R2 is called
aΣ′-homomorphism if

f (τ(r)) = τ( f (r)), τ ∈ Σ′, r ∈R1.

The following example shows that even if we start with a base field, the constants
of the solution space as constructed in Section3 have zero divisors.

Example 2.6. Let Σ1 = Z/4Z with a generatorρ . Consider the equation

σx=−x. (4)

The procedure of constructing a solution space (called Picard-Vessiot extension) of
equation (4) described in Section3 first takes

C{x,1/x}ρ with σx=−x

and then quotients by
[

ρx− ix,x4−1
]

,

which is a maximalΣ-ideal. Thus, we arrive at the ring

C[x]
/(

x4−1
)

, σx=−x and ρx= ix,
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which is aΣ-pseudofield generated by the solution of the equation. The subring of
constants is generated byx2 and is isomorphic to

C[t]
/(

t2−1
)

,

which is not a field.

Denote the ring ofΣ′-constants ofRby RΣ′ . In other words,

RΣ′ =
{

r ∈ R| τ(r) = r for all τ ∈ Σ′
}

.

The set of allΣ′-ideals ofRwill be denoted by

IdΣ′(A).

Definition 2.7. A Σ′-idealp of R is called pseudoprime if there exists a multiplicatively
closed subsetS⊂R such thatp is a maximalΣ-ideal withp∩S=∅.

Lemma 2.8. Let A and B beΣ-rings andϕ : A→ B be aΣ-homomorphism. Then for
any pseudoprime idealq in B the idealϕ−1(q) is pseudoprime.

Proof. Let S⊂B be a multiplicative set such thatq is a maximalΣ-ideal withq∩S=∅.
Then there is a prime idealp containingq such thatp∩S= ∅. Hence,ϕ−1(q) ⊂ A is
maximalΣ-ideal with

ϕ−1(q)∩A\ϕ−1(p) =∅.

Indeed, leta⊂ A be aΣ-ideal such that

ϕ−1(q)⊂ a⊂ ϕ−1(p).

ThenBϕ(a)⊂ p is aΣ-ideal. Therefore,Bϕ(a)⊂ q. Thus,a⊂ ϕ−1(q).

The set of all pseudoprime ideals ofRwill be denoted by

PSpecR or PSpecΣ
′
R.

Fors∈ R
(PSpecR)s

denotes the set of pseudoprime ideals ofR not containings. Let R1 andR2 beΣ′-rings
and f : R1→ R2 be aΣ′-homomorphism. Then

f ∗(q) := f−1(q)

defines a mapf ∗ : PSpecR2→ PSpecR1 by Lemma2.8. For an ideala⊂ R denote by

aΣ′

the largestΣ′-ideal of R contained ina. Note that ifp is a prime ideal ofR then the
idealpΣ′ is pseudoprime.
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Definition 2.9. An R-moduleM with an action ofΣ′ is called aΣ′-module if for all
τ ∈ Σ′, r ∈R, andm∈M we have:

τ(rm) = τ(r)τ(m).

Definition 2.10. A Σ′-ring is called simple if it contains no properΣ′-ideals except for
(0).

Definition 2.11. A ring R is called absolutely flat if everyR-module is flat.

Definition 2.12. An absolutely flat simpleΣ′-ringk is called aΣ′-pseudofield (see [32]).

For every subsetE ⊂ R{y1, . . . ,yn}Σ′ let

V(E)⊂ Rn

be the set of common zeroes ofE in Rn. Conversely, for every subsetX ⊂ Rn let

I(X)⊂ R{y1, . . . ,yn}Σ′

be theΣ′-ideal of all polynomials inR{y1, . . . ,yn}Σ′ vanishing onX. One sees that for
anyΣ′-idealI ⊂ R{y1, . . . ,yn}Σ′ we have

√
I ⊂ I(V(I)).

Definition 2.13. [32, Section 4.3] AΣ′-pseudofieldR is calleddifference closedif for
everyΣ′-idealI ⊂ R{y1, . . . ,yn}Σ′ we have

√
I = I(V(I)).

2.2 Properties of pseudofields

Proposition 2.14. [32, Proposition 25] Suppose that|Σ′|< ∞. Then, aΣ′-pseudofield
U is difference closed if and only if, for every finite system

F = 0,G 6= 0 (5)

of Σ′-equations and inequations, if(5) has a solution in someΣ′-pseudofield L⊃U
then it has a solution in U.

Theorem 2.15. [32, Proposition 19] EveryΣ′-pseudofield can be embedded into a
difference closed pseudofield and there exists a minimal such pseudofield. In particular,
everyΣ′-field can be embedded into a difference closedΣ′-pseudofield.

Proposition 2.16. Let L beΣ′-simple ring and K⊂ L be an absolutely flatΣ′-subring.
Then K is aΣ′-pseudofield.

Proof. Let 0 6= a∈ K. We will show that theΣ′-ideal ofK generated bya contains 1.
SinceK is absolutely flat, we may assume that

a2 = a, (6)

7



since every principal ideal is generated by an idempotent [6, Exercise II.27]. Since the
Σ′-ideal generated bya in L contains 1, there existhi ∈ L, 06 i 6 r, such that

1= h0a+h1σ1(a)+ . . .+hrσr(a) (7)

for someσk ∈ Σ′. Setσ0 = Id for notation. By induction onk 6 r we will show that
thehi ’s can be selected so thathi ∈ K, 06 i 6 k. The basek = 0 is done in the same
way as the inductive step. Assume the statement fork≥−1. We will show it fork+1.
Multiplying (7) by 1−σk+1(a) and using (6), we obtain:

1−σk+1(a) =(1−σk+1(a))h0a+ . . .+(1−σk+1(a))hkσk(a)+

+(1−σk+1(a))hk+2σk+2(a)+ . . .+hrσr(a).

Hence,

1=(1−σk+1(a))h0a+ . . .+(1−σk+1(a))hkσk(a)+

+σk+1(a)+ (1−σk+1(a))hk+2σk+2(a)+ . . .+hrσr(a)

with (1−σk+1(a))h0, . . . ,(1−σk+1(a))hk,1∈ K, which finishes the proof.

Proposition 2.17. Let L be an absolutely flat ring and H⊂ Aut(L). Then the ring LH

is absolutely flat.

Proof. Let 0 6= a∈ LH . Then by [6, Exercise II.27] there exist unique an idempotente
anda′ in L such that

e= aa′, a= ea, and a′ = ea′. (8)

To see uniqueness, note that if(ē, ā′) is another such pair then

eē= eaā′ = aā′ = ē

and, similarly,
eē= e.

So, the elemente is unique. Now

a′ = ea′ = ēa′ = aā′a′

and, in the same manner,
ā′ = ēā′ = eā′ = aa′ā′.

We will show now thate anda′ areH-invariant. Forσ ∈ H we have

a= σ(a) = σ(ae) = aσ(e).

Multiplying by a′, we obtain
e= eσ(e). (9)

Similarly, we obtain
e= eσ−1(e),

8



which implies that
σ(e) = eσ(e). (10)

Then, (9) and (10) imply that
σ(e) = e.

We, therefore, have

e= aσ(a′), a= ea, and σ(a′) = eσ(a′). (11)

Since the pair(e,a′) is unique, (8) and (11) imply that

σ(a′) = a′.

Applying [6, Exercise II.27] again, we conclude thatLH is absolutely flat.

Proposition 2.18. Let A be aΣ1-closed pseudofield. Then the ring R= A[Σ1] is com-
pletely reducible:

R∼= A⊕ . . .⊕A (12)

as Σ1-modules over A. In other words, everyΣ1-module over A has a basis ofΣ1-
invariant elements. Moreover,

A[Σ1]∼= Mn(C)

as rings, where C= AΣ1.

Proof. By [32, Proposition 26], we only need to show that everyΣ1-module overA has
a basis ofΣ1-invariant elements. For this, first recall that every left module of a ring
R is a direct sum of irreducible submodules if and only if the ring R is a direct sum
of irreducible left ideals [22, Theorem 4.3, Chapter XVII]. Moreover, if the ringR has
decomposition

R∼=V1⊕ . . .⊕Vn

then everyR-module is a direct sum of submodules each isomorphic to someof the
Vi ’s [22, Theorem 4.4, Chapter XVII]. EveryΣ1-module over aΣ1-ring A is anA[Σ1]-
module. Each summand in (12) has aΣ1-invariantA-basis consisting of just 1. Com-
bining this with the above isomorphisms, we have the desiredresult.

Proposition 2.19. Let R be aΣ-simple ring and A:= Rσ be aΣ1-difference closed
pseudofield. Let B be anyΣ-A-algebra withσ acting as the identity. Then theΣ-
homomorphism

B→ R⊗AB, b 7→ 1⊗b, b∈ B

induces a bijection
IdΣ1(B)←→ IdΣ(R⊗A B)

via

a⊂ B−→ ae := R⊗Aa

bc := b∩B←− b⊂ R⊗A B.

9



Proof. Let I be aΣ-ideal of the ringR⊗A B and let

Ic = J.

We will show that
I = Je.

In other words, by passing toR⊗A (B/J), we will show that ifIc = (0) thenI = (0).
By Proposition2.18, there exists a basis

{bi}i∈I

of B overA consisting ofΣ1-invariant elements. Then, every element ofR⊗A B is of
the form

a1⊗bi1 + . . .+an⊗bin

for someai ∈ R, 16 i 6 n. Let 0 6= u∈ I have the shortest expression of the form

u= a1⊗b j1 + . . .+ak⊗b jk.

Let

M =
{

a∈ R| ∃c2, . . . ,ck ∈R, i1, . . . , ik ∈I : a⊗bi1 + c2⊗bi2 + . . .+ ck⊗bik ∈ I
}

.

As 0 6= a1 ∈M, and sinceΣ(bi) = bi , 16 i 6 n, the setM is a non-zeroΣ-ideal ofR.
Hence, 1∈M. Therefore, there existsu with a1 = 1. Since

u−σ(u) = (a2−σ(a2))⊗bi2 + . . .+(ak−σ(ak))⊗bik ∈ I (13)

and has a shorter expression thanu, we have

u−σ(u) = 0. (14)

Since{bi}i∈I is a basis ofB overA,

{1⊗bi}i∈I

is a basis ofR⊗A B overR. Therefore, (13) and (14) imply that

σ(a2) = a2, . . . ,σ(ak) = ak,

that is,
a2, . . . ,ak ∈ A.

Thus,
u= 1⊗

(

bi1 +a2bi2 + . . .+akbik

)

.

Hence,
0 6= bi1 +a2bi2 + . . .+akbik ∈ Ic,

contradictingIc = (0). Therefore, we have shown that

(Ic)e = I .

10



On the other hand, sinceR is a freeA-module, theB-moduleR⊗A B is also free and,
therefore, faithfully flat. Thus, by [6, Exercise III.16] for every idealJ⊂ B we have

(Je)c = J,

which finishes the proof.

Corollary 2.20. Let B be aΣ-ring containing aΣ-pseudofield L with CL := Lσ being
a Σ1-closed pseudofield. Let C⊂ Bσ be aΣ1-subring such that CL ⊂C. Then

L ·C= L⊗CL C.

Proof. The kernelI of theΣ-homomorphism

L⊗CL C→ L ·C⊂ B, l ⊗ c 7→ l ·c,

is aΣ-ideal with Ic = (0)⊂C. By Proposition2.19, we conclude thatI = 0.

2.3 Noetherian pseudofields

Lemma 2.21.Let A⊂B beΣ-rings such that for some s∈A the mapSpecBs→SpecAs

is surjective. Then the map

ϕ : (PSpecB)s→ (PSpecA)s

is surjective as well.

Proof. Let q ⊂ A be a pseudoprime ideal withs /∈ q. Then, since the maximal ideal
not intersecting a multiplicative subset is prime, by definition there exists a prime ideal
p⊃ q such that

q=
⋂

τ∈Σ
pτ

with q being a maximalΣ-ideal contained inpτ , τ ∈ Σ. Sinces /∈ q, there existsτ ∈ Σ
such thats /∈ pτ . By our assumption, there exists a prime idealp′ ⊂ B with p′∩A= pτ .
Then, the idealp′Σ is the pseudoprime ideal inB that is mapped top by ϕ .

Lemma 2.22. Let A⊂ B beΣ-rings such that A is Noetherian and reduced and B is a
finitely generated A-algebra. Then there exists0 6= s∈ A such that the map

(PSpecB)s→ (PSpecA)s

is surjective.

Proof. There existss∈ A such thatAs is an integral domain. For instance, suppose that
(0) = p1∩ ·· · ∩ pt is the representation of(0) as the intersection of the finitely many
minimal prime ideals in the Noetherian ringA. Let s∈ p2∩·· ·∩pt be such thatt /∈ p1.
Then,As is a reduced ring with a single minimal prime ideal. Thus, it is integral. By
[32, Lemma 30], there existst ∈ A such that the map

SpecBst→ SpecAst

is surjective. The statement now follows from Lemma2.21.

11



Theorem 2.23. Let L be a NoetherianΣ-pseudofield with C:= Lσ being aΣ1-closed
pseudofield. Let R be aΣ1-finitely generatedΣ-simple ring over L. Then

Rσ =C.

Proof. Let b ∈ Rσ . Since|Σ1| < ∞, the ringR is finitely generated overL. SinceR
is Σ-simple, it is reduced. Therefore, the ringL{b} is reduced as well. Hence, by
Lemma2.22, there exists a non-nilpotent elements∈ L{b} such that the map

(PSpecR)s→ (PSpecL{b})s

is surjective. Therefore, since PSpecR= {(0)}, every non-zero pseudoprime ideal in
L{b} containss. By Corollary2.20, we have

L{b}= L⊗CC{b}.

By Proposition2.18, L is a freeC-module. Let{l i}i∈I be aΣ1-invariant basis overC.
Then there existr1, . . . , rk ∈C{b} such that

s= l1⊗ r1+ . . .+ lk⊗ rk.

Since the ringL{b} is reduced,r1 is not nilpotent. Therefore, by [32, Proposition 34],
there exists a maximalΣ-idealm in C{b} such that

C{b}/m=C and r1 /∈m .

Let
ϕ : L{b}= L⊗CC{b}→ L⊗CC{b}/m= L⊗CC= L.

Then
ϕ(s) = l1r̄1+ . . .+ lkr̄k,

where ¯r i are the images ofr i modulom, 16 i 6 k. Since

{l1, . . . , lk}

are linearly independent overC and ¯r1 6= 0, the idealL⊗Cm does not contains. Since
ϕ is aΣ-homomorphism,

L⊗Cm= ϕ−1((0)),

and(0) is a pseudoprime ideal inL, the idealL⊗Cm is pseudoprime by Lemma2.8.
Therefore,

L⊗Cm= (0)

by the above. Thus, we see thatb∈C by takingσ -invariants, sinceϕ is an injective
Σ-homomorphism.

Definition 2.24. An idempotent that is not a sum of several distinct orthogonal idem-
potents is called indecomposable.

12



Proposition 2.25. Let L be a NoetherianΣ-pseudofield and let F= L/m, wherem is
a maximal ideal in L. Then

L∼= F× . . .×F.

Moreover,Σ acts transitively on the set of indecomposable idempotentsof L.

Proof. Since the ringL is Noetherian and dimL = 0, by [6, Theorem 8.5], the ringL is
Artinian. Therefore, by [6, Theorem VII.7], it is a finite product of local Artinian rings.
SinceL is reduced, by [6, Proposition VIII.1],

L = F1× . . .×Fn, (15)

whereFi is a field, 16 i 6 n. SinceL is Σ-simple, the groupΣ acts transitively on
SpecL. Therefore,Fi

∼= F1, 16 i 6 n, as residue fields. Lete be an indecomposable
idempotent inL. Let

OrbΣ(e) = {e1, . . . ,ek}.
Then the idempotent

E := e1+ . . .+ek

is Σ-invariant. SinceL is Σ-simple, we haveE = 1. Decomposition (15) implies thatL
hasn indecomposable idempotents, each indecomposable idempotent is of the form

(0, . . . ,0,1,0, . . . ,0)

and, therefore,k= n andΣ acts transitively on the set of indecomposable idempotents
of L.

Let B be aΣ0-ring and let

FΣ1(B) = ∏
µ∈Σ1

B= { f : Σ1→ B}, (16)

which is aΣ0-ring with the component-wise action ofΣ0. Define

(µ f )(τ) = f
(

µ−1τ
)

, f ∈ FΣ1(B) andµ ,τ ∈ Σ1.

The above makesFΣ1(B) a Σ-ring. For everyµ ∈ Σ1 define aΣ0-homomorphism

γµ : FΣ1(B)→ B, f 7→ f (µ). (17)

Moreover, we have

γτ (µ f ) = (µ f )(τ) = f
(

µ−1τ
)

= γµ−1τ( f ).

Proposition 2.26.Let A be aΣ-ring, B be aΣ0-ring, andϕ : A→B be aΣ0-homomorphism.
Then for everyµ ∈ Σ there exists uniqueΣ-homomorphism

Φµ : A→ FΣ1(B)
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such that the following diagram

FΣ1(B)

γµ

��

A
ϕ

//

Φµ
<<

y
y

y
y

y
y

y
y

B

is commutative.

Proof. Since
Φµ(a)

(

τ−1µ
)

= (τΦµ(a))(µ) = ϕ(τa),

wherea∈ A andτ ∈ Σ, the homomorphismΦµ is unique if it exists. Define

Φµ(a)(τ) = ϕ
(

µτ−1a
)

.

For everyα ∈ Σ1 we have

Φµ(αa)(τ) = ϕ
(

µτ−1αa
)

= ϕ
(

µ
(

α−1τ
)−1

a
)

= Φµ(a)
(

α−1τ
)

= (αΦµ(a))(τ)

Φµ(νa)(τ) = ϕ
(

µτ−1νa
)

= ν
(

ϕ
(

µτ−1a
))

= ν(Φµ(a)(τ)) = ν(Φµ(a))(τ)

for all α,τ ∈ Σ1, ν ∈ Σ0, anda∈ A. Thus,Φµ is aΣ-homomorphism.

Proposition 2.27. Let L be a NoetherianΣ-pseudofield such that Lσ is a Σ1-closed
pseudofield. Then there exists a NoetherianΣ0-pseudofield B such that

L∼= FΣ1(B).

Proof. By [32, Theorem 17(4)], there exists an algebraically closed fieldK such that

Lσ = FΣ1(K).

Define

e∈ FΣ1(K) by e(τ) =

{

1, τ = id,

0, τ 6= id .

Let
B= eL,

which is a Noetherian absolutely flat ring as a quotient of a NoetherianΣ-pseudofield.
By Proposition2.26, the homomorphism

L→ B, a 7→ ea,

lifts to a uniqueΣ-homomorphism

φ : L→ FΣ1(B).

14



SinceL is Σ-simple,φ is injective. To show thatφ is surjective we will prove thatφ(L)
contains all indecomposable idempotents ofFΣ1(B). Every indecomposable idempo-
tent of the ringFΣ1(B) is of the form

δτ f , where δτ(ν) =

{

1, ν = τ,
0, ν 6= τ

and f is an indecomposable idempotent ofB. Let f = eh, whereh∈ L. Since

φ(τ(e)h)(ν) = (eτ(e)h)(ν) = (τ(e) f )(ν) = e
(

τ−1ν
)

f = δτ(ν) f ,

we are done.
Finally, B is Σ0-simple. Indeed, letb ⊂ B be aΣ0-ideal. LetI ⊂ FΣ1(B) consist of

all functions f with image contained inb. SinceI is an ideal andΣ1 is acting on the
domain,I is invariant under theΣ1-action. Sinceb is aΣ0 ideal, thenI is aΣ0-ideal as
well. Therefore,I is aΣ-ideal, which contradicts toL being a pseudofield.

Proposition 2.28. Let L be a NoetherianΣ-pseudofield such that Lσ is a Σ1-closed
pseudofield. Then

L∼=
n

∏
i=1

FΣ1(F)

asΣ1-rings, where F is a field.

Proof. By Proposition2.27,
L = FΣ1(B),

whereB is a NoetherianΣ0-pseudofield. Letf1, . . . , fn be all indecomposable idempo-
tents ofB. Then

L = f1L× . . .× fnL.

On the other hand,
fiFΣ1(B) = FΣ1( fiB) = FΣ1(Fi),

whereFi = fiB andF1
∼= Fi , 16 i 6 n.

Proposition 2.29. Let L be a NoetherianΣ-pseudofield and K⊂ L be aΣ-pseudofield
as well. Then K is Noetherian.

Proof. Note that a pseudofield is Noetherian if and only if it contains a finite set of
indecomposable idempotentse1, . . . ,en with

e1+ . . .+en = 1. (18)

Necessity has been discussed above. To show sufficiency, note that ife is an indecom-
posable idempotent of an absolutely flat ringR theneR is a field. Indeed,eR is an
absolutely flat ring without nontrivial idempotents [6, Exercise II.27]. Moreover, for
every elementx∈R we havex= ax2. Therefore,ax is an idempotent. So, either

ax= 0 and, thus, x= ax2 = 0
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or
ax= 1.

Hence, equality (18) implies thatR is finite product of fields and, therefore, is Noethe-
rian.

Thus, since every idempotent ofK is an idempotent ofL, which is Noetherian, the
ring K has finitely many indecomposable idempotentsf1, . . . , fk. Since f1+ . . .+ fk is
left fixed byΣ, we have

f1+ . . .+ fk = 1.

Again, by the above, the ringK is Noetherian.

Proposition 2.30. Let L be aΣ-field such that the subfield C:= Lσ is algebraically
closed. Then there exists aΣ-pseudofield A and aΣ-embeddingϕ : L→ A such that Aσ

is theΣ1-closure of theΣ1-field ϕ(C).

Proof. SetA= FΣ1(L) and letϕ(l)µ := µ−1(l). We have:

τ(ϕ(l))µ = ϕ(l)τ−1µ = (τ−1µ)−1(l) = (µ−1τ)(l) = ϕ(τ l)µ ,

where l ∈ L and τ, µ ∈ Σ1. ThenAσ = FΣ1(C), which is theΣ1-closure ofC [32,
discussions preceding Proposition 19].

3 Picard-Vessiot theory

3.1 Picard-Vessiot ring

Let K be a NoetherianΣ-pseudofield and letC = Kσ be aΣ1-closed pseudofield. Let
A∈GLn(K). Consider the following difference equation

σY = AY. (19)

Let R be aΣ-ring containingK.

Definition 3.1. A matrix F ∈GLn(R) is called a fundamental matrix of equation (19)
if σF = AF.

Let F1 andF2 be two fundamental matrices of (19). Then forM := F−1
1 F2 we have

σ(M) = σ(F1)
−1σ(F2) = F−1

1 A−1AF2 = F−1
1 F2 = M,

that is,M ∈GLn (Rσ ).

Definition 3.2. A Σ-ring R is called a Picard-Vessiot ring for equation (19) if

1. there exists a fundamental matrixF ∈GLn(R) for (19),

2. R is aΣ-simple ring, and

3. R is Σ-generated overK be the matrix entriesFi j and 1/detF .
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Proposition 3.3. Let K be a NoetherianΣ-pseudofield, Kσ be aΣ1-closed pseudofield,
and R be a Picard-Vessiot ring for equation(19). Then

Rσ = Kσ .

Proof. SinceR is a Σ1-finitely generated algebra overK and |Σ1| < ∞, R is finitely
generated overK. Then the result follows from Theorem2.23.

Proposition 3.4. Let K be a NoetherianΣ-pseudofield with Kσ being aΣ1-closed
pseudofield. Then there exists a unique Picard-Vessiot ringfor equation(19).

Proof. We will show existence first. Define the action ofσ on theΣ1-ring

R := K{Fi j ,1/detF}Σ1

by σF = AF. Letm be any maximalΣ-ideal inR. ThenR/m is the Picard-Vessiot ring
for equation (19).

We will show uniqueness now. LetR1 andR2 be two Picard-Vessiot rings of equa-
tions (19). LetR= (R1⊗K R2)/m, wherem is a maximalΣ-ideal. SinceR1 is Σ-simple,
theΣ-homomorphism

ϕ1 : R1→ R, r 7→ r⊗1,

is injective. Similarly, the homomorphism

ϕ2 : R2→R, r 7→ 1⊗ r,

is injective. LetF1 andF2 be fundamental matrices ofR1 andR2, respectively. Then
there existsM ∈GLn (Rσ ) such that

ϕ1(F1) = ϕ2(F2)M.

Proposition3.3implies thatRσ =Kσ . Therefore,ϕ1(F1)⊂ϕ2(R2). Similarly,ϕ2(F2)⊂
ϕ1(R1). Hence,

ϕ1(R1) = ϕ2(R2)

and, thus,R1
∼= R2

∼= R.

Proposition 3.5. Let K be a NoetherianΣ-pseudofield with Kσ being aΣ1-closed
pseudofield and Let R be a Picard-Vessiot ring of equation(19). Then the complete
quotient ring L:= Qt(R) is a NoetherianΣ-pseudofield with Lσ = Kσ .

Proof. We will first show thatL is Σ-simple. Leta be a non-zeroΣ-ideal ofL. Then
a∩R 6= (0) and, therefore, 1∈ a.

We will now show thatL is a finite product of fields. Since the ringK is Noetherian
andR is finitely generated overK, the ringR is Noetherian as well by the Hilbert basis
theorem. Hence, there exists a smallest set of prime idealsp1, . . . ,pn in Rsuch that

(0) = p1∩ . . .∩pn .
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The set of non-zero divisors inRcoincides with

R\
n
⋃

i=1

pi .

In Qt(R), all prime ideals correspond to thepi ’s, that is, they are all maximal and their
intersection is(0). Therefore, by [6, Proposition 1.10]

Qt(R)∼= Qt(R/p1)× . . .×Qt(R/pn),

which is absolutely flat and Noetherian.
Let c= a

b ∈ Lσ . Using Theorem2.23, it suffices to show thatR{c}Σ1 is aΣ-simple
Σ-ring, since this would imply thatc∈ Kσ . For this, we will show that everyΣ-subring
D⊂ L containingK is Σ-simple. Indeed, for every 06= d∈ L there existsa∈Rsuch that
0 6= ad∈ R, which is true becauseL is the localization with respect to the set of non-
zero divisors. Therefore, for every nonzero ideala of D we havea∩R 6= {0}. SinceR
is Σ-simple, 1∈ a.

3.2 Picard-Vessiot pseudofield

Let K be a NoetherianΣ-pseudofield withKσ beingΣ1-closed.

Definition 3.6. A NoetherianΣ-pseudofieldL is called a Picard-Vessiot pseudofield
for equation (19) if

1. there is a fundamental matrixF of equation (19) with coefficients inL,

2. Lσ = Kσ ,

3. L is generated overK by the entries ofF.

It follows from Proposition3.5that every equation (19) has a Picard-Vessiot pseud-
ofield. We will show that all Picard-Vessiot pseudofields areof this form.

Proposition 3.7. Let K be a NoetherianΣ-pseudofield, with C:=Kσ being aΣ1-closed
pseudofield, and L be a Picard-Vessiot pseudofield for equation (19). Then

L∼= Qt(R),

where R is the corresponding Picard-Vessiot ring.

Proof. Let σ act on theΣ1-ring

R := L{Xi j ,1/detX}Σ1 by σX = AX.

Let F be a fundamental matrix of (19) with coefficients inL. Define

Y = F−1X.

ThenR= L{Yi j ,1/detY}Σ1 andσY =Y. Therefore,

Rσ =C{Yi j ,1/detY}Σ1.
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Moreover, we have aΣ-isomorphism

L⊗K K{Xi j ,1/detX}Σ1
∼= L⊗CC{Yi j ,1/detY}Σ1. (20)

Recall that the Picard-Vessiot ring is given by

R= K{Xi j ,1/detX}Σ1/I ,

whereI is a maximalΣ-ideal. By Proposition2.19and isomorphism (20), the ideal
L⊗K I corresponds to aΣ-ideal of the formL⊗CJ, whereJ is aΣ1-ideal ofC{Yi j ,1/detY}Σ1.
This induces aΣ-isomorphism

φ : L⊗K R→ L⊗C B,

whereB=C{Yi j ,1/detC}Σ1/J consists ofσ -constants. Letm be a maximalΣ-ideal in
B. By [32, Proposition 14], we have

γ : B→ B/m∼=C,

sinceC is aΣ1-closed pseudofield. Letϕ be theΣ-homomorphism defined by

R
r 7→1⊗r−−−−→ L⊗K R

φ−−−−→ L⊗C B
idL⊗γ−−−−→ L⊗CC

l⊗c7→l ·c−−−−→ L.

SinceR is Σ-simple, the homomorphismϕ is injective. By the universal property,ϕ
extends to aΣ-embeddingϕ of Qt(R) into L. SinceL is generated by the entries of its
fundamental matrixF , we finally conclude thatϕ(Qt(R)) = L.

3.3 Difference algebraic groups

3.3.1 Definitions

In analogy with differential algebraic groups, we make the following definitions. Through-
out,C will denote aΣ1-pseudofield. Recall that the category ofC-Σ1-algebras

AC,Σ1

has as morphisms theC-algebra maps that commute withΣ1.

Definition 3.8. A C-Σ1-Hopf algebra is aC-Σ1-algebraH supplied with comultiplica-
tion, counit, and antipode morphisms that are allΣ1-algebra morphisms.

Definition 3.9. An affineC-Σ1-algebraic groupG is a functor

G : AC,Σ1 →Groups

defined by
G(R) = HomΣ1(H,R),

whereH is aC-Σ1-Hopf-algebra.
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Definition 3.10. Define

Hm =C{x11, . . . ,xmm,1/detX}Σ1, (21)

TheC-Σ1-algebraHm has a Hopf algebra structure that is defined on theΣ1-generators
in the usual way and is extended by commuting to theΣ1-monomials in the generators.
Then, we let

GLm,Σ1

be the affineC-Σ1-algebraic group corepresented byHm as above.

Example 3.11. Let
Σ1 =

{

id,ρ ,ρ2, . . . ,ρ t−1}

and consider

H1 =C{x,1/x}Σ1 =C
[

x,1/x,ρ(x),1/ρ(x), . . . ,ρ t−1(x),1/ρ t−1(x)
]

.

Then, the comultiplication is

ρ l (x) 7→ ρ l (x)⊗ρ l(x),

and the antipode map is
ρ l(x) 7→ 1/ρ l(x).

Note that in this case
Gm,ρ := GL1,Σ1

∼=G
t
m

asC-algebraic groups.

Definition 3.12. A linear C-Σ1-algebraic group is an affineC-Σ1-algebraic groupG
such that there exists a morphism of functors

φ : G→GLm,Σ1

such that the kernel functor ker(φ) is the constant functor(0).

In particular, this means that theC-Σ1-Hopf algebraH of G is a quotient ofHm

by a radicalΣ1-Hopf-ideal by the Yoneda lemma (see [26, Corollary 2, page 44] or
[20, Corollary 30.7, page 224]). More explicitly, the above equivalence also follows
from the equivalence of the categories of affine pseudovarieties and the category of
Σ1-finitely generated algebras [32, Proposition 42].

3.3.2 Difference algebraic subgroups ofGm,Σ1

Example 3.13. In the usual case of varieties over a fieldk, the algebraic subgroups of
Gm are given by equationsxl = 1. The corresponding ideal ofk

[

x,x−1
]

is (xl −1). In
the case ofC-Σ1-groups, where

Σ1 = Z/t1Z⊕ . . .⊕Z/tpZ=: {id = α1, . . . ,αt}, t := t1 · . . . · tp,
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there are moreΣ1-algebraic subgroups ofGm,Σ1
. Let C be an arbitrary Noetherian

Σ1-pseudofield. Let also
e0, . . . ,es−1

be all indecomposable idempotents ofC with

αi(e0) = ei−1, 16 i 6 s.

Then theΣ1-Hopf algebra ofGm,Σ1
is

C{x,1/x}Σ1 = (K× . . .×K)[xα ,1/xα |α ∈ Σ1],

whereK =C/m for a maximal idealm of C. We have

C{x,1/x}Σ1 = e0C{x,1/x}Σ1× . . .×es−1C{x,1/x}Σ1,

and
Ri = eiC{x,1/x}Σ1 = K[xα ,1/xα |α ∈ Σ1].

As we can see, eachRi is a Hopf algebra. LetI be theΣ1-ideal defining ourΣ1-closed
subgroup ofGm,Σ1

. Then
I = e0I × . . .×es−1I .

For eachi, 06 i 6 s−1, the idealei I ⊂ Ri is defined by equations

x
ki,1,α1
α1 · . . . ·xki,1,αt

αt = 1,

...

x
ki,m,α1
α1 · . . . ·xki,m,αt

αt = 1.

So, if we collect all equations of all idealsei I , 06 i 6 s−1, we obtain the equations

e0xk0,1,1α2
(

xk0,1,2
)

· . . . ·αt
(

xk0,1,t
)

= e0,
...

es−1xks−1,m,1α2
(

xks−1,m,2
)

· . . . ·αt
(

xks−1,m,t
)

= es−1.

Applying α−1
i to the equations withei , 06 i 6 s, we can rewrite the above system in

the form
e0xk1,1α2

(

xk1,2
)

· . . . ·αt
(

xk1,t
)

= e0,
...

e0xkm,1α2
(

xkm,2
)

· . . . ·αt
(

xkm,t
)

= e0,

(22)

which generateI as aΣ1-ideal. The latter equations also give generators of the ideal
e0I . So, by [35, Section 2.2] we must havem6 t.

Now we claim that there is an equation inI of the form

ϕ(x)−1= 0,
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whereϕ(xy) =ϕ(x)ϕ(y). Indeed, for this, denote the first equation in (22) byψ(x)−e0.
Then the equation

∑
16k6s

αk(ψ(x)−e0) = ∑
16k6s

αk(ψ(x))−1.

is of the desired form, where the sum

∑
16k6s

αk(ψ(x))

is multiplicative because theei ’s are orthogonal.
Now suppose thats= t (this is the case, for example, whenC is Σ1-closed). In this

case, we know that the numberm of equations does not exceed the numbers of our
idempotents. Then the following system of equations definesthe idealI .

e0xk1,1α2

(

xk1,2

)

· . . . ·αt

(

xk1,t

)

= e0, (1)

...

e0xkm,1α2

(

xkm,2

)

· . . . ·αt

(

xkm,t
)

= e0, (m)

e0 = e0, (m+1)

...

e0 = e0. (t)

Applying αi to theith equation, 16 i 6 t, we obtain

e0xk1,1α2

(

xk1,2

)

· . . . ·αt

(

xk1,t

)

= e0, (1)

...

em−1αm

(

xkm,1

)

(αmα2)
(

xkm,2

)

· . . . · (αmαt)
(

xkm,t−1

)

= em−1, (m)

em = em, (m+1)

...

et−1 = et−1. (t)

By taking the sum of the above equations, we arrive at an equation of the form

ϕ(x) = 1. (23)

Since theei ’s are orthogonal, the left-hand side is multiplicative. Moreover, this equa-
tion defines the same subgroup. Vice versa, every multiplicative ϕ(x) ∈C{x,1/x}Σ1

defines aΣ1-subgroup ofGm,Σ1
via (23). Note that it might happen that the set of solu-

tions is empty. For example, this is the case forϕ = e, wheree is idempotent and not
equal to 1.
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Example 3.14. LetC= C×C×C with

ρ(a0,a1,a2) = (a2,a0,a1), ai ∈ C .

By [32, Proposition 15],(C,ρ) is aΣ1-closed pseudofield. Let

G= {a∈C |a ·ρ(a) = 1}, (24)

aΣ1-subgroup ofGm considered in Example3.13. A calculation shows that

G= {(1,1,1), (−1,−1,−1)}.

This demonstrates a major difference betweenΣ1-subgroups and differential algebraic
subgroups (see [9, Chapter IV]) ofGm. More precisely, in the differential case the
order of the defining equation coincides with the algebraic dimension of the subgroup.

In our case, the order ofρ in (24) is equal to 1, however, the group is finite. There-
fore, in order to compute the algebraic dimension of aΣ1-group one needs to do more
calculation than just to look at theρ-order of the equation.

3.4 Galois group

As before, letK be a NoetherianΣ-pseudofield withC := Kσ beingΣ1-closed.

Definition 3.15. Let L be a Picard-Vessiot pseudofield of equation (19). Then the
group ofΣ-automorphisms ofL over K is called the difference Galois group of (19)
and denoted by AutΣ(L/K).

Let L be a Picard-Vessiot pseudofield of equation (19) andF ∈GLn(L) be a funda-
mental matrix. Then for anyγ ∈ AutΣ(L/K) we have

γ(F) = FMγ , (25)

whereMγ ∈GLn(C), which, as usual, defines an injective group homomorphism from
AutΣ(L/K) into GLn(C). SinceL is generated by the entries ofF , the action ofγ on
L is determined by its action onF . This induces an identification of AutΣ(L/K) with
AutΣ(R/K), whereR is the Picard-Vessiot ring corresponding toF .

We will now construct a map

AutΣ(R/K)→MaxΣ(R⊗K R).

For this, letF be a fundamental matrix of equation (19) with entries inR and γ ∈
AutΣ(R/K). As above,γF = FMγ , whereMγ ∈GLn(C). We will then map

γ 7→ [F⊗1−1⊗FMγ ]Σ,

the smallestΣ-ideal containingF⊗1−1⊗FMγ . Consider theΣ-homomorphism

(γ, Id) : R⊗K R→R,

23



which is surjective. SinceR is Σ-simple, the kernel of the homomorphism, which is

[F⊗1−1⊗FMγ ]Σ,

is a maximalΣ-ideal in R⊗K R. Indeed, ifR is a Σ-simple ring andB is a Σ-finitely
generated algebra overR, that is,B= R{x1, . . . ,xn}Σ, then everyΣ-ideal of the form

[x1−a1, . . . ,xn−an]Σ,

whereai ∈R, is aΣ-maximal ideal. Moreover, for 06= s∈ B, every maximalΣ-ideal of
B is either a maximalΣ-ideal in

B∗ := B{1/s}

or becomes trivial inB∗. Hence, a nontrivial ideal

[x1−a1, . . . ,xn−an]Σ

of B∗ is a maximalΣ-ideal. Now, the ring

R⊗K R

is anR-algebra with respect to the homomorphism

R→R⊗K R, r 7→ 1⊗ r.

Then
R⊗K R= R{F⊗1}{1/det(F⊗1)}.

Therefore, the ideal[F⊗1−1⊗FMγ ]Σ has the desired form. Moreover, this ideal is
nontrivial because it is the kernel of the surjectiveΣ-homomorphism(γ, Id).

To construct a map in the reverse direction, let

φ1,φ2 : R→ R⊗K R, r 7→ r⊗1, r 7→ 1⊗ r, respectively.

Letm be a maximalΣ-ideal ofR⊗K R. Then

(R⊗K R)/m

is a Picard-Vessiot ring of equation (19). As in Proposition3.4, the composition homo-
morphisms

φ i : R→R⊗K R→ (R⊗K R)/m

are isomorphisms. This induces an automorphism of the ringR defined by

φm := φ−1
2 ◦φ1.

Proposition 3.16.The correspondenceAutΣ(R/K)→MaxΣ(R⊗K R) constructed above
is bijective. Moreover, these bijections are inverses of each other.
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Proof. Let γ ∈ AutΣ(R/K) andM ∈GLn(C) be such thatγ(F) = FM. Set

m= [F⊗1−1⊗FM]Σ.

Since

φ 1(F) = F⊗1, F⊗1= 1⊗FM in (R⊗K R)/m, and φ2(FM) = 1⊗FM,

we have
φm(F) = FM.

That is,
(R⊗K R)/m

R

φ̄1 77oooooo

φm
// R

φ̄2ggOOOOOO

Conversely, letm ∈MaxΣ(R⊗K R). Thenφm(F) = FM for someM ∈GLn(C). Hence,

φ1(F) = φ2(FM).

Therefore,
[F⊗1−1⊗FM]Σ ⊂m .

Since, as above, the former ideal isΣ-maximal, it coincides withm.

Proposition 3.17.The Galois group G of equation(19) is a closed subgroup ofGLn(C).
Moreover, if the ring R⊗K R is reduced then

R⊗K R∼= R⊗CC{G},

where C{G} is the ring of regular functions on G and R is a Picard-Vessiotring of (19).

Proof. As before, defineσ on theΣ1-ring

R{Xi j ,1/detX}Σ1

by σX = AX. Let F be a fundamental matrix of (19) with coefficients inR and let, as
above,

Y = F−1X,

which implies thatσY =Y. We have aΣ-isomorphism

R⊗K {Xi j ,1/detX}Σ1
∼= R⊗CC{Yi j ,1/detY}Σ1.

As in the proof of Proposition3.7, this induces aΣ-isomorphism

R⊗K R∼= R⊗C B, (26)

whereB=C{Yi j ,1/detY}Σ1/J andJ is aΣ1-ideal.
By Proposition3.16, AutΣ(R/K) as a set can be identified with MaxΣ(R⊗K R). The

latter set, by Proposition2.19and isomorphism (26), can be identified with MaxΣ1 B.
SinceC is Σ1-closed, by [32, Proposition 14], the set MaxΣ1 B can be identified with a
closed subset of GLn(C). The group structure ofG is preserved under this identification
due to (25). If the ringR⊗K R is reduced then the idealJ is radical and, therefore,B is
the coordinate ring ofG.
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3.5 Galois correspondence

Proposition 3.18. Let L be a Picard-Vessiot pseudofield of equation(19), R be its
Picard-Vessiot ring, and G be its Galois group. If the ring R⊗K R is reduced then

LG = K.

Proof. Let
a
b
∈ L\K, (27)

wherea, b∈ R andb is not a zero divisor. Set

d = a⊗b−b⊗a∈ R⊗K R.

We will show thatd 6= 0. For this, let

e1, . . . ,en

be all indecomposable idempotents of the NoetherianΣ-pseudofieldK. Sinceb is not
a zero divisor,

eib 6= 0, 16 i 6 n. (28)

Suppose that for eachi, 16 i 6 n, eia andeib are linearly dependent overeiK, that is,

λieia= µieib

for all i. Then (28) implies thatλi 6= 0, 16 i 6 n. SinceeiK is a field, we have

eia=
µi

λi
eib.

Hence,

a=
n

∑
i=1

eia=

(

n

∑
i=1

µi

λi
ei

)

b.

That is,
a
b
=

n

∑
i=1

µi

λi
ei ∈ K,

which is a contradiction to (27). Therefore, there existsi, 16 i 6 n, such thateia and
eib are linearly independent overeiK. If d = 0 in R⊗K R then

eia⊗eib−eib⊗eia= 0 in eiR⊗eiK eiR. (29)

Indeed, in general, ifA is a ring andB, C, andD areA-algebras then

(B⊗AC)⊗A D∼= B⊗A D⊗AC∼= B⊗A D⊗D D⊗AC∼= (B⊗A D)⊗D (C⊗A D).

Moreover, we have the following commutative diagram

B⊗AC

B
99sss

C
eeLLL

A

ffLLLL
88rrrr
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Hence, for any element inB (orC) one can take its image inB⊗AC. So, we choose

A= K, B=C= R, andD = eiK

to obtain (29) contradicting that 1⊗eia and 1⊗eib are linearly independent overeiR.
Thus,

a⊗b−b⊗a 6= 0 in R⊗K R. (30)

We will now show that there is a maximalΣ-ideal inR⊗K R that does not contain
d. SinceR⊗K R is reduced, then by Proposition3.17we have

R⊗K R∼= R⊗CC{G}.

Let
{l i}i∈I

be a basis ofR overK. Then there existr1, . . . , rm ∈C{G} such that

d = l1⊗ r1+ . . . lm⊗ rm.

Sincer1 is not nilpotent, there exists a maximalΣ1-idealm⊂C{G} such that

r1 6= 0 in C{G}/m .

Then image ofd in R⊗CC{G}/m∼= R is

d = l1r1+ . . . lmrm.

Sincer1 6= 0, we haved 6= 0. Thus,d /∈R⊗Cm.
Using the correspondencebetween maximalΣ-ideals inR⊗K RandΣ-automorphisms

of RoverK, let
φm = φ−1

2 ◦φ1

correspond tom as in the proof of Proposition3.16. Then our choice ofm implies that

(R⊗K R)/m ∋ φ1(a)φ 2(b)−φ1(b)φ 2(a) 6= 0. (31)

Applying φ−1
2 to both sides of (31), we obtain that

φm(a)b−φm(b)a 6= 0.

Therefore,φm
(

a
b

)

6= a
b.

Lemma 3.19. Let K⊂ L be NoetherianΣ-pseudofields. Let H⊂ AutΣ(L) such that
LH = K. Suppose that

K ∼=
n

∏
i=1

FΣ1(F)

as Σ1-rings, where F is a field. Let{ei} be the corresponding idempotents. Then
for each i the abstract group generated byΣ1 and H acts transitively on the set of
indecomposable idempotents of the ring eiL.
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Proof. Let e∈ eiL be an idempotent andSbe itsΣ1∗H-orbit. The setScoincides with
the set of indecomposable idempotents if and only if

∑
f∈S

f = 1.

This sum isH-invariant and, therefore, it belongs toFΣ1(F). Since it isΣ1-invariant
as well, it is equal to 1, because aΣ1-invariant idempotent ofFΣ1(F) generates aΣ1-
ideal.

Proposition 3.20. Let L be a Picard-Vessiot pseudofield for equation(19) and H be a
closed subgroup of the Galois group G. Then LH = K implies H= G.

Proof. As before, letF be a fundamental matrix with entries inL andσX = AX define
the action ofΣ on theΣ1-ring

D := L{Xi j ,1/detX}Σ1.

Let alsoY = F−1X. Again, as before,

L⊗K K{Xi j ,1/detX}Σ1
∼= L⊗CC{Yi j ,1/detY}Σ1.

Suppose thatH ( G and let
I ( J

be the defining ideals ofGandH, respectively. Denote their extensions toL{Xi j ,1/detX}
by (I) and(J), respectively. By Proposition2.19, we have

(I)( (J).

Explicitly, we have

(I) =
{

f (X) ∈ L{Xi j ,1/detX}Σ1 | f (FM) = 0 for all M ∈G
}

and
(J) =

{

f (X) ∈ L{Xi j ,1/detX}Σ1 | f (FM) = 0 for all M ∈ H
}

. (32)

Let T = (J)\ (I) 6=∅.
Define the action ofH onL⊗K K{Xi j ,1/detX}Σ1 by

h(a⊗b) = h(a)⊗b, h∈ H.

Then equality (32) implies that(J) is stable under this action ofH. By Proposition2.28,

K ∼= FΣ1(F)× . . .×FΣ1(F)

asΣ1-rings, whereF is a field. Lete1, . . . ,en be the idempotents corresponding to the
componentsFΣ1(F) in the above product. By Proposition2.18, the ringK{Xi j ,1/detX}Σ1

has aΣ1-invariant basis{Qα}. Then every element of the ringD is of the form

Q= q1Qα1 + . . .+qnQαn, (33)
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whereqi ∈ L, 16 i 6 n. Let Q be an element inT with the shortest presentation of the
form (33). Since

Q= ∑
i

eiQ,

there existsi such thateiQ∈ T. Denote the latter polynomial byQ as well. Now we
have

Q∈ eiD.

Let f1, . . . , fm be all indecomposable idempotents of the Noetherian ringeiL. Then

Q=
m

∑
j=1

f j Q.

Hence, there existsj such thatf j Q∈ T. By Lemma3.19, there existht ∈ Σ1 ∗H such
that the coefficients of

Q′ := ∑
t

ht(Q)

are invertible ineiL. Therefore,

Q′ = eiQ1+g2Q2+ . . .+gmQm.

Since the ideal(J) is stable under the action ofΣ1 ∗H, we haveQ′ ∈ T. Sinceei ∈ K,
for everyh∈ H the polynomial

Q′′h := Q′−h(Q′)

has a shorter presentation thanQ and, therefore,Q′′h /∈ T. That is,

Q′′h ∈ (I) for all h∈ H. (34)

We will show now thatQ′′h = 0 for all h ∈ H. Suppose thatQ′′h 6= 0 for someh ∈ H.
Then (34) implies that there existsj such that

0 6= f jQ
′′
h ∈ (I).

SinceΣ1 ∗H acts transitively on the indecomposable idempotents ofeiL, there exist
φt ∈ Σ1 ∗H such that

Qh := ∑
t

φt
(

Q′′h
)

= r2Q2+ . . .+ rmQm∈ (I),

wherer2 is invertible ineiL. Therefore, there existsr ∈ eiL such that

g2 = rr2.

Then, the polynomial
Q′− rQ∈ T

has a shorter presentation thanQ′, which is a contradiction.
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We have shown that
h(Q′) = Q′

for all h∈ H. Hence, all coefficients ofQ′ are inK and, therefore, are invariant under
the action ofG as well. Since 0= Q′(F · id) = Q′(F), we have

0= g(Q′(F)) = g(Q′)(FMg) = Q′(FMg)

for all g∈G. Thus,Q′ ∈ (I), which contradicts toQ′ ∈ T.

Lemma 3.21. Let M be a field,

D := M× . . .×M, (35)

F ⊂ D be a subfield and H⊂ Aut(D) with DH = F. Let f := (1,0, . . . ,0) ∈ D and
H1⊂ H be the stabilizer of f . Then

f F = MH1 ,

where M is from the first component in(35).

Proof. Since f F is H1-invariant, we have

f F ⊆MH1 .

We will show the reverse inclusion. Let

l ∈ ( f D)H1 = MH1.

We need to show that there is an elementa∈ F such that

l = f a.

Let theH-orbit of l be
{l1, . . . , lk},

wherel = l1. For eachi, 16 i 6 k, there existsai ∈D such that

l i = ai fi ,

where fi is the idempotent corresponding to theith factor inD (so we havef = f1),
since if l 6= 0 thenH1 is the stabilizer ofl . Hence, for

d =
k

∑
i=1

l i

we have

f d =
k

∑
i=1

f1l i = l1 = l

andH permutes thel i ’s. Thus,d ∈ DH = F as desired.

30



Proposition 3.22. Let K be a NoetherianΣ-pseudofield, R be aΣ-simple Noetherian
algebra over K, and L= Qt(R). Then for the statements

1. the ring R⊗K R is reduced,

2. the ring L⊗K L is reduced,

3. there exists a subgroup H⊂ AutΣ(L/K) such that LH = K.

we have:1 is equivalent to2 and3 implies2. Moreover, if R is a Picard-Vessiot ring
over K then the above statements are equivalent.

Proof. The equivalence of1 and2 follows from the fact thatR⊗K R⊂ L⊗K L and that
the latter ring is a localization of the former one.

We will show now that3 implies2. Let e1, . . . ,en be the indecomposable idempo-
tents ofK. Then

L⊗K L =
n

∏
i=1

eiL⊗eiK eiL.

Indeed,A = A1×A2 be a ring andB andC be A algebras. Denote bye and f the
idempotents(1,0) and(0,1) of A, respectively. Then we have decompositions

B= eB× f B and C= eC× fC.

We will show now that

B⊗AC= eB⊗eAeC× f B⊗ f A fC.

For this, first note thateB⊗A fC= 0. Indeed,

eb⊗ f c= e(eb)⊗ f c= eb⊗e( f c) = 0.

Hence,
B⊗AC= (eB⊕ f B)⊗A (eC⊕ fC) = eB⊗A eC⊕ f B⊗A fC,

Since the homomorphism
A→ eB⊗A eC

factors througheA, we have

eB⊗A eC= eB⊗eAeC.

It is enough to show that the ringeiL⊗eiK eiL is reduced. Note thateiK is a field.
Sinceei ∈ K, they are all invariant underH and, moreover,

(eiL)
H = eiK.

Let now f1, . . . , fm be the indecomposable idempotents of the ringeiL and letH1 be the
stabilizer of f1. Lemma3.21with D = eiL andF = eiK implies that

(ei f1L)H1 = f1eiK.
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Since
eiL⊗eiK eiL = ∏

s,t
ei fsL⊗eiK ei ftL,

it remains to show that the ring

D := ei fsL⊗eiK ei ftL

is reduced. By [7, Corollary 1 of Proposition 7.3], withA= ei fsL, B= ei ftL, N = B,
andK = eiK, the Jacobson radical of the ringD is zero. In particular, the ringD is
reduced.

The last statement follows from Proposition3.18.

Definition 3.23. A Picard-Vessiot extensionL/K is called separable if one of the three
equivalent conditions in Proposition3.22is satisfied.

Theorem 3.24.Let R be a Picard-Vessiot extension of equation(19) and L= Qt(R) be
separable over K. LetF denote the set of all intermediateΣ-pseudofields F such that
L is separable over K andG denote the set of allΣ1-closed subgroups H in the Galois
group G of L over K. Then the correspondence

F ←→ G , F 7→ AutΣ(L/F), H 7→ LH

is bijective and the above maps are inverses of each other. Moreover, H is normal in G
if and only if theΣ-pseudofield F:= LH is G-invariant.

Proof. The mapF −→ G is well-defined by Proposition3.17. Propositions2.16
and2.17imply thatLH ⊂ L is a Σ-pseudofield. By Proposition2.29, it is Noetherian
and, by Proposition3.22, it is separable.

Let F ∈ F . Then the extensionL over F is separable and is a Picard-Vessiot
pseudofield for equation (19) considered overF . Moreover,

F = FAutΣ(L/F)

by Proposition3.18.
Conversely, letH be aΣ1-closed subgroup ofG. SetF = LH . ThenL is a Picard-

Vessiot pseudofield for equation (19) over F . By Proposition3.20, we haveH =
AutΣ(L/F).

The equality
g(F) = {r ∈ L |ghg−1r = r for all h∈H}

implies the statement about normality.

Remark3.25. The base pseudofieldK is a product of the fields, sayL× . . .×L. If the
field L is perfect, then for every pseudofieldsF andE containingK the ringF⊗K E is
reduced. Indeed, lete0, . . . ,et−1 be all indecomposable idempotents ofK, then

F⊗K E =
t−1

∏
i=0

eiF⊗L eiE.
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SinceL is perfect andL-algebraseiF andeiE are reduced, theneiF⊗L eiE is reduced
as well (see [8, A.V. 125, No. 6, Theorem 3(d)]). Therefore, ifL is perfect, then any
Picard-Vessiot extension is separable. If the fieldL is finite, algebraically closed or of
characteristic zero, thenL is perfect. In this case, the setF contains all intermediate
Σ-pseudofields.

3.6 Torsors

Let C be aΣ1-closed pseudofield andK ⊃C be a NoetherianΣ-pseudofield. LetG be
a Σ1-group overC beC{G} be itsΣ1-Hopf algebra with comultiplication∆, antipode
S, and counitε.

Definition 3.26. A Σ1-finitely generatedK-algebraR supplied with aΣ-K-algebra ho-
momorphism

ν∗ : R→ R⊗CC{G}
is called aG-torsor overK if the following statements are true:

1. R is aC{G}-comodule with respect toν∗,

2. the vertical arrow in the following diagram

R⊗K R

��

R

idR⊗1 88ppppp

ν∗ &&MM
MM

M R

1⊗idRffNNNNN

1⊗idR
xxqq

qq
q

C{G}⊗C R

is an isomorphism.

In the above notation, the ringsR andC{G} are finitely generated algebras over
Artinian rings. Then the Krull dimension is defined for them,which we will denote by
dimR and dimC{G}, respectively. The isomorphism in2 implies that

dimR= dimC{G}.

Moreover, letebe an indecomposable idempotent inC andF := eCbe the correspond-
ing residue field. ThenF⊗CC{G} is a finitely generateF-algebra of dimension equal
to dimC{G}. Hence, for any minimal prime idealp of the ringF⊗CC{G},

tr.deg.F k(p) = dimC{G}= dimR,

wherek(p) is the residue field ofp.

Proposition 3.27. Let K be a NoetherianΣ-pseudofield with Kσ being aΣ1-closed
pseudofield. Let R be a Picard-Vessiot ring for equation(19) with L= Qt(R). Let G be
the Galois group of L over K. If R is separable over K then R is a G-torsor over K.

Proof. Follows from Proposition3.17.
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4 Applications

4.1 General result

For any nonzero complex numbera we define an automorphismσa : C(z)→ C(z) by

σa( f )(z) = f (az).

Let Σ1 ⊆ C∗ be a finite subgroup. ThenΣ1 is a cyclic group generated by a root of
unity ζ of degreet. Let q∈ C be a complex number such that|q| > 1. Now we have
an action of the group

Σ = Z⊕Z/tZ

onC(z), where the first summand is generated byσq and the second one is generated
by σζ . Throughout this section the ringC(z) is supplied with this structure of aΣ-ring.

Theorem 4.1. Let R be aΣ-ring containing the fieldC(z) such thatk := Rσq is a field.
Suppose additionally that R contains the fieldk(z). Let f ∈ R and a∈ C(z) be such
that f is an invertible solution of

σq( f ) = a f. (36)

Then f isσζ -algebraically dependent overk(z) if and only if

ϕ(a) = σq(b)/b (37)

for some0 6= b∈C(z) and1 6= ϕ(x) = xn0σζ (x)
n1 · . . . ·σ t−1

ζ (x)
nt−1.

Proof. If (37) holds then

σq(ϕ( f )/b) = ϕ(σq( f ))/σq(b) = ϕ(a f)/σq(b) = ϕ(a)ϕ( f )/σq(b) = ϕ( f )/b.

Therefore,
ϕ( f )/b= c∈ Rσq = k .

Thus,
ϕ( f ) = c ·b∈ k(z),

which gives aΣ1-algebraic dependence forf overk(z).
First, note thatz is algebraically independent overk. Indeed, suppose that there is

a relation
an ·zn+an−1 ·zn−1+ . . .+a0 = 0

for someai ∈ k. Applying σq n times, we obtain the following system of linear equa-
tions















1 1 . . . 1 1
qn qn−1 . . . q 1
...

...
.. .

...
...

(qn)n−1 (qn−1)
n−1

. . . qn−1 1
(qn)n (qn)n . . . qn 1

























an ·zn

an−1 ·zn−1

...
a0











= 0
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Since the matrix is invertible, our relation is of the forma·zk = 0 for somea∈ k. Since
k is a field, we havezk = 0. However,z∈C(z), which is a contradiction.

Assume now thatf is Σ1-algebraically dependent overk(z). LetC be theΣ1-closure
of k andK be the total ring of fraction of the polynomial ringC[z], where

σq(z) = qz and σζ (z) = ζz.

So, the fieldk(z) is naturally embedded intoK. Let D be the smallestΣ-subring inR
generated byk(z), f , and 1/ f and let

m⊆ K⊗k(z) D

be a maximalΣ-ideal. Then
L = (K⊗k(z) D)/m

is a Picard-Vessiot ring overK for equation (36). The image off in L will be denoted
by f̄ . Sincef is Σ1-algebraically dependent overk(z), f̄ is Σ1-algebraically dependent
overK.

It follows from Section3.6that f̄ is Σ1-algebraically dependent overK if and only
theΣ-Galois groupG of equation (36) is a proper subgroup ofGm,Σ1

. Then, by Exam-
ple3.13, there exists a multiplicative

ϕ ∈ (FΣ1 Q){x,1/x}Σ1

(see also (16)) such thatG is given by the equation

ϕ(x) = 1.

Therefore, for allφ in the Galois group, we have

φ(ϕ( f̄ )) = ϕ(φ( f̄ )) = ϕ(cφ · f̄ ) = ϕ(cφ ) ·ϕ( f̄ ) = 1 ·ϕ( f̄ ) = ϕ( f̄ ).

Hence, by Proposition3.18, we have

b := ϕ( f̄ ) ∈ K =C(z).

as in [19, Proposition 3.1]. Sincef is invertible, f̄ is also invertible and, sinceϕ is
multiplicative,ϕ( f̄ ) is invertible as well. Therefore,

ϕ(a) = ϕ
(

σq( f̄ )/ f̄
)

= σq
(

ϕ( f̄ )
)

/ϕ( f̄ ) = σq(b)/b. (38)

We will show now thatb can be chosen from(FΣ1 C)(z) satisfying (37) as in [19, Corol-
lary 3.2]. We have the equalities

a= ā/c and b= b̄/d,

whereā,c ∈ C[z] and b̄,d ∈ C[z]. Consider the coefficients of̄b andd as difference
indeterminates. Then, equation (38) can be considered as a system of equations in the
coefficients of̄b andd. Indeed, equation (38) is equivalent to

ϕ(ā/c) =
σq
(

b̄/d
)

b̄/d
.
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So, we have
ϕ(ā) ·σq(d) · b̄−ϕ(c) ·σq(b̄) ·d = 0 (39)

The left-hand side of equation (39) is a polynomial inz. The desired system of equa-
tions is given by the equalities for all coefficients.

Now note that the condition ofy ∈ C[z] being invertible in C(z) is given by the
inequality

y ·σζ (y) · . . . ·σ t−1
ζ (y) 6= 0.

Therefore, the coefficients of the polynomialsb̄ andd are given by the system of equa-
tions and inequalities. Since the pseudofieldFΣ1 C is Σ1-closed, existence of invertible
b̄ andd with coefficients inC implies existence of invertiblēb andd with coefficients
in FΣ1 C (see [32, Proposition 25 (3)]).

We will now show thatb∈ C(z) andϕ can be found of the desired form. We have
proven that

ϕ(a) = σq(b)/b (40)

for someb∈ (FΣ1 C)(z). It follows from Example3.13that

ϕ(x) = e0 ·xn0,0 ·σζ (x)
n0,1 · . . . ·σ t−1

ζ (x)n0,t−1 + . . .

. . .+et−1 ·xnt−1,0 ·σζ (x)
nt−1,1 · . . . ·σ t−1

ζ (x)nt−1,t−1.

Note that ifa∈ (FΣ1 C)(z) belongs toC(z) then

γe(a) = a and γe(σ i
ζ (a)) = σ i

ζ (γe(a)),

where theσq-homomorphism

γe: (FΣ1 C)(z)→C(z)

is defined in (17). Applying this homomorphism to (40), we obtain

an0,0 ·σζ (a)
n0,1 · . . . ·σ t−1

ζ (a)n0,t−1 = σq(γe(b))/γe(b),

which concludes the proof.

4.2 Setup for meromorphic functions

Example 4.2. The ring of all meromorphic functions onC∗ will be denoted byM .
For any nonzero complex numbera we define an automorphismσa : M →M by

σa( f )(z) = f (az).

Let
Σ1⊆ C∗

be a finite subgroup. ThenΣ1 is a cyclic group generated by a root of unityζ of degree
t. Let q∈ C be such that|q|> 1. Now, we have an action of the group

Σ = Z⊕Z/tZ,
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where the first summand is generated byσq and the second one is generated byσζ .
The set of allσq-invariant meromorphic functions will be denoted byk. As we can

seek is aΣ1-ring. LetC be theΣ1-closure of the fieldk. Supply the polynomial ring
C[z] with the following structure of aΣ-ring:

σq(z) = qz and σζ (z) = ζz.

Let K be the total ring of fractions ofC[z], so,K is a NoetherianΣ-pseudofield withΣ1-
closed subpseudofield ofσq-constantsC. The meromorphic functionz is algebraically
independent overk. Hence, the minimalΣ-subfield inM generated byk andz is the
ring of rational functionsk(z). Thus, this field can be naturally embedded intoK with
zbeing mapped toz.

4.3 Jacobi’s theta-function

We will studyΣ1-relations for Jacobi’s theta-function

θq(z) =−∑
n∈Z

(−1)nq
−n(n−1)

2 zn,

with coefficients ink(z).

4.3.1 Relations forθq with q-periodic coefficients

First, we will show that there are many relations of such form:

1. Suppose thatt > 3. Then, the function

λ = θq(z) ·θ−2
q (ζz) ·θq(ζ 2z)

is σq-invariant. Therefore,θq vanishes the following nontrivialΣ1-polynomial:

y ·σζ 2(y)−λ · (σζ (y))
2 ∈ k(z){y}.

2. Suppose thatt =m·n, wheremandn are coprime. Then, there exist two numbers
u 6= v such that the automorphismsσu

ζ 6= σv
ζ but σun

ζ = σvn
ζ 6= id. Then, the

function
λ = θ n

q (ζ
uz) ·θ−n

q (ζ vz)

is σq-invariant. Therefore,θq vanishes the following nontrivialΣ1-polynomial:

(σζ u(y))n−λ · (σζ v(y))n ∈ k(z){y}.

3. For any givenζ , the function

λ = θ t
q(z) ·θ−t

q (ζz)

is σq-constant. Therefore,θq vanishes the following nontrivialΣ1-polynomial:

yt −λ · (σζ (y))
t ∈ k(z){y}.
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4.3.2 Periodic difference-algebraic independence forθq with q-periodic coeffi-
cients

We will show now that in some sense these relations are the only possible ones.

Lemma 4.3. Suppose that for some rational function b∈ k(z) there is a relation

(−qz)k0 (−qζz)k1 · . . . ·
(

−qζ t−1z
)kt−1 =

σq(b)

b

for some ki ∈ Z. Then
t−1

∑
i=0

ki = 0.

Proof. The functionσq(b)/b is of the following form

σq(b)

b
=

h
g
,

whereh andg have the same degree and the same leading coefficient. The equality
follows from the condition on the degree.

Lemma 4.4. Suppose that there existλ ∈ k(z) andη , q∈ C such that

σq(λ ) = η ·λ ,

where|η |= 1 and|q|> 1. Thenλ ∈ k andη = 1.

Proof. Let

λ = a ·zr · (z−a1) · . . . · (z−an)

(z−b1) · . . . · (z−bm)

be the irreducible representation ofλ , whereai ,bi ∈ k. By the hypothesis, we have

qr+n−m ·

(

z− a1
q

)

· . . . ·
(

z− an
q

)

(

z− b1
q

)

· . . . ·
(

z− bm
q

) = η · (z−a1) · . . . · (z−an)

(z−b1) · . . . · (z−bm)
.

Therefore,qr+n−m = η . Thus,r +n−m= 0 andη = 1. Moreover, the sets

{a1, . . . ,an} and

{

a1

q
, . . . ,

an

q

}

must coincide. Ifλ /∈ k then, fromr +n−m= 0, it follows that eithern> 0 orm> 0.
Suppose that the first inequality holds. There existsi such that

a1 =
ai

q
.

If i = 1 then we seti0 = 1. Otherwise,i > 1 and, rearranging the elements{a j} for
j > 1 suppose thati = 2. Again,

a2 =
ai

q
.
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If i = 1, we seti0 = i. Otherwise,i > 2 and rearranging the elements{a j} for j > 2,
suppose thati = 3, and so on. Since there are only finitely many elements, the process
will stop and we obtain a numberi0 with the following system of equations:











































a1 =
a2

q

a2 =
a3

q
...

ai0 =
a1

q

Therefore,qi0 = 1. Thus,|q|= 1, which is a contradiction.

Proposition 4.5. Let the pseudofield K be as above. Let R be a Picard-Vessiot ring
over K for the equation

σq(y) =−qz·y
and L be the corresponding Picard-Vessiot pseudofield. Suppose that f is an invertible
solution in R. Then L⊗K R is a graded ring such that f is of degree1 andσq andσζ
preserve the grading.

Proof. It follows from Proposition3.17that

R⊗
K

R= R⊗
C

C{G},

whereG is the corresponding Galois group. Multiplying byL⊗R−, we obtain:

L⊗
K

R= L⊗
C

C{G}.

Since groupG is a subgroup ofGm,

C{G}=C{x,1/x}Σ1/J,

where the idealJ is generated by difference polynomials of the form

e0 ·xk0 ·
(

σζ x
)k1 · . . . ·

(

σ t−1
ζ x

)kt−1−e0

(see Example3.13 for details). The ringC{x,1/x}Σ1 is a graded ring such thatx is
homogeneous of degree 1 andσζ preserves the grading. In the proof of Theorem4.1,
we have obtained that

(−qz)k0 · (−qζz)k1 · . . . ·
(

−qζ t−1z
)kt−1 =

σq(b)
b

for someb∈ C(z). Thus, it follows from Lemma4.3that

t−1

∑
i=0

ki = 0.
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Therefore, the idealJ is homogeneous. Hence,C{G} is graded. Thus,L⊗CC{G} is
graded. Sincef = f̄ · y, where f̄ ∈ L is a solution of the equation inL, then f is a
homogeneous element of degree 1. Sincex is σq-constant,σq preserves the grading.

Theorem 4.6. Let the pseudofield K be as above and suppose additionally that t is a
prime number. Let R be a Picard-Vessiot ring over K for the equation

σq(y) =−qz·y.

Then every relation of the form

λ0+
t−1

∑
d=1

λ0d ·θq(z)
d +λ1d ·θq(ζz)d + . . .+λt−1d ·θq

(

ζ t−1z
)d

= 0, (41)

with λ0,λi j ∈ k(z), implies thatλ0 = λi j = 0.

The first proof.Let L be the corresponding Picard-Vessiot pseudofield forR. It follows
from Proposition4.5thatD = L⊗K R is a graded ring such that the image ofθq in D is
homogeneous of degree 1. Suppose now thatθq satisfies an equation of the form (41).
Then, the same equation holds inRand, after embeddingR into D, it holds inD. Since
D is graded, our equation is homogeneous. Thus, it is of the form

λ0 ·θq(z)
d +λ1 ·θq(ζz)d + . . .+λt−1 ·θq

(

ζ t−1z
)d

= 0

for somed. Consider the shortest equation and rewrite it as follows

θq(z)
d +λr ·θq(ζ rz)d + . . .+λt−1 ·θq

(

ζ t−1z
)d

= 0,

where
λr ·θq(ζ rz)d

is the first nonzero summand immediately followingθq(z)d. Applying σq and dividing
by (−qz)d, we obtain

θq(z)
d +σq(λr) · (ζ r)d ·θq (ζ rz)d + . . .+σq(λt−1) ·

(

ζ t−1)d ·θq
(

ζ t−1z
)d

= 0

Therefore,
σq(λr) = ζ−rd ·λr .

Now, it follows from Lemma4.4that

ζ−rd = 1,

contradiction. Thus,
θq(z)

d = 0

must hold, but Picard-Vessiot pseudofield is reduced, whichis a contradiction again.
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The second proof.SinceM is reduced, a relation of the form

λ ·θq(ζ sz)d = 0

is impossible. Consider an equality of the described form ofminimal degreed. Then,
we may suppose thatλ · θq(z)d appears in this relation, whereλ ∈ k(z). Dividing by
λ , we may suppose that our relation is of the form

θq(z)
d + µ ·θq(ζ sz)r + . . .= 0,

whereµ · θq(ζ sz)r is another nontrivial summand. There are two cases:r = d with
0< s< t or r < d with 06 s< t. Applying σq and dividing on(−qz)d, we obtain the
relation

θq(z)
d +σq(µ) ·

(−qζ sz)r

(−qz)d ·θq(ζ sz)r + . . .= 0.

Subtracting the second relation from the first one, we obtaina relation of degree less
than the initial one. Thus, these relations coincide. In particular,

σq(µ) · (−qζ sz)r = µ · (−qz)d.

Hence,

(−qz)d · (−qζ sz)−r =
σq(µ)

µ
.

If 0 < s then it follows from Lemma4.3 that r = d = 0, contradiction. Ifs= 0 then
r < d and we obtain from Lemma4.3thatd− r = 0, contradiction.

4.3.3 Difference-algebraic independence forθq overC(z)

We will now show difference-algebraic independence forθq overC(z).

Example 4.7. Consider an equation

F(θq) = ∑
(n1,...,np)∈Zp

gn1,...,np(z) ·θq(α1z)n1 · . . . ·θq(αpz)np = 0,

wheregn1,...,np ∈ C(z) andαi 6= αi in C∗ /qZ. We will show that allgn1,...,np are equal
to zero. Since the sum is finite, there exists a monomial

M(θq) = θq(α1z)d1 · . . . ·θq(αpz)dp

such thatM(θq) ·F(θq) contains monomials with negative powers. Now, we will cal-
culate the poles of a given monomial with negative powers. The poles of thei-th factor
of the monomial

M(θq) =
1

θq(α1z)n1
· . . . · 1

θq(αpz)np
.

areα−1
i qr for all r ∈ Z and the multiplicity of each of the poles isni . The poles of

distinct factors are distinct. Indeed, suppose that

α−1
i ·qr1 = α−1

j ·qr2.
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Then
α j = αi ·qr2−r1.

Thus,
αi = α j in C∗ /qZ,

which is a contradiction. Therefore, the set of all poles of the monomialM(θq) is
α−1

i ·qr with multiplicity ni .
Every functiong∈ C(z) has only finitely many poles and zeros, so, all of them are

inside of a disk
Ud = {z∈ C | |z|< d}.

So, the set of all poles forM(θq) andg ·M(θq) coincides inC\Ud for somed. There
exists a diskUd such that this property holds for all summands inF. We can rewriteF
as follows

F(θq) = ∑
n1

(

∑
n2,...,np

gn1,...,np ·θq(α1z)n1 · . . . ·θq(αpz)np

)

=∑
n1

Fn1(θq) = 0.

The pointα−1
1 qr1 (wherer1 is large enough positive ifq> 1 and large enough negative

if q< 1) is a pole for all summandsFni and the multiplicity of this pole is different for
differentni . To annihilate these poles,Fn1 = 0 must hold for allni. Repeating the same
argument for allni , we arrive at

gn1,...,np(z) ·θq(α1z)n1 · . . . ·θq(αpz)np = 0

for eachn1, . . . ,np. Therefore,gn1,...,np = 0.
It follows from this result that for an arbitrary root of unity ζ the functionθq is

σζ -algebraically independent overC(z) in the field of meromorphic functions onC∗.
However, to generalize this result to finitely many roots of unity, we need to require the
following:

for all i and j ζ k
i = ζ m

j implies ζ k
i = ζ m

j = 1.

Otherwise, the result is not true. Indeed, ifζ k
i = ζ m

j 6= 0 then the relation

σk
ζi
(θq)−σm

ζ j
(θq) = 0

is non-trivial. Indeed, note that the difference indeterminatesσk
ζi

x andσm
ζ j

x are distinct

even in the difference polynomial ringQ{x}Σ1 in spite of the fact that they define the
same automorphisms of meromorphic functions.

4.4 General order oneq-difference equations

We will start by discussing several examples ofσζ -dependence and independence and
finish by providing a general criterion in Theorem4.11.
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4.4.1 Initial examples

Example 4.8. Fora(z) = z+1
z−1, t = 2, andζ =−1 we have

σζ (a)(z) ·σ0
ζ (a)(z) =

−z+1
−z−1

· z+1
z−1

= 1= σq(1)/1.

Let g be a meromorphic function onC\{0} such that

σq(g) =
z+1
z−1

·g.

Theng(z) ·g(−z) is σq invariant. Indeed,

σq(g ·σζ (g)) =
z+1
z−1

·g ·σζ

(

z+1
z−1

·g
)

=
z+1
z−1

· −z+1
−z−1

·g ·σζ(g) = g ·σζ (g).

So, the functiong is σζ -algebraically dependent overk.

Example 4.9. Fora(z) = 2z andt = 4 with ζ = i we have

σ2
ζ (a)(z) ·σ0

ζ (a)(z) = 2−z ·2z= 1= σq(1)/1.

As before, letg be a meromorphic function onC\{0} such that

σq(g) = 2z ·g.

Theng(z) ·g(−z) is σq invariant. Indeed,

σq

(

g ·σ2
ζ (g)

)

= 2z ·g ·σ2
ζ (2

z ·g) = 2z ·2−z ·g ·σ2
ζ (g) = g ·σ2

ζ (g).

So, the functiong is σζ -algebraically dependent overk.

Although the following example can be treated by Theorem4.11, we provide a sep-
arate argument for it to prepare the reader for an involved computation in Theorem4.11
(see also Corollary4.12).

Example 4.10. We will show that there are no suchb∈ C(z) and multiplicativeϕ ∈
Q{x,1/x}σζ of the form

ϕ(x) = xk0 ·σζ (x)
k1 · . . . ·σ t−1

ζ (x)kt−1

such that

ϕ(a) =
σq(b)

b
,

wherea= (z− c)n andc 6= 0.
Suppose that suchb andϕ exist. Letb be of the form

b= λ ·zd · (z−a1) · . . . · (z−an)

(z−b1) · . . . · (z−bm)
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whereai 6= 0, bi 6= 0 andd ∈ Z and this representation is irreducible. The elementϕ(a)
is of the form

∏(ζ pi ·z− c)di

∏(ζ q j ·z− c)h j
,

wheredi ,h j > 0. Hence, we have the equation

∏(ζ pi ·z− c)di

∏(ζ q j ·z− c)h j
= qd · (q ·z−a1) · . . . · (q ·z−an) · (z−b1) · . . . · (z−bm)

(q ·z−b1) · . . . · (q ·z−bm) · (z−a1) · . . . · (z−an)
.

The above equation can be rewritten as follows

ζ u ·∏(z− c ·ζ pi)di

∏(z− c ·ζ q j )h j
= qd+n−m·

(

z−a1 ·q−1
)

· . . . ·
(

z−an ·q−1
)

· (z−b1) · . . . · (z−bm)

(z−b1 ·q−1) · . . . · (z−bm ·q−1) · (z−a1) · . . . · (z−an)
.

If the fraction in the right-hand side is irreducible then there existi and j such that

z−a1 ·q−1 = z− c ·ζ pi and z−a1 = z− c ·ζ q j .

Thus,q= ζ v for somev, which is a contradiction.
Suppose that the factorz−a1 ·q−1 cancels with a factor from the denominator. The

latter factor is of the formz−ai. Rearranging the indices from{2, . . . ,n}, suppose that
i = 2. Thus, we have the equality

z−a1 ·q−1 = z−a2.

Then eitherz−a2 ·q−1 cannot be cancelled or it can be cancelled with somez−a j . If
j = 1 then we setm0 = 2. Otherwise,j > 2 and rearranging the indices in{3, . . . ,n},
suppose thatj = 3. Proceeding in such a way we will arrive at one of the following
two situations:

1. There existsk such that

z−al ·q−1 = z−al+1, 16 l < k

and the factor
z−ak ·q−1

cannot be cancelled by any factor from the denominator (in this situation,k might
be equal to 1), or

2. We will find m0 such that

z−al ·q−1 = z−al+1, 16 l < m0

and
z−am0 ·q−1 = z−a1.
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Suppose that the second case holds. Then we have the following system of equations:






































a2 = a1 ·q−1

a3 = a2 ·q−1

...

am0 = am0−1 ·q−1

a1 = am0 ·q−1

Therefore, we obtain thatqm0 = 1, which is a contradiction. Hence, the first case holds.
This process is illustrated below:

z−a1 ·q−1

))RRRRR
z−a2 ·q−1

&&MMMMM
. . .

&&MM
MM

MM z−ak ·q−1 . . . z−an−1 ·q−1 z−an ·q−1

z−a1 z−a2 . . . z−ak . . . z−an−1 z−an

We will repeat the process in the reverse direction now. Now,we consider the factor
z−a1. Suppose it cancels with a factor from the numerator. This factor is of the form
z−a j ·q−1, wherek< j 6 n. Rearranging the indices from{k+1, . . . ,n}, suppose that
j = n. Thus, we have the equality

z−a1 = z−an ·q−1.

Then, eitherz− an cannot be cancelled with any factor or it coincides with a factor
z− a j · q−1 for some j ∈ {k+ 1, . . . ,n− 1}. Again, rearranging this set of indices,
suppose thatj = n−1. Proceeding in such a way, we will findr > k such thatz−ar

cannot be cancelled with any factor of the numerator. The process is illustrated below.

z−a1 ·q−1

&&MMMMM

. . .

&&MM
MM

MM z−ak ·q−1 . . . z−ar ·q−1 . . . z−an ·q−1

z−a1

eeKKKKKK

. . . z−ak . . . z−ar . . .

ffMMMMM

z−an

ffMMMMMM
eeKKKKK

By the above construction, we have the following system of equations






















































ar ·q−1 = ar+1

...

am−1 ·q−1 = am

am ·q−1 = a1

...

ak−1 ·q−1 = ak

Now we see thatqv = 1 for somev, which is a contradiction.
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4.4.2 General characterisation of periodic difference-algebraic independence

Let a ∈ C(z) andq,ζ ∈ C∗ be such that|q| > 1 andζ is a primitive root of unity of
ordert. Then,a can be represented as follows

a= λ ·zT ·
t−1

∏
k=0

N

∏
d=−N−1

R

∏
i=1

(

z− ζ k ·qd · r i

)sk,d,i
,

whereλ , r i ∈ C∗ and ther i ’s are distinct inC∗
/

ζZ ·qZ. Let

ai,k =
N

∑
d=−N−1

sk,d,i and dk,i =
t−1

∑
j=0

ζ k· j ·ai, j

and

D =















d0,1 d0,2 d0,3 . . . d0,R

d1,1 d1,2 d1,3 . . . d1,R

d2,1 d2,2 d2,3 . . . d2,R
...

...
...

. . .
...

dt−1,1 dt−1,2 dt−1,3 . . . dt−1,R















The following result combined with Theorem4.1provides a complete characterisation
of all equations (36) whose solutions areσζ -algebraically independent.

Theorem 4.11. Let a∈ C(z) and D be as above. Then

1. If T = 0 and, eitherλZ∩qZ 6= 1 or λ is a root of unity, then there exist b∈ C(z)
and a multiplicative function

ϕ(x) = xn0 ·
(

σζ x
)n1 · . . . ·

(

σ t−1
ζ x

)nt−1

such thatϕ(a) = σq(b)/b if and only if the matrix D contains a zero row.

2. If either T 6= 0 or, λZ ∩ qZ = 1 and λ is not a root of unity, then there exist
b∈ C(z) and a multiplicative function

ϕ(x) = xn0 ·
(

σζ x
)n1 · . . . ·

(

σ t−1
ζ x

)nt−1

such thatϕ(a) = σq(b)/b if and only if D contains a zero row other than the first
one.

Proof. We will write ϕ andb with undetermined coefficients and exponents. Suppose
that

b= µ ·zM ·
t−1

∏
k=0

N

∏
d=−N

R

∏
i=1

(

z− ζ k ·qd · r i

)lk,d,i

and
ϕ(x) = xn0 ·

(

σζ x
)n1 · . . . ·

(

σ t−1
ζ x

)nt−1
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are such that
ϕ(a) = σq(b)/b.

Let us calculate the right and left-hand sides of this equality. We see that

σq(b) = µ ·qM+∑k,d,i lk,d,i ·zM ·
t−1

∏
k=0

N

∏
d=−N

R

∏
i=1

(

z− ζ k ·qd−1 · r i

)lk,d,i
.

Hence,

σq(b)
b

= qM+∑k,d,i lk,d,i ·
t−1

∏
k=0

N−1

∏
d=−N−1

R

∏
i=1

(

z− ζ k ·qd · r i

)lk,d+1,i ·

·
t−1

∏
k=0

N

∏
d=−N

R

∏
i=1

(

z− ζ k ·qd · r i

)−lk,d,i
=

= qM+∑k,d,i lk,d,i ·
t−1

∏
k=0

R

∏
i=1

[(

z− ζ k ·q−N−1 · r i

)lk,−N,i ·

·
N−1

∏
d=−N

(

z− ζ k ·qd · r i

)lk,d+1,i−lk,d,i ·
(

z− ζ k ·qN · r i

)−lk,N,i
]

.

Now, we calculate the left-hand side. We see that

σ r
ζ a= λ ·ζ rT+∑k,d,i r·sk,d,i ·zT ·

t−1

∏
k=0

N

∏
d=−N−1

R

∏
i=1

(

z− ζ k−r ·qd · r i

)sk,d,i
=

= λ ·ζ rT+∑k,d,i r·sk,d,i ·zT ·
t−1

∏
k=0

N

∏
d=−N−1

R

∏
i=1

(

z− ζ k ·qd · r i

)sk+r,d,i
.

Hence,
ϕ(a) = λ ∑t−1

r=0 nr ·ζ (T+∑k,d,i sk,d,i)·(∑t−1
r=0 r·nr) ·zT·(∑t−1

k=0nr)·

·
t−1

∏
k=0

N

∏
d=−N−1

R

∏
i=1

(

z− ζ k ·qd · r i

)∑t−1
r=0 nr sk+r,d,i

.

Now, the equationϕ(a) = σq(b)/b gives the following system of equations
























































































































t−1

∑
r=0

sk+r,−N−1,i ·nr = lk,−N,i

t−1

∑
r=0

sk+r,d,i ·nr = lk,d+1,i− lk,d,i , −N 6 d 6 N−1

t−1

∑
r=0

sk+r,N,i ·nr =−lk,N,i

λ ∑t−1
k=0 nr ·ζ (T+∑k,d,i sk,d,i)·(∑t−1

r=0 r·nr) = qM+∑k,d,i lk,d,i

T ·
t−1

∑
r=0

nr = 0
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In this system, the unknown variables arelk,d,i , nr , andM. If

lk,d,i , nr , M

is a solution of the system such that not allnr ’s are zeroes then

t · lk,d,i , t ·nr , t ·M

is a solution with the same property. Therefore, we can replace the second equation
with the following:

λ ∑t−1
k=0 nr = qM+∑k,d,i lk,d,i .

The first subsystem can be rewritten as follows:










sk,−N−1,i sk+1,−N−1,i . . . sk−1,−N−1,i
sk,−N,i sk+1,−N,i . . . sk−1,−N,i

...
...

. . .
...

sk,N,i sk+1,N,i . . . sk−1,N,i





















n0

n1
...

nt−1











=











lk,−N,i

lk,−N+1,i− lk,−N,i
...

−lk,N,i











This system has a solution inlk,d,i if and only if the sum of all equations is zero. Thus,
we can replace this system with the following:

(

N
∑

d=−N−1
sk,d,i

N
∑

d=−N−1
sk+1,d,i . . .

N
∑

d=−N−1
sk−1,d,i

)











n0

n1
...

nt−1











= 0

Using the definition of theai, j ’s, we obtain the following system:











ai,0 ai,1 . . . ai,t−1

ai,1 ai,2 . . . ai,0
...

...
. . .

...
ai,t−1 ai,0 . . . ai,t−2





















n0

n1
...

nt−1











= 0

Thus, we have the following:




















































































ai,0 ai,1 . . . ai,t−1

ai,1 ai,2 . . . ai,0
...

...
. . .

...
ai,t−1 ai,0 . . . ai,t−2





















n0

n1
...

nt−1











= 0

λ ∑t−1
k=0 nr = qM+∑k,d,i lk,d,i

T ·
t−1

∑
r=0

nr = 0

lk,d,i =
t−1

∑
r=0

γk,d,i,r ·nr
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whereγk,d,i, j ’s are some integers.
Consider the first case

T = 0 and λZ∩qZ 6= 1.

Then, for someu,v∈ Z\ {0}
λ u = qv.

Hence, the second equation is equivalent to

v ·
t−1

∑
r=0

nr = u ·
(

M+ ∑
k,d,i

lk,d,i

)

Suppose thatnr and lk,d,i form a solution of all equations except for the second one,
where not allnr ’s are zero. Then,

u ·nr, u · lk,d,i, M =
t−1

∑
r=0

(v ·nr)−∑
k,d,i

(u · lk,d,i)

form a solution of the whole system. Thus, in this case, we mayexclude the second
equation.

Now we will check the caseT = 0 andλ w = 1 for somew ∈ Z \ {0}. In this
situation, ifnr , lk,d,i is a solution of all equations except for the second one then

w ·nr , w · lk,d,i , M =−∑
k,d,i

w · lk,d,i

is a solution of the whole system.
Therefore, in this case, the existence ofϕ andb is equivalent to the condition that

the systems










ai,0 ai,1 . . . ai,t−1

ai,1 ai,2 . . . ai,0
...

...
. . .

...
ai,t−1 ai,0 . . . ai,t−2





















n0

n1
...

nt−1











= 0 (42)

have a nontrivial common solution.
Consider the second case

T 6= 0 or
(

λZ∩qZ = 1 andλ is not a root of unity
)

.

If T 6= 0 then the third equation gives

t−1

∑
r=0

nr = 0,

and if λZ∩qZ = 1 andλ is not a root of unity, then the second equation gives

t−1

∑
r=0

nr = 0.
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Therefore, in both cases, the second equation is of the form

M+ ∑
k,d,i

lk,d,i = 0

Again, if nr , lk,d,i form a solution of all equations except the second one, wherenot all
nr ’s are zeroes, then

nr , lk,d,i , M =−∑
k,d,i

lk,d,i

form a solution of the whole system with the same property. Thus, in this case, we
need to show the existence of a nontrivial solution of the system





































































ai,0 ai,1 . . . ai,t−1

ai,1 ai,2 . . . ai,0
...

...
. . .

...
ai,t−1 ai,0 . . . ai,t−2





















n0

n1
...

nt−1











= 0

(

1 1 . . . 1
)











n0

n1
...

nt−1











= 0

(43)

Since all the coefficients in (42) and (43) are integers, there is a nontrivial solu-
tion with integral coefficients if and only if there is a nontrivial solution with complex
coefficients. Define

E+ =















1 1 1 . . . 1
1 ζ ζ 2 . . . ζ t−1

1 ζ 2 ζ 2·2 . . . ζ 2·(t−1)

...
...

...
. . .

...
1 ζ t−1 ζ (t−1)·2 . . . ζ (t−1)·(t−1)















,

E− =















1 1 1 . . . 1
1 ζ−1 ζ−2 . . . ζ−(t−1)

1 ζ−2 ζ−2·2 . . . ζ−2·(t−1)

...
...

...
. . .

...
1 ζ−(t−1) ζ−(t−1)·2 . . . ζ−(t−1)·(t−1)















and

Ai =















ai,0 ai,1 ai,2 . . . ai,t−1

ai,1 ai,2 ai,3 . . . ai,0

ai,2 ai,3 ai,4 . . . ai,1
...

...
...

. . .
...

ai,t−1 ai,0 ai,1 . . . ai,t−2















, Di =











d0,i 0 . . . 0
0 d1,i . . . 0
...

...
.. .

...
0 0 . . . dt−1,i











.
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A straightforward calculation shows that

E+ ·Ai = Di ·E−.

Let n be the vector with coordinatesn0,n1, . . . ,nt−1. Hence, in thefirst case, the sys-
tems

E+ ·Ai ·n= Di ·E− ·n= 0

have a nontrivial solution. This is equivalent to the condition that the systems

Di ·m= 0

have a nontrivial solution, wherem= E− · n. Since theDi ’s are diagonal, there is a
common solution of all systemsDi ·m= 0 if and only if the matricesDi have a zero in
the same place. In other words, there is an integeri0 such that for alli we have

di0,i = 0.

The latter condition is equivalent to the condition that there is a zero row in the matrix
D.

Consider thesecond case. Let

l = (1,1, . . . ,1)

with t coordinates. We must to show that the systems
{

Ai ·n= 0

l ·n= 0

have a nontrivial solution. Multiplying byE+, we have
{

Di ·E− ·n= 0

l ·n= 0

Let p1, . . . , pu be the positions of all zero rows in the matrixD. And letE1, . . . ,Eu be
the columns inE−1

− with the pi ’s as indices. Since the matricesDi are diagonal, every
common solution of the systems

Di ·E− ·n= 0

is of the form

n=W ·µ , W := (E1, . . . ,Eu), µ :=







µ1
...

µu






.

Then, the equationl ·n= 0 gives

l ·W ·µ = 0
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Now, we find a condition whenl ·Ei is zero. For this, note that

(1,0, . . . ,0) ·E− = (1,1, . . . ,1)

and, therefore,
(1,1, . . . ,1) ·E−1

− = (1,0, . . . ,0)

Hence, only the first column of the matrixE−1
− gives nonzero elements in the vector

l ·W. The system
l ·W ·µ = 0

has only the zero solution if and only ifW is just one column andl ·W 6= 0. Thus,
this system has a nontrivial solution if and only ifW contains a row ofE−1

− other than
the first one. In other words, the elementsdk,i are zeroes for somek 6= 0 and all i,
16 i 6 R. This is equivalent to the condition thatD contains a zero row other than the
first one.

Corollary 4.12. In the situation of Theorem4.1, if the zeros and poles of a∈ C(z) are
pair-wise distinct modulo the group generated byζ and q, then any solution f to the
equation

σq( f ) = a f

is σζ -independent overk(z).
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