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Abstract

Given the monomial ideal I = (xα1
1

, . . . , xαn
n ) ⊂ K[x1, . . . , xn] where αi are positive

integers and K a field and let J be the integral closure of I . It is a challenging problem
to translate the question of the normality of J into a question about the exponent set
Γ(J) and the Newton polyhedron NP (J). A relaxed version of this problem is to give
necessary or sufficient conditions on α1, . . . , αn for the normality of J . We show that
if αi ∈ {s, l} with s and l arbitrary positive integers, then J is normal.

Introduction

Let I be an ideal in a Noetherian ring R. The integral closure of I is the ideal I that consists
of all elements of R that satisfy an equation of the form

xn + a1x
n−1 + · · ·+ an−1x+ an = 0, ai ∈ Ii

The ideal I is said to be integrally closed if I = I. Clearly one has that I ⊆ I ⊆
√
I. An

ideal is called normal if all of its positive powers are integrally closed. It is known that if
R is a normal integral domain, then the Rees algebra R[It] = ⊕n∈NIntn is normal if and
only if I is a normal ideal of R . This brings up the importance of normality of ideals as the
Rees algebra is the algebraic counterpart of blowing up a scheme along a closed subscheme.

It is well known that the integral closure of monomial ideal in a polynomial ring is again a
monomial ideal, see [SH] or [Vit] for a proof. The problem of finding the integral closure for
a monomial ideal I reduces to finding monomials r, integer i and monomials m1,m2, . . . ,mi

in I such that ri +m1m2 · · ·mi = 0, see [SH]. Geometrically, finding the integral closure of
monomial ideals I in R = K[x0, . . . , xn] is the same as finding all the integer lattice points
in the convex hull NP (I) (the Newton polyhedron of I) in Rn of Γ(I) (the Newton polytope
of I) where Γ(I) is the set of all exponent vectors of all the monomials in I. This makes
computing the integral closure of monomial ideals simpler.

A power of an integrally closed monomial ideal need not be integrally closed. For exam-
ple, let J be the integral closure of I = (x4, y5, z7) ⊂ K[x, y, z]. Then J2 is not integrally

closed (observe that y3z3 ∈ J as
(
y3z3

)5
= y5y5y5z7z8 ∈ I5. Now x2y4z5 ∈ J2 since(

x2y4z5
)2

=
(
x4 · y5

) (
y3z3 · z7

)
∈
(
J2

)2
. On the other hand we used the algebra software

Singular [GPS05] to show that x2y4z5 /∈ J2). However, a nice result of Reid et al. [RRV,
Proposition 3.1] states that if the first n − 1 powers of a monomial ideal, in a polynomial
ring of n variables over a field, are integrally closed, then the ideal is normal. For the case

1

http://arxiv.org/abs/1009.0786v1


n = 2 this follows from the celebrated theorem of Zariski [ZS] that asserts that the product
of integrally closed ideals in a 2-dimensional regular ring is again integrally closed.

In general, there is no good characterization for normal monomial ideals. It is a chal-
lenging problem to translate the question of normality of a monomial ideal I into a question
about the exponent set Γ(I) and the Newton polyhedron NP (I). Under certain hypotheses,
some necessary conditions are given. Faridi [Far] gives necessary conditions on the degree of
the generators of a normal ideal in a graded domain. Vitulli [Vit] investigated the normality
for special monomial ideals in a polynomial ring over a field.

Forα =(α1, . . . , αn) ∈ Nn let I(α) be the integral closure of (xα1
1 , . . . , xαn

n ) ⊂ K[x1, . . . , xn].
Reid et. al. [RRV] showed that if α = (α1, . . . , αn) with pairwise relatively prime entries,
then the ideal I(α) is normal if and only if the additive submonoid Λ = 〈1/α1, . . . , 1/αn〉
of Q≥ is quasinormal, that is, whenever x ∈ Λ and x ≥ p for some p ∈ N, there exist
rational numbers y1, . . . , yp in Λ with yi ≥ 1 for all i such that x = y1 + · · · + yp. Thus
for the case where α1, . . . , αn are pairwise relatively prime, the normality condition on
the n-dimensional monoid is reduced to the quasinormality condition on the 1-dimensional
monoid. Another nice result of Reid et. al. [RRV] is that the monomial ideal I(α) is normal
if gcd(α1, . . . , αn) > n − 2. In particular, if n = 3 and gcd(α1, α2, α3) 6= 1, then I(α) is
normal. Therefore, in k[x1, x2, x3] it remains to investigate the normality of I(α) whenever
gcd(α1, α2, α3) = 1 and the integers are not pairwise relatively prime.

A important result of Reid et. al. [RRV], which we use to improve our result in this paper,
is as following. Choose i and set c = lcm(α1, . . . , α̂i, . . . , αn). Put α′ = (α1, . . . , αi−1, αi +
c, αi+1, . . . , αn). If I(α′) is normal then I(α) is normal. Conversely, If I(α) is normal and
αi ≥ c, then I(α′) is normal.

The goal of this paper is to show that the integral closure of the ideal (xα1
1 , . . . , xαn

n ) ⊂
K[x1, . . . , xn] is normal provided that αi ∈ {s, l} with s and l arbitrary positive integers.
The following theorem provide us with a technique that we mainly depend on to prove the
integral closedness.

Theorem 1 (Proposition 15.4.1, [SH]) Let I be a monomial ideal in the polynomial ring
R = K[x1, . . . , xn] with K a field. If I is primary to (x1, . . . , xn) and I∩(I : (x1, . . . , xn)) ⊆
I, then I is integrally closed.

Proposition 2 (Corollary 5.3.2, [SH]) If I ⊆ J are ideals in a ring R, then J ⊆ I if and
only if each element in some generating set of J is integral over I.

Certain Normal Monomial Ideals

Let (xs
1, . . . , x

s
m, yl1, . . . , y

l
n) ⊂ K[x1, . . . , xm, y1, . . . , yn] with K a field, xi and yi indetermi-

nates over K, and s and l positive integers such that (without loss of generality) l ≥ s.

Notation 3 For the remaining of this paper fix positive integers s and l with l ≥ s and let

λa =

⌈
a
l

s

⌉
where a is any integer. Also, let k be any positive integer.

2



Let x and y be positive integers and write x = ts + r with 1 ≤ r ≤ s. Then y
⌈x
s

⌉
=

y
x+ s− r

s
= y

s− r

s
+ y

x

s
≤ y

s− r

s
+

⌈
y
x

s

⌉
. Therefore,

⌈
y
x

s

⌉
≥ y

(⌈x
s

⌉
− s− r

s

)
. This

inequality helps to prove the following lemma which is a key in this paper.

Lemma 4 If i ∈ {0, 1, . . . , ks}, then kl(ks − i − 1) + λi ≥ (ks − i)(λks−1 − s−r
s
), where

(ks− 1)l = ts+ r with 1 ≤ r ≤ s.

Proof. By the note before the lemma we have kl(ks − i − 1) + λi =
⌈
[ks(ks−i−1)+i]l

s

⌉
=

⌈
(ks− i) (ks−1)l

s

⌉
≥ (ks− i)

(⌈
(ks−1)l

s

⌉
− s−r

s

)
= (ks− i)

(
λks−1 − s−r

s

)
.

Definition 5 Let Fk = {xi1 · · ·xiks−a
yj1 · · · yjλa

| a = 0, 1, 2, . . . , ks, 1 ≤ i1 ≤ i2 ≤ · · · ≤
iks−a ≤ m, and 1 ≤ j1 ≤ j2 ≤ · · · ≤ jλa

≤ n}, Jk the ideal generated by all the monomials
in Fk, and Ik = (xks

1 , . . . , xks
m , ykl1 , . . . , ykln ) ⊂ K[x1, . . . , xm, y1, . . . , yn]. Also, let J = J1,

F = F1, and I = I1.

Lemma 6 Jk is integral over the ideal Ik, that is, Jk ⊆ Ik.

Proof. By Proposition 2 it suffices to show that every element of Fk is integral over Ik.

Note xksl
i1

· · ·xksl
iks−a

∈ I
l(ks−a)
k and ykslj1

· · · yksljλa
∈ Isλa

k . Also note l(ks−a)+sλa = ksl−la+s⌈
a
l

s

⌉
≥ ksl. Therefore,

(
xi1 · · ·xiks−a

yj1 · · · yjλa

)ksl ∈ Ikslk .

The figure below is an illustration of J3 ⊂ K[x, y, z] with s = 2, l = 7 and I = (xs, ys, zl).
In this case I3 = (x3s, y3s, z3l) = (x6, y6, z21) and F3 = {xiyjzλ6−(i+j) | i+j = 0, 1, 2, 3, 4, 5, 6
and λa =

⌈
7a
2

⌉
}. The elements of F3 are represented by black circles. From the figure it is

clear that the set F3 minimally generates I3.
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Later we will prove that Jk is the integral closure of Ik.

Lemma 7 Jk = Jk.

Proof. We show JkJ = Jk+1. Let xi1 · · ·xis−a
yj1 · · · yjλa

∈ F and xi1 · · ·xiks−b
yj1 · · · yjλb

∈
Fk. Multiplying these two monomials we get xh1 · · ·xh(k+1)s−(b+a)

yt1 · · · ytλa+λb
(with 1 ≤

h1 ≤ h2 ≤ . . . ≤ m and 1 ≤ t1 ≤ t2 ≤ . . . ≤ n). This is a multiple of xh1 · · ·xh(k+1)s−(b+a)
yt1 · · · ytλa+b

∈
Jk+1 as λa+b ≤ λa + λb. To show the other inclusion let xi1 · · ·xi(k+1)s−a

yj1 · · · yjλa
∈ Fk+1.

If a ≥ ks, write a = ks + r with 0 ≤ r ≤ s, then λa = λks+r =

⌈
(ks+ r)

l

s

⌉
=

kl + λr. Thus this monomial equals xi1 · · ·xis−r
yj1 · · · yjλr+kl

. But yj1 · · · yjkl
∈ Fk and

xi1 · · ·xis−r
yjkl+1

· · · yjkl+λr
∈ F as 0 ≤ s−r ≤ s. If a < ks, then xi1 · · ·xi(k+1)s−a

yj1 · · · yjλa
=

xt1 · · ·xtsxh1 · · ·xhks−a
yj1 · · · yjλa

∈ JJk as xt1 · · ·xts ∈ J and xh1 · · ·xhks−a
yj1 · · · yjλa

∈ Jk.

The main goal of this paper is to prove the following theorem

Theorem 8 The integral closure of the ideal (xα1
1 , . . . , xαn

n ) ⊂ K[x1, . . . , xn] is normal,
where αi ∈ {s, l} with s and l arbitrary positive integers. Or equivalently, the ideal J is
normal.

By Lemma 6 and since Ik ⊆ Jk we have

Ik ⊆ Jk ⊆ Ik ⊆ Jk

We will use Theorem 1 to show that Jk is integrally closed, hence Jk is the integral closure
of Ik. Therefore we need the following.

Remark 9 Let R = K[x1, . . . , xm, y1, . . . , yn]. For 1 ≤ i ≤ m, it is easy to see that
(Jk : (xi))/Jk is generated by {zi1 · · · ziks−a−1

wj1 · · ·wj
λa

| a = 0, . . . , ks − 1; 1 ≤ i1 ≤
i2 ≤ · · · ≤ iks−a−1 ≤ m and 1 ≤ j1 ≤ j2 ≤ · · · ≤ jλa

≤ n} where zi and wi are the
images of xi and yi, respectively, in R/Jk. Also, for 1 ≤ j ≤ n note that (Jk : (yj))/Jk
is generated by {zi1 · · · ziks−b

w
j1
· · ·w

j
λb

−1
| b = 1, . . . , ks; 1 ≤ i1 ≤ i2 ≤ · · · ≤ iks−b ≤ m

and 1 ≤ j1 ≤ j2 ≤ · · · ≤ jλb
≤ n}. As the intersection of two monomial ideals is generated

by the set of the least common multiples of the generators of the two ideals, it follows that
(Jk : (x1, . . . , xm, y1, . . . , yn))/Jk is generated by {zi1 · · · ziks−e

w
j1
· · ·w

j
λe

−1
| e = 1, . . . , ks;

1 ≤ i1 ≤ i2 ≤ · · · ≤ iks−e ≤ m and 1 ≤ j1 ≤ j2 ≤ · · · ≤ jλe
≤ n}.

Lemma 10 The ideal Jk is integrally closed.

Proof. By Theorem 1 we need to show that none of the preimages, inK[x1, . . . , xm, y1, . . . , yn],
of the monomial generators of (Jk : (x1, . . . , xm, y1, . . . , yn))/Jk is in Jk. Assume not, that
is, assume σ = xi1 · · ·xiks−e

y
j1
· · · y

j
λe

−1 ∈ Jk for some e ∈ {1, . . . , ks}. This implies σd ∈ Jd
k

for some positive integer d, thus σd = xd
i1
xd
i2
· · ·xd

iks−e
yd
j1
· · · yd

j
λe

−1
equals the following prod-

uct of products of the generators of Jk

β
∏

1≤j1≤···≤jkl≤n

(yj1yj2 · · · yjkl
)cj1,...,jkl
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∏
1≤i1≤m

1≤j1≤···≤jλks−1
≤n

(xi1yj1yj2 · · · yjλks−1
)
li1,j1,...,jλks−1

∏
1≤i1≤i2≤m

1≤j1≤···≤jλks−2
≤n

(xi1xi2yj1yj2 · · · yjλks−2
)
li1,i2,j1,...,jλks−2

... ∏
1≤1i1≤i2≤···≤iks−2≤m

1≤j1≤···≤jλ2
≤n

(xi1 · · ·xiks−2
yj1 · · · yjλ2

)
li1,i2,...,iks−2,j1,...,jλ2

∏
1≤i1≤i2≤···≤iks−1≤m

1≤j1≤···≤jλ1
≤n

(xi1 · · ·xiks−1
yj1 · · · yjλ1

)
li1,i2,...,iks−1,j1,...,jλ1

∏
1≤i1≤i2≤···≤iks≤m

(xi1xi2 · · ·xiks
)
li1 ,i2 ,...,iks

where β is some monomial, cj1,...,jkl
and li1,...,it,j1,...,jλks−t

(with 1 ≤ t ≤ ks) are non-

negative integers. For 1 ≤ t ≤ ks let Lt =
∑

1≤i1≤i2≤···≤it≤m
1≤j1≤···≤jλks−t

≤n

li1,...,it,j1,...,jλks−t
and let

C =
∑

1≤j1≤···≤jkl≤n

cj1,...,jkl
. By summing powers we have

Lks + Lks−1 + · · ·+ L3 + L2 + L1 + C = d (1)

Also, by the total-degree count of the monomial xi1 · · ·xiks−e
we have the following equality

(ks)Lks + (ks− 1)Lks−1 + · · ·+ 3L3 + 2L2 + L1 + ε = (ks− e)d (2)

where ε is the total-degree of the monomial xi1 · · ·xiks−e
in β. By the total-degree count of

the monomial y1 · · · yj
λe

−1 we must have the following inequality

λ1Lks−1 + λ2Lks−2 + · · ·+ λks−3L3 + λks−2L2 + λks−1L1 + Ckl ≤ (λe − 1)d (3)

We finish the proof by showing that (1), (2), and (3) can not hold simultaneously.

From (1) and (2)

C = (ks− 1)Lks + (ks− 2)Lks−1 + · · ·+ 2L3 + L2 + ε− (ks− e− 1)d (4)

Recall, (ks− 1)l = ts+ r with 1 ≤ r ≤ s and λks−1 < λks = kl. Now consider the left-hand

5



side of (3)

λ1Lks−1 + λ2Lks−2 + · · ·+ λks−3L3 + λks−2L2 + λks−1L1 + Ckl

=

[
ks−1∑

i=0

[kl(ks− 1− i) + λi]Lks−i

]
+ εkl− kl(ks− e− 1)d (By (4) )

≥
[
ks−1∑

i=0

(ks− i)(λks−1 −
s− r

s
)Lks−i

]
+ εkl− kl(ks− e− 1)d (by Lemma 4)

≥ (λks−1 −
s− r

s
)(ks− e)d− kl(ks− e− 1)d (By (2) )

=
(ks− 1)l

s
(ks− e)d− kl(ks− e− 1)d

=
(e
s
l
)
d

> (λe − 1)d.

This is a contradiction to (3) as required.

Proof. (of Theorem 8) The proof follows by the above lemma and Lemma 7.

We have already proved that if α =(α1, . . . , αn) ∈ Nn with the entries of α consisting
of two positive integers, then I(α), the integral closure of (xα1

1 , . . . , xαn
n ) ⊂ K[x1, . . . , xn], is

normal. Noting that the ideal I(x4, y5, z7) ⊂ K[x, y, z] is not normal, the following question
arises: when is I(α) normal provided that α consists of three distinct positive integers? In
the proposition below we give a partial answer for this question.

Theorem 11 (Theorem 5.1, [RRV]) Let α =(α1, . . . , αn) ∈ Nn, c = lcm(α1, . . . , αn−1).
Let I(α) be the integral closure of (xα1

1 , . . . , xαn
n ) ⊂ K[x1, . . . , xn] and I(α′) the integral

closure of (xα1
1 , . . . , x

αn−1

n−1 , xαn+c
n ) ⊂ K[x1, . . . , xn]. If I(α

′) is normal, then I(α) is normal.
Conversely, If I(α) is normal and αn ≥ c, then I(α′) is normal.

Proposition 12 If α =(α1, . . . , αn) ∈ Nn with αi ∈ {s, l} for i = 1, . . . , n− 1 such that s
divides l and l divides αn, then I(α) is normal.

Proof. We proceed by induction on the integer q = αn/l. By Theorem 8 the ideal I(α)
is normal whenever q = 1. Note l = lcm{s, l} as s divides l. Assume I(α) is normal for
α =(α1, . . . , αn−1, ql) with αi ∈ {s, l} for i = 1, . . . , n − 1. Then by the above Theorem
I(α′) is normal where α

′=(α1, . . . , αn−1, ql + l).
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