
ar
X

iv
:1

00
9.

11
85

v1
 [

m
at

h.
M

G
]

 7
 S

ep
 2

01
0

Toward the Universal Rigidity of General Frameworks

Abdo Y. Alfakih ∗, Nicole Taheri †, and Yinyu Ye‡

September 4, 2010

Abstract

We prove that the (d + 1)-lateration graph with n(≥ d + 1) points, when points are in
general position in R

d, not only is universally rigid but also admits a rank (n−d−1) positive
semi-definite stress matrix. We also prove that a similar result holds as in the case of sensor
network localization when the graph has m(≥ d+ 1) anchors.

1 Introduction

One of the most studied problems in distance geometry is the Graph Realization problem, in
which one is given a graph G = (V,E) and a set of non–negative weights {dij : (i, j) ∈ E} on
its edges, and the goal is to compute a realization of G in the Euclidean space R

d for a given
dimension d, i.e. to place the vertices of G in R

d such that the Euclidean distance between every
pair of adjacent vertices (i, j) ∈ E equals to the prescribed weight dij , that is,

‖xi − xj‖ = dij , ∀(i, j) ∈ E,

where xi ∈ R
d and xj ∈ R

d are coordinate positions of vertices i and j, respectively; see, e.g.,
[13, 14, 2, 3, 15, 10, 9, 17, 18, 4, 12, 19]. Here the norm of a vector x, denoted by ‖x‖, is the
2-norm throughout this paper, and 0 denotes a matrix of all zeros whose dimensions will be
clear from the context.

This problem and its variants arise from applications in various areas, such as molecular
conformation, dimensionality reduction, Euclidean ball packing, and more recently, wireless
sensor network localization [5, 7, 6, 17, 8, 18, 16].

Let P = (p1, p2, · · · , pn) ∈ R
d×n, where pi ∈ R

d, be a given position matrix of n points in
the Euclidean space R

d. We assume that pjs are in general positions, meaning that no (d + 1)

∗Department of Mathematics and Statistics, University of Windsor, Windsor, Ontario N9B 3P4, Canada.

Research supported by the Natural Sciences and Engineering Research Council of Canada. E-mail:

alfakih@uwindsor.ca
†Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305. Re-

search supported in part by DOE Grant de-sc0002009. E–mail: ntaheri@stanford.edu
‡Department of Management Science and Engineering, Stanford University, Stanford, CA 94305. Research

supported in part by NSF Grant GOALI 0800151 and DOE Grant de-sc0002009. E–mail: yinyu-ye@stanford.edu

1

http://arxiv.org/abs/1009.1185v1
http://arxiv.org/abs/de-sc/0002009
http://arxiv.org/abs/de-sc/0002009

points are contained in a lower-dimensional space R
d−1. In other words, any (d+1) points, say

1 to (d+1), are affinely independent, i.e., the only solution of the following system of equations:

d+1
∑

i=1

xipi = 0 and
d+1
∑

i=1

xi = 0,

is the trivial solution xi = 0 for all i = 1, . . . , d + 1. There is also a stronger notion: generic
positions, meaning that the coordinates of p1, p2, . . . , pn are algebraically independent over the
integers. i.e., there does not exist a non-zero polynomial f with integer coefficients such that
f(p1, p2, . . . , pn) = 0. Note that whether or not n points are in general positions can be checked
in a time polynomial in n for any fixed dimension d, while the generic position condition is
un-checkable. For convenience, let

A = (a1, a2, · · · , an) =

(

P
eT

)

∈ R
(d+1)×n, (1)

where e is the vector of all ones. Then P is in general position if and only if every (d+1)×(d+1)
square sub-matrix of A has rank (d+ 1).

Graph G together with a position matrix P is called framework (G,P). If P is the only
realizable position matrix in R

d up to a rigid motion, then the framework is called globally rigid.
Furthermore, if P is the only realizable position matrix in all dimensions, then the framework
is called universally rigid.

The notion of a stress matrix is closely related to that of a framework. A symmetric matrix
S ∈ R

n×n is called a stress matrix of (G,P) if and only if

AS = 0, (2)

and
Sij = 0, ∀(i, j) 6∈ E, (3)

where E is the edge set of G. One can see that the highest possible rank of a stress matrix is
(n− d− 1), and the all-zero matrix is a trivial stress matrix.

A question is: Given a framework (G,P) in R
d, does (G,P) admit a non-trivial PSD stress

matrix? The answer is yes if the (G,P) is universally rigid and n > d + 1; and there is
a polynomial-time algorithm to find a stress matrix with the maximum rank for any given
instance by solving a pair of semidefinite programs as we illustrate in the next section (also see
[17, 18, 4, 8]). Remarkably, Gortler et al. [11] further proved that a generic framework (all
points are in generic positions) in R

d is universally rigid if and only if it admits a stress matrix
that is PSD and of rank (n− d− 1) – the highest possible rank.

On the other hand, So [16] and Zhu et al [19] identified several classes of graphs that are
universally rigid as long as they possess a position matrix in general position in R

d. Note that
the universal rigidity here does not depend on the position matrix but only the property of the
graph. One such graph is the (d+1)-lateration graph – an n-point graph is a (d+1)-lateration
graph if there is an ordering of points, say from 1 to n, such that

• the first (d+ 1) points form a clique, and

2

• for each point d + 1 < j ≤ n, it connects (d + 1) points with their index set Nj ⊂
{1, 2, · · · , j − 1}.

However, it has been open whether or not the (d+ 1)-lateration framework in general position
admits a PSD stress matrix with rank (n − d − 1), which property was observed in numerical
computations. Note that the first (d+2) points of the (d+1)-lateration graph also form a clique.

In this paper, we resolve this open question and prove our main result:

Theorem 1. The (d + 1)-lateration graph with a position matrix in general position admits a
PSD and rank-(n − d − 1) stress matrix, and such a stress matrix can be computed in strongly
polynomial time O(n3) arithmetic operations if the lateration ordering is known.

As a corollary, we have

Corollary 1. Any universal rigid framework (G,P) where the position matrix P in general
position admits a PSD and rank (n−d−1) stress matrix if G contains a (d+1)-lateration graph
as a spanning subgraph, and such a stress matrix can be computed in polynomial time by solving
the pair of SDPs (4) and (5).

The corollary is true because we can ignore all other edges outside of the (d + 1)-lateration
spanning subgraph to prove the existence of a PSD and rank-(n − d − 1) stress matrix. Of
course, we cannot actually construct such a matrix in O(n3) operations, since to find a (d+ 1)-
lateration spanning subgraph needs at least O(nd+2) operations. However, the interior-point
SDP algorithms always compute a maximum rank stress matrix in a polynomial time, although
it may not be strongly.

2 Stress and Pre-Stress Matrices

It turns out that the graph realization problem can be modeled as a semi-definite program,
where ATA is a solution for the primal problem and the stress matrix is a solution to the dual
problem. This can be seen as follows. Let the inner product of two matrices P and Q be defined
by P ·Q = Trace(P TQ). The semidefinite programming relaxation problem for graph realization
is to find a symmetric matrix Y ∈ R

n×n

maximize 0 · Y

subject to (ei − ej)(ei − ej)
T · Y = d2ij ∀ (i < j, j) ∈ E

Y � 0

(4)

where ej ∈ R
n is the vector of all zeros except 1 at the j–th position and Y � 0 means that Y

needs to be symmetric positive semi-definite (PSD). One can see that

(ei − ej)(ei − ej)
T ·ATA = ‖ai − aj‖

2 = ‖pi − pj‖
2 = d2ij , ∀ (i < j, j) ∈ E,

so that ATA and P TP are both feasible solutions to the SDP relaxation problem.

3

The dual of the SDP relaxation model is given by:

minimize
∑

(i<j,j)∈E wijd
2
ij

subject to S :=
∑

(i<j,j)∈Nx

wij(ei − ej)(ei − ej)
T � 0

(5)

Note that the dual is always feasible, as wij = 0 for all (i, j) ∈ E will be a feasible solution.
In fact, it is also optimal, since its objective value equals 0, the lowest possible from the weak
duality theorem. From the duality theorem, for any optimal solution S of (5) and any feasible
solution Y of (4), we must have Y · S = 0, which implies that ATA · S = ASAT = 0 or AS = 0.
Moreover, Sij = 0, ∀(i, j) 6∈ E, so that any dual optimal solution is an PSD stress matrix.
We say that SDPs (4) and (5) admit a strictly complementary solution pair when there is pair,
(Y, S), of the primal and dual such that rank(Y) + rank(S) = n.

Thus, the question whether or not there is a non-trivial PSD stress matrix becomes whether
or not there is a non-trivial dual optimal solution given that the primal problem is feasible or
there is a position matrix P that satisfies the distance constraints. In particular, when the
framework is universally rigid in R

d, then the primal (4) has a solution Y = ATA with rank
(d + 1). Hence, SDPs (4) and (5) admit a strictly complementary solution pair if and only if
there is a rank-(n− d− 1) dual optimal solution S for (5). We have

Proposition 1. An n point universally rigid framework in R
d, for n > d+ 1, always admits a

non-trivial PSD stress matrix.

Proof. This simply follows from Theorem 6 in [1] which states that framework (G,P) in R
d

admits a non-trivial PSD stress matrix if and only if there does not exist a framework (G,Q) in
R
n−1 such that ||qi − qj|| = ||pi − pj|| for all (i, j) ∈ E.

Theorem 1, which we would prove in the next section, tells that an n point (d+1)-lateration
framework in R

d always admits a rank-(n− d− 1) PSD stress matrix when the position matrix
is in general position.

Now, even if there exists a non-trivial PSD stress matrix, could we find it? The following
result was stated in [17]

Proposition 2. There is a polynomial time interior-point algorithm to compute a primal solu-
tion Y for (4) that has the highest possible rank among all primal feasible solutions, and a dual
solution S for (5) that has the highest possible rank among all dual optimal solutions.

We now proceed to prove Theorem 1. We introduce another concept – call a matrix that
satisfies condition (2) pre-stress matrix. Our constructive algorithm proof is to first generate a
pre-stress matrix, PSD with rank (n− d− 1); then go on to generate a true stress matrix, PSD
with rank (n− d− 1). The following result is a simple linear algebra exercise.

Proposition 3. There always exists a pre-stress matrix, PSD with rank (n − d − 1), for any
framework in R

d. In particular, a universally rigid framework in R
d with the complete graph

admits a rank (n− d− 1) PSD stress matrix.

4

For example, the projection matrix

I −AT (AAT)−1A

is a pre-stress matrix, PSD with rank (n− d− 1).
Under the general position assumption, one can find an n× (n− d− 1) matrix L in the form

L =

∗ ∗ ... ∗ ∗
.
∗
1 ∗ ... ∗ ∗
0 1 ... ∗ ∗
.
0 0 ... 1 ∗
0 0 ... 0 1

,

that is, for column k of L, Lk (k = 1, ..., (n − d− 1)), Lik = 1 for i = d+ 1 + k and Lik = 0 for
i > d+ 1 + k, such that

AL = 0,

where A is the matrix in (1). Clearly, L has rank (n − d − 1), so that S = LLT is a PSD
pre-stress matrix with rank (n− d− 1). L is called a Gale matrix of position matrix P [1] since
its columns form a basis for the null space of A.

For the (d + 1)-lateration graph, one can generate Lk, k = 1, ..., (n − d − 1), by solving a
system of linear equations

∑

i∈Nk

Likai = −ad+1+k, (6)

where ai is ith column of the given position matrix of (1), and assigning Lik = 0 for all i 6∈ Nk.

Lemma 1. Linear system (6) has a unique solution under the general position condition. More-
over, matrix

Sn = LLT =

n−d−1
∑

k=1

LkL
T
k � 0

is a pre-stress matrix with rank (n − d − 1), and it can be computed in O(nd2) arithmetic
operations.

3 A Purification Algorithm

We now prove Theorem 1 for the the (d + 1)-lateration graph. If the pre-stress matrix Sn of
Lemma 1 satisfies condition (3), then it is a desired stress matrix. This is true if the (d + 1)-
lateration graph is a (d+ 1)-tree graph, that is,

• the first (d+ 1) points form a clique, and

• for each point d+1 < j ≤ n, it connects (d+1) points of a (d+1)-clique with their index
set Nj ⊂ {1, 2, · · · , j − 1}.

5

Thus, any entry in Sn = LLT for i < j and i 6∈ Nj has zero value.
If Sn is not a stress matrix, we need to make those entries Sn

ij 6= 0, i < j and i 6∈ Nj , equal
0. We do this in the reverse order, that is, to make Sn

in 6= 0, i < n and i 6∈ Nn, equal 0 first.
Then do k = n − 1, k = n− 2, ..., and so on down to k = d+ 3. In this “purification” process,
the pre-stress matrix remains PSD and maintains rank (n− d− 1).

For Sn constructed from L in the previous section, there is no need for purification for the
last column (or row), Since any entry in LLT for i < n and i 6∈ Nn has zero value. But for
general pre-stress matrices, this may not be the case. Therefore, we first show how to purify the
last column (or row) of an PSD pre-stress matrix with rank (n − d − 1). We construct vector
sn ∈ R

n such that
sni = −Sn

in ∀i 6∈ Nn, and snn = 1,

and solve the system of linear equations for the rest entries in sn:
∑

i∈Nn

sni ai = −
∑

i 6∈Nn

sni ai. (7)

Again, linear system (7) has a unique solution under the general position condition. According
to the construction, we have Asn = 0.

Lemma 2. Let Sn−1 = Sn + sn(sn)T . Then

• ASn−1 = 0.

• Sn−1 � 0 and the rank of Sn−1 remains (n − d− 1).

• Sn−1
in = 0 for all i < n, i 6∈ Nn.

Proof. The first statement is from

ASn−1 = ASn +Asn(sn)T = Asn(sn)T .

But Asn = 0 by the construction of sn.
The second statement is due to Sn−1 � Sn � 0.
The third statement is also from the construction. Note that, in the last column (or row) of

sn(sn)T , the ith entry, i 6= n or i 6∈ Nn, is precisely −Sn
in, so that it would be canceled out in

the last column (or row) of matrix Sn−1 = Sn + sn(sn)T .

Then, we continue this purification process for n − 1,...,k,..., down to d + 3. Before the kth
purification step, we have Sk � 0, ASk = 0, rank of Sk equals (n− d− 1), and

Sk
ij = 0, ∀j > k, i < j and i 6∈ Nj

Then, we construct vector sk ∈ R
n such that

ski = −Sk
ik ∀i 6∈ Nk, skk = 1, and ski = 0 ∀i > k,

and solve the system of linear equations for the rest entries in sk:
∑

i∈Nk

ski ai = −
∑

i 6∈Nk

ski ai. (8)

Again, we have Ask = 0.
Similarly, we have

6

Lemma 3. Let Sk−1 = Sk + sk(sk)T . Then

• ASk−1 = 0.

• Sk−1 � 0 and the rank of Sk−1 remains (n− d− 1).

• Sk−1
ij = 0 for all j ≥ k and i < j, i 6∈ Nj .

Proof. The proof of the first two statements is identical to that in Lemma 2.
The third statement is also from the construction. Note that, in the kth column (or row)

of sk(sk)T , the ith entry, i > k and i 6∈ Nk, is precisely −Sk
ik, so that it would be canceled out

in the kth column (or row) of matrix Sk−1 = Sk + sk(sk)T . Furthermore, the j(> k)th column
(or row) of sk(sk)T has all zero entries, so that the entries in j(> k)th column (or row) of Sk−1

remain unchanged from Sk.

After step k = d + 3, we must have ASd+2 = 0 and Sd+2
ij = 0 for all j ≥ d + 3 and

i < j, i 6∈ Nj, that is, Sd+2
ij = 0 for all (i, j) 6∈ E (the first (d + 2) points form a clique in

G). Furthermore, Sd+2 � 0 and the rank of Sd+2 remains (n − d − 1). There are (n − d − 2)
purification steps, and each step we compute a rank-one matrix sk(sk)T and form new pre-stress
matrix Sk + sk(sk)T which needs at most O(n2) operations. Therefore, Theorem 1 is proved.

4 Strong Localizability of (d+1)-Lateration Graph with Anchors

In this section we study the stress matrix in sensor network localization, or graph localization
with anchors. We are given m(≥ d + 1) anchor points whose positions, p̄1, . . . , p̄m ∈ R

d, are
known, and n sensor points x1, . . . , xn ∈ R

d whose locations are yet to be determined. Fur-
thermore, we are given the Euclidean distance values d̄kj between p̄k and xj for some k, j,
and dij between xi and xj for some i < j. Specifically, let Na = {(k, j) : d̄kj is specified} and
Nx = {(i, j) : i < j, dij is specified}. The problem is then to find a realization of x1, . . . , xn ∈ R

d

such that:
‖p̄k − xj‖

2 = d̄2kj ∀ (k, j) ∈ Na

‖xi − xj‖
2 = d2ij ∀ (i, j) ∈ Nx

(9)

The semidefinite programming relaxation model for (9) is to find a matrix

Z =

(

Id X
XT Y

)

� 0 (10)

such that
maximize 0 · Z

subject to Z1:d,1:d = Id

(0; ei − ej)(0; ei − ej)
T · Z = d2ij ∀ (i, j) ∈ Nx

(−p̄k; ej)(−p̄k; ej)
T · Z = d̄2kj ∀ (k, j) ∈ Na

Z � 0

(11)

7

where (−p̄k; ej) ∈ R
d+n is the vector of −p̄k on top of ej . Z1:d,1:d is the d×d principal submatrix

of Z and Id is the d–dimensional identity matrix. Z1:d,1:d = Id can be represented as d(d+ 1)/2
linear equality constraints.

The dual of the SDP relaxation model is given by:

minimize Id · V +
∑

(i,j)∈Nx

wijd
2
ij +

∑

(k,j)∈Na

w̄kj d̄
2
kj

subject to S :=

(

V 0

0 0

)

+
∑

(i,j)∈Nx

wij(0; ei − ej)(0; ei − ej)
T

+
∑

(k,j)∈Na

w̄kj(−p̄k; ej)(−p̄k; ej)
T � 0

(12)

Note that the dual is always feasible, as V = 0, wij = 0 for all (i, j) ∈ Nx and w̄kj = 0 for all
(k, j) ∈ Na is a feasible solution.

It has been shown in [17] that both SDPs (11) and (12) are feasible and solvable when there
is at least one anchor point and the graph is connected, and there is no duality gap between
SDPs (11) and (12). Let P be a position matrix for the n sensors satisfying constraints in (9).
Then, the problem is said to be uniquely localizable if

Z =

(

Id P
P T P TP

)

� 0

is the only solution to SDP model (11), which is similar to the concept of universal rigidity. The
problem is said to be strongly localizable if there is feasible dual matrix S such that

• ZS = 0.

• S � 0 and the rank of S equals n.

One can see the graph realization problem is a sensor network localization problem without
anchors. The graph realization and sensor network localization problems are closely related but
different. For example, unlike in SDP (4), ATA of (1) is not longer feasible while P TP is a
feasible matrix solution; hence in the dual the stresses at anchors may not need to be balanced.
Also, given 2 anchors and 1 sensor in R

2 where the sensor is connected to the 2 anchors, the
problem is not uniquely localizable in sensor network localization, but it is universally rigid in
graph realization since the three points form a clique. However, if the sensor network localization
problem has at least d+1 anchors in general positions, and the graph realization problem has a
(d + 1)-point clique also in general positions, then the unique localizability is equivalent to the
universal rigidity, and the strong localizability is equivalent to that of a framework (n + d+ 1)
points admits an PSD stress matrix with rank n; see [16, 19]. The latter implies that the SDP
pair (11) and (12) admits a strictly complementarity solution pair.

Theorem 2. Let G, the graph of m(≥ d+1) anchor points and n sensor points with edges given
in Nx and Na, be a (d+1)-lateration graph and (P̄ , P) be in general positions. Then, the sensor
localization problem is strongly localizable, and a rank n dual optimal matrix can be computed in
strongly polynomial time from (P̄ , P) using O(n3) arithmetic operations if the lateration ordering
is known.

8

Proof. In the proof, for simplicity, we assume that there are exactly (d + 1) anchors and they
are the first (d+1) points in the lateration graph, and all other points are sensor points ordered
as 1, · · · , n, where only edges (i < j, j) are included in Nx. (One can exchange the anchor-
sensor position to make the resulting rank n matrix into a desired dual optimal matrix, since
the framework is universally rigid; see [19].)

We need to show there exists a matrix S ∈ R
(d+n)×(d+n) that can be computed in O(n3)

operations, which is a feasible solution to the dual problem (12), and also satisfies ZS = 0, S � 0

and rank(S) = n. The proof is more complicated than that of Theorem 1, since anchor point
positions appear explicitly in the dual stress matrix.

Note that the only primal solution matrix Z can be written as

Z =

(

Id P
P T P TP

)

=

(

Id
P T

)

(

Id P
)

so that the matrix L =
(

−P ; In
)

∈ R
(d+n)×n is in the nullspace of Z or matrix (Id P). Moreover,

the matrix

Sn = LLT =

(

PP T −P
−P T In

)

� 0,

will also be in the nullspace of Z, where rank(Sn) = rank(L) = n.
We now modify the elements of Sn in O(n3) operations, so that these conditions are main-

tained, and the resulting matrix becomes a feasible solution matrix to the dual problem (12).
Note that the bottom right n × n submatrix of any dual feasible S, which corresponds to the
sensor to sensor edges, will be

Si,j =

−wij , (i, j) ∈ Nx

0, (i, j) 6∈ Nx
∑

(i,j)∈Nx
wij +

∑

(k,j)∈Na
w̄kj, i = j.

Thus, these diagonal elements are the negative sum of the edge weights of wij and w̄kj for each
sensor point j. The submatrix corresponding to the sensor to anchor is feasible if for i ≤ d, j > d,

Si,j = −
∑

(k,j)∈Na

w̄kj(p̄k)i.

Note that since there are no constraints on V in the dual (12), any principal d× d submatrix is
feasible as it remains positive semidefinite.

We start a step by modifying the last column, i.e. column (d + n) of Sn, and make n total
modification steps, each of which requires O(n2) operations. Let Sn

j denote the jth column of

Sn. Then we construct a vector sn ∈ R
d+n in the form,

sn =

(

pn −
∑

(k,n)∈Na
w̄knp̄k

en −
∑

(i,n)∈Nx
winei

)

, (13)

where ei ∈ R
n is the ith unit vector. We show next how to decide weight variables (w̄kn, win) in

sn.

9

Let Sn−1 = Sn + sn(sn)T be the modified matrix. Since the last element of sn is 1, the last
column of sn(sn)T is just sn, so that

Sn−1
(d+n) =

(

−pn
en

)

+

(

pn −
∑

(k,n)∈Na
w̄knp̄k

en −
∑

(i,n)∈Nx
winei

)

=

(

−
∑

(k,n)∈Na
w̄knp̄k

2en −
∑

(i,n)∈Nx
winei

)

Therefore, we would choose w̄kn,∀(k, n) ∈ Na, and win,∀(i, n) ∈ Nx such that Sn−1
d+n is in the

nullspace of (Id P); and this will be true if sn is in the nullspace of (Id P):

(

Id P
)

sn =
(

Id P
)

(

pn −
∑

(k,n)∈Na
w̄knp̄k

en −
∑

(i,n)∈Nx
winei

)

= 0

or equivalently if,
∑

(k,n)∈Na

w̄knp̄k +
∑

(i,n)∈Nx

winpi = 2pn (14)

In order for this column to be feasible, we need to ensure the sum of the total edge weights in
Sn−1
(d+n) equal the diagonal element Sn−1

(d+n),(d+n) = 2, so that we also add

∑

(k,n)∈Na

w̄kn +
∑

(i,n)∈Nx

win = 2 (15)

Equations (14) and (15) together exactly place (d+1) linearly independent equations on (d+1)
weight variables, since (P̄ , P) are in general position and G is a (d+1)-lateration graph, that is,
sensor point n is connected to precisely (d + 1) points, sensors or anchors, before sensor point
n. Thus, there always exists a unique solution for the values of w̄kn, and win that satisfy these
equations. Now, the last column of Sn−1 is feasible, and Sn−1 satisfies

ZSn−1 = ZSn + Zsn(sn)T = 0, Sn−1 = Sn + sn(sn)T � Sn � 0, and rank(Sn−1) = n.

We continue to modify each column of the matrix, from column (d+ n) down to (d+ 1), in
a similar way. However, since step ℓ will add new elements to the columns and rows of i < ℓ, so
the modifications after the step ℓ = n will be slightly different. The ℓth modification step will
modify entries, Sℓ

i,j, i ≤ ℓ, j ≤ ℓ, of Sℓ while keep all other entries unchanged. Specifically, we

want to modify the top (d+ ℓ) entries of the (d+ ℓ)th column (or row) of Sℓ to make it feasible
while not alter the feasibility of columns (d+ ℓ+1) to (d+n) in Sℓ. Here, we construct a vector
sℓ ∈ R

d+n such that sℓd+ℓ = 1, sℓi = 0 for i > d+ ℓ, and the top (d+ ℓ− 1) entries are assigned to

sℓ1:(d+ℓ−1) =

(

−
∑

(k,ℓ)∈Na
w̄kℓp̄k

−
∑

(i,ℓ)∈Nx
wiℓei

)

− Sℓ
1:(d+ℓ−1),(d+ℓ), (16)

for weight variables w̄kℓ and wiℓ yet to be determined, and let Sℓ−1 = Sℓ + sℓ(sℓ)T .
Note that this formula for sn gives the same vector as was constructed above; and, by

construction, adding sℓ(s(ℓ))T to Sℓ will not affect any column (or row) after column (or row)
d+ ℓ. In particular, the top (d+ ℓ− 1) entries of the (d+ ℓ)th column (or row) of Sℓ−1 become

Sℓ−1
1:(d+ℓ−1),(d+ℓ) = sℓ1:(d+ℓ−1) =

(

−
∑

(k,ℓ)∈Na
w̄kℓp̄k

−
∑

(i,ℓ)∈Nx
wiℓei

)

,

10

the (d+ ℓ)the entry
Sℓ−1
(d+ℓ),(d+ℓ) = 1 + Sℓ

(d+ℓ),(d+ℓ),

and the bottom entries

Sℓ−1
(d+ℓ+1):(d+n),(d+ℓ) = Sℓ

(d+ℓ+1):(d+n),(d+ℓ).

We again choose weight variables w̄kℓ and wiℓ in sℓ such that

(

Id P
)

sℓ = 0,

or equivalently, solve for w̄kℓ and wiℓ from linear equations

−
∑

(k,ℓ)∈Na

w̄kℓp̄k −
∑

(i,ℓ)∈Nx

wiℓpi +
(

1 + Sℓ
(d+ℓ),(d+ℓ)

)

pℓ = Sℓ
1:d,(d+ℓ) +

d+ℓ−1
∑

i=d+1

Sℓ
i,ℓpi. (17)

Similarly, to make the sum of total edge weighs in the column equal to the diagonal value
1 + Sℓ

(d+ℓ),(d+ℓ), we also add

∑

(k,ℓ)∈Na

w̄kℓ +
∑

(i,ℓ)∈Nx

wiℓ = 1 + Sℓ
(d+ℓ),(d+ℓ) +

d+n
∑

i=d+ℓ+1

Sℓ
i,(d+ℓ). (18)

Again, equations (17) and (18) are exactly (d+1) linearly independent equations on the (d+1)
weight variables, and thus a unique solution always exists.

Now, the modified ℓth column of Sℓ−1 becomes feasible for a dual solution stress matrix, and
Sℓ−1 satisfies

ZSℓ−1 = ZSℓ + Zsℓ(sℓ)T = 0,

Sℓ−1 = Sℓ + sℓ(sℓ)T � Sℓ � 0,

and hence rank(Sℓ−1) = n.
Repeating this process on each column, from column (d + n) down to column (d + 1) will

result in an optimal dual solution matrix S0 that satisfies ZS0 = 0, rank(S0) = n, and S0 � 0.
Therefore, Theorem 2 is proved.

Similarly, we also have

Corollary 2. Let G, the graph of m(≥ d+1) anchor points and n sensor points with edges given
in Nx and Na, contain a (d+1)-lateration spanning subgraph and (P̄ , P) be in general positions.
Then, the sensor localization problem is strongly localizable, and a rank n dual optimal matrix
can be computed in a polynomial time by solving SDPs (11) and (12).

11

5 Examples

Consider a 3-lateration graph with the ordering 1 to n = 7. Note that d = 2 and the position
matrix is given as

P =

(

−1 1 0 2 1 −1 −2
1 1 0.5 0 −1 −1 0

)

∈ R
2×7.

Example 1 Let

N4 = {1, 2, 3}, N5 = {1, 3, 4}, N6 = {1, 2, 4}, N7 = {3, 4, 5}.

In this example

L =

1.5000 5.0000 −2.0000 0
−0.5000 0 3.0000 0
−2.0000 −8.0000 0 −1.6000
1.0000 2.0000 −2.0000 1.4000

0 1.0000 0 −0.8000
0 0 1.0000 0
0 0 0 1.0000

and

S7 = LLT =

31.2500 −6.7500 −43.0000 15.5000 5.0000 −2.0000 0
−6.7500 9.2500 1.0000 −6.5000 0 3.0000 0
−43.0000 1.0000 70.5600 −20.2400 −6.7200 0 −1.6000
15.5000 −6.5000 −20.2400 10.9600 0.8800 −2.0000 1.4000
5.0000 0 −6.7200 0.8800 1.6400 0 −0.8000
−2.0000 3.0000 0 −2.0000 0 1.0000 0

0 0 −1.6000 1.4000 −0.8000 0 1.0000

.

Note that S7 is already a stress matrix to meet edge condition (3), so that no “purification”
algorithm is needed. This example is not interesting, since the graph is actually a 3-tree graph.

Example 2 Let

N4 = {1, 2, 3}, N5 = {1, 3, 4}, N6 = {2, 4, 5}, N7 = {1, 3, 6}.

In this example

L =

1.5000 5.0000 0 −1.2500
−0.5000 0 −1.0000 0
−2.0000 −8.0000 0 1.0000
1.0000 2.0000 2.0000 0

0 1.0000 −2.0000 0
0 0 1.0000 −0.7500
0 0 0 1.0000

12

and

S7 = LLT =

28.8125 −0.7500 −44.2500 11.5000 5.0000 0.9375 −1.2500
−0.7500 1.2500 1.0000 −2.5000 2.0000 −1.0000 0
−44.2500 1.0000 69.0000 −18.0000 −8.0000 −0.7500 1.0000
11.5000 −2.5000 −18.0000 9.0000 −2.0000 2.0000 0
5.0000 2.0000 −8.0000 −2.0000 5.0000 −2.0000 0
0.9375 −1.0000 −0.7500 2.0000 −2.0000 1.5625 −0.7500
−1.2500 0 1.0000 0 0 −0.7500 1.0000

.

While the last column (or row) of S7 is fine with the edge condition (3), but the rest does not
meet condition (3). We start the purification process from k = 6, where S6 = S7. The column
vector s6 is generated by first assigning

s61 = −S6
1,6 = −0.9375, s63 = −S6

3,6 = 0.75, s66 = 1, s67 = 0,

and solve (s62, s
6
4, s

6
5) from linear system (8) and get

s6 =

−0.9375
−0.0625
0.7500
0.8750
−1.6250
1.0000

0

,

and

S5 = S6+s6(s6)T =

29.6914 −0.6914 −44.9531 10.6797 6.5234 0 −1.2500
−0.6914 1.2539 0.9531 −2.5547 2.1016 −1.0625 0
−44.9531 0.9531 69.5625 −17.3438 −9.2188 0 1.0000
10.6797 −2.5547 −17.3438 9.7656 −3.4219 2.8750 0
6.5234 2.1016 −9.2188 −3.4219 7.6406 −3.6250 0

0 −1.0625 0 2.8750 −3.6250 2.5625 −0.7500
−1.2500 0 1.0000 0 0 −0.7500 1.0000

.

Next the column vector s5 is generated by first assigning

s52 = −S5
2,5 = −2.1016, s55 = 1, s56 = s57 = 0,

and solve (s51, s
5
3, s

5
4) from linear system (8)

s5 =

11.3047
−2.1016
−16.4063
6.2031
1.0000

0
0

,

13

and

S4 = S5+s5(s5)T =

157.4874 −24.4489 −230.4207 80.8041 17.8281 0 −1.2500
−24.4489 5.6705 35.4319 −15.5909 0 −1.0625 0
−230.4207 35.4319 338.7275 −119.1138 −25.6250 0 1.0000
80.8041 −15.5909 −119.1138 48.2444 2.7813 2.8750 0
17.8281 0 −25.6250 2.7813 8.6406 −3.6250 0

0 −1.0625 0 2.8750 −3.6250 2.5625 −0.7500
−1.2500 0 1.0000 0 0 −0.7500 1.0000

.

One can see that S4 is now a desired stress matrix for Example 2.

Example 3 The graph is identical to that in Example 2, but the first three points are anchors.
We use the same 3-lateration graph as in the previous examples, where n = 7, and d = 2,

with the position matrix

P =

(

−1 1 0 2 1 −1 −2
1 1 0.5 0 −1 −1 0

)

and
N4 = {1, 2, 3}, N5 = {1, 3, 4}, N6 = {2, 4, 5}, N7 = {1, 3, 6}

where nodes 1,2,3 are anchors. The matrix L in this case is

L =

−2 −1 1 2
0 1 1 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

and S4 is

S4 = LLT =

10 0 −2 −1 1 2
0 2 0 1 1 0
−2 0 1 0 0 0
−1 1 0 1 0 0
1 1 0 0 1 0
2 0 0 0 0 1

We first form s4 according to Equation (13) for sn, which gives

s4 =
(

2 0 0 0 0 1
)T

Moreover, this vector is in the nullspace of Z, and satisfies both equations (14) and (15). The
updated matrix is then

S3 = S4 + s4(s4)T =

14 0 −2 −1 1 4
0 2 0 1 1 0
−2 0 1 0 0 0
−1 1 0 1 0 0
1 1 0 0 1 0
4 0 0 0 0 2

14

Each next step creates a vector of weights that is solved for by a linear system, and satisfy
the equations (17) and (18). The matrices are updated accordingly,

s3 =
(

−15 1 8 0 1 0
)T

and

S2 = S3 + s3(s3)T =

239 −15 −122 −1 −14 4
−15 3 8 1 2 0
−122 8 65 0 8 0
−1 1 0 1 0 0
−14 2 8 0 2 0
4 0 0 0 0 2

Next,

s2 =
(

1 −1 0 −1 0 0
)T

and

S1 = S2 + s2(s2)T =

240 −16 −122 −2 −14 4
−16 4 8 2 2 0
−122 8 65 0 8 0
−2 2 0 2 0 0
−14 2 8 0 2 0
4 0 0 0 0 2

And lastly, we have

s1 =
(

6.5 8.5 1 0 8.5 0
)T

and

S = S1 + s1(s1)T =

282.2500 39.2500 −115.5000 −2.0000 41.2500 4.0000
39.2500 76.2500 16.5000 2.0000 74.2500 0

−115.5000 16.5000 66.0000 0 16.5000 0
−2.0000 2.0000 0 2.0000 0 0
41.2500 74.2500 16.5000 0 74.2500 0
4.0000 0 0 0 0 2.0000

This resulting matrix S is the desired dual stress matrix, and satisfies ZS = 0, S � 0 and
rank(S) = n.

References

[1] A. Y. Alfakih. On bar frameworks, stress matrices and semidefinite programming. to appear
in Mathematical Programming.

[2] A. Y. Alfakih. Graph Rigidity via Euclidean Distance Matrices. Linear Algebra and Its
Applications 310:149–165, 2000.

[3] A. Y. Alfakih. On Rigidity and Realizability of Weighted Graphs. Linear Algebra and Its
Applications 325:57–70, 2001.

15

[4] A. Y. Alfakih. On the Universal Rigidity of Generic Bar Frameworks. Contribution to
Discrete Mathematics 5(3):7–17, 2010.

[5] A. Y. Alfakih, A. Khandani, H. Wolkowicz. Solving Euclidean Distance Matrix Completion
Problems Via Semidefinite Programming. Comput. Opt. and Appl. 12:13–30, 1999.

[6] James Aspnes, David Goldenberg, Yang Richard Yang. On the Computational Complexity
of Sensor Network Localization. ALGOSENSORS 2004, in LNCS 3121:32–44, 2004.

[7] P. Biswas, Y. Ye. Semidefinite Programming for Ad Hoc Wireless Sensor Network Local-
ization. Proc. 3rd IPSN 46–54, 2004.

[8] P. Biswas, K. C Toh and Y. Ye. A Distributed SDP approach for Large-scale Noisy Anchor-
free Graph Realization with Applications to Molecular Conformation. SIAM Journal on
Scientific Computing 30(3): 1251–1277, 2008.

[9] T. Eren, D. K. Goldenberg, W. Whiteley, Y. R. Yang, A. S. Moore, B. D. O. Anderson,
P. N. Belhumeur. Rigidity, Computation, and Randomization in Network Localization.
Proc. 23rd INFOCOM, 2004.

[10] R. Connelly. Generic Global Rigidity. Discrete and Computational Geometry, 33(4):549–
563, 2005.

[11] S. J. Gortler and D. P. Thurston. Characterizing the universal rigidity of generic frame-
works. arXiv/1001.0172v1, 2009.

[12] S. J. Gortler, A. D. Healy, D. P Thurston. Characterizing Generic Global Rigidity. American
Journal of Mathematics, 2010.

[13] J. Graver, B. Servatius, H. Servatius. Combinatorial Rigidity. AMS, 1993.

[14] B. Hendrickson. Conditions for Unique Graph Realizations. SIAM J. Comput. 21(1):65–84,
1992.

[15] B. Jackson, T. Jordán. Connected Rigidity Matroids and Unique Realizations of Graphs.
Preprint, 2003.

[16] A. M.-C. So. A Semidefinite Programming Approach to the Graph Realization Problem:
Theory, Applications and Extensions. Ph.D. Thesis, Stanford University, 2007.

[17] A. M.-C. So and Y. Ye. Theory of Semidefinite Programming for Sensor Network Local-
ization. Proceedings of the 17th Annual ACM–SIAM Symposium on Discrete Algorithm
(SODA 2005) 2005, pp. 405–414; and Mathematical Programming, Series B, vol. 109, no. 2,
pp. 367–384, 2007.

[18] A. M.-C. So and Y. Ye. A Semidefinite Programming Approach to Tensegrity Theory
and Realizability of Graphs. Proceedings of the 18th Annual ACM–SIAM Symposium on
Discrete Algorithm (SODA 2006), 2006, pp. 766–775.

[19] Z. Zhu, A. M-C So, Y. Ye. Universal Rigidity: Towards Accurate and Efficient Localization
of Wireless Networks. Proc. IEEE INFOCOM, 2010.

16

	1 Introduction
	2 Stress and Pre-Stress Matrices
	3 A Purification Algorithm
	4 Strong Localizability of (d+1)-Lateration Graph with Anchors
	5 Examples

