# Normality of Monomial Ideals 

Ibrahim Al-Ayyoub

September 7, 2010


#### Abstract

Given the monomial ideal $I=\left(x_{1}^{\alpha_{1}}, \ldots, x_{n}^{\alpha_{n}}\right) \subset K\left[x_{1}, \ldots, x_{n}\right]$ where $\alpha_{i}$ are positive integers and $K$ a field and let $J$ be the integral closure of $I$. It is a challenging problem to translate the question of the normality of $J$ into a question about the exponent set $\Gamma(J)$ and the Newton polyhedron $N P(J)$. A relaxed version of this problem is to give necessary or sufficient conditions on $\alpha_{1}, \ldots, \alpha_{n}$ for the normality of $J$. We show that if $\alpha_{i} \in\{s, l\}$ with $s$ and $l$ arbitrary positive integers, then $J$ is normal.


## Introduction

Let $I$ be an ideal in a Noetherian ring $R$. The integral closure of $I$ is the ideal $\bar{I}$ that consists of all elements of $R$ that satisfy an equation of the form

$$
x^{n}+a_{1} x^{n-1}+\cdots+a_{n-1} x+a_{n}=0, \quad a_{i} \in I^{i}
$$

The ideal $I$ is said to be integrally closed if $I=\bar{I}$. Clearly one has that $I \subseteq \bar{I} \subseteq \sqrt{I}$. An ideal is called normal if all of its positive powers are integrally closed. It is known that if $R$ is a normal integral domain, then the Rees algebra $R[I t]=\oplus_{n \in N} I^{n} t^{n}$ is normal if and only if $I$ is a normal ideal of $R$. This brings up the importance of normality of ideals as the Rees algebra is the algebraic counterpart of blowing up a scheme along a closed subscheme.

It is well known that the integral closure of monomial ideal in a polynomial ring is again a monomial ideal, see $[\mathrm{SH}]$ or Vit for a proof. The problem of finding the integral closure for a monomial ideal $I$ reduces to finding monomials $r$, integer $i$ and monomials $m_{1}, m_{2}, \ldots, m_{i}$ in $I$ such that $r^{i}+m_{1} m_{2} \cdots m_{i}=0$, see SH . Geometrically, finding the integral closure of monomial ideals $I$ in $R=K\left[x_{0}, \ldots, x_{n}\right]$ is the same as finding all the integer lattice points in the convex hull $N P(I)$ (the Newton polyhedron of $I$ ) in $\mathbb{R}^{n}$ of $\Gamma(I)$ (the Newton polytope of $I$ ) where $\Gamma(I)$ is the set of all exponent vectors of all the monomials in $I$. This makes computing the integral closure of monomial ideals simpler.

A power of an integrally closed monomial ideal need not be integrally closed. For example, let $J$ be the integral closure of $I=\left(x^{4}, y^{5}, z^{7}\right) \subset K[x, y, z]$. Then $J^{2}$ is not integrally closed (observe that $y^{3} z^{3} \in J$ as $\left(y^{3} z^{3}\right)^{5}=y^{5} y^{5} y^{5} z^{7} z^{8} \in I^{5}$. Now $x^{2} y^{4} z^{5} \in \overline{J^{2}}$ since $\left(x^{2} y^{4} z^{5}\right)^{2}=\left(x^{4} \cdot y^{5}\right)\left(y^{3} z^{3} \cdot z^{7}\right) \in\left(J^{2}\right)^{2}$. On the other hand we used the algebra software Singular GPS05 to show that $x^{2} y^{4} z^{5} \notin J^{2}$ ). However, a nice result of Reid et al. RRV, Proposition 3.1] states that if the first $n-1$ powers of a monomial ideal, in a polynomial ring of $n$ variables over a field, are integrally closed, then the ideal is normal. For the case
$n=2$ this follows from the celebrated theorem of Zariski ZS that asserts that the product of integrally closed ideals in a 2-dimensional regular ring is again integrally closed.

In general, there is no good characterization for normal monomial ideals. It is a challenging problem to translate the question of normality of a monomial ideal $I$ into a question about the exponent set $\Gamma(I)$ and the Newton polyhedron $N P(I)$. Under certain hypotheses, some necessary conditions are given. Faridi [Far] gives necessary conditions on the degree of the generators of a normal ideal in a graded domain. Vitulli [Vit] investigated the normality for special monomial ideals in a polynomial ring over a field.

For $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}$ let $I(\boldsymbol{\alpha})$ be the integral closure of $\left(x_{1}^{\alpha_{1}}, \ldots, x_{n}^{\alpha_{n}}\right) \subset K\left[x_{1}, \ldots, x_{n}\right]$. Reid et. al. RRV showed that if $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ with pairwise relatively prime entries, then the ideal $I(\boldsymbol{\alpha})$ is normal if and only if the additive submonoid $\Lambda=\left\langle 1 / \alpha_{1}, \ldots, 1 / \alpha_{n}\right\rangle$ of $\mathbb{Q} \geq$ is quasinormal, that is, whenever $x \in \Lambda$ and $x \geq p$ for some $p \in \mathbb{N}$, there exist rational numbers $y_{1}, \ldots, y_{p}$ in $\Lambda$ with $y_{i} \geq 1$ for all $i$ such that $x=y_{1}+\cdots+y_{p}$. Thus for the case where $\alpha_{1}, \ldots, \alpha_{n}$ are pairwise relatively prime, the normality condition on the $n$-dimensional monoid is reduced to the quasinormality condition on the 1-dimensional monoid. Another nice result of Reid et. al. RRV is that the monomial ideal $I(\boldsymbol{\alpha})$ is normal if $\operatorname{gcd}\left(\alpha_{1}, \ldots, \alpha_{n}\right)>n-2$. In particular, if $n=3$ and $\operatorname{gcd}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \neq 1$, then $I(\boldsymbol{\alpha})$ is normal. Therefore, in $k\left[x_{1}, x_{2}, x_{3}\right]$ it remains to investigate the normality of $I(\boldsymbol{\alpha})$ whenever $\operatorname{gcd}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=1$ and the integers are not pairwise relatively prime.

A important result of Reid et. al. RRV, which we use to improve our result in this paper, is as following. Choose $i$ and set $c=\operatorname{lcm}\left(\alpha_{1}, \ldots, \widehat{\alpha_{i}}, \ldots, \alpha_{n}\right)$. Put $\boldsymbol{\alpha}^{\prime}=\left(\alpha_{1}, \ldots, \alpha_{i-1}, \alpha_{i}+\right.$ $\left.c, \alpha_{i+1}, \ldots, \alpha_{n}\right)$. If $I\left(\boldsymbol{\alpha}^{\prime}\right)$ is normal then $I(\boldsymbol{\alpha})$ is normal. Conversely, If $I(\boldsymbol{\alpha})$ is normal and $\alpha_{i} \geq c$, then $I\left(\boldsymbol{\alpha}^{\prime}\right)$ is normal.

The goal of this paper is to show that the integral closure of the ideal $\left(x_{1}^{\alpha_{1}}, \ldots, x_{n}^{\alpha_{n}}\right) \subset$ $K\left[x_{1}, \ldots, x_{n}\right]$ is normal provided that $\alpha_{i} \in\{s, l\}$ with $s$ and $l$ arbitrary positive integers. The following theorem provide us with a technique that we mainly depend on to prove the integral closedness.

Theorem 1 (Proposition 15.4.1, [SH]) Let I be a monomial ideal in the polynomial ring $R=K\left[x_{1}, \ldots, x_{n}\right]$ with $K$ a field. If I is primary to $\left(x_{1}, \ldots, x_{n}\right)$ and $\bar{I} \cap\left(I:\left(x_{1}, \ldots, x_{n}\right)\right) \subseteq$ $I$, then $I$ is integrally closed.

Proposition 2 (Corollary 5.3.2, $[S H]$ ) If $I \subseteq J$ are ideals in a ring $R$, then $J \subseteq \bar{I}$ if and only if each element in some generating set of $J$ is integral over $I$.

## Certain Normal Monomial Ideals

Let $\left(x_{1}^{s}, \ldots, x_{m}^{s}, y_{1}^{l}, \ldots, y_{n}^{l}\right) \subset K\left[x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right]$ with $K$ a field, $x_{i}$ and $y_{i}$ indeterminates over $K$, and $s$ and $l$ positive integers such that (without loss of generality) $l \geq s$.

Notation 3 For the remaining of this paper fix positive integers $s$ and $l$ with $l \geq s$ and let $\lambda_{a}=\left\lceil a \frac{l}{s}\right\rceil$ where $a$ is any integer. Also, let $k$ be any positive integer.

Let $x$ and $y$ be positive integers and write $x=t s+r$ with $1 \leq r \leq s$. Then $y\left\lceil\frac{x}{s}\right\rceil=$ $y \frac{x+s-r}{s}=y \frac{s-r}{s}+y \frac{x}{s} \leq y \frac{s-r}{s}+\left\lceil y \frac{x}{s}\right\rceil$. Therefore, $\left\lceil y \frac{x}{s}\right\rceil \geq y\left(\left\lceil\frac{x}{s}\right\rceil-\frac{s-r}{s}\right)$. This inequality helps to prove the following lemma which is a key in this paper.

Lemma 4 If $i \in\{0,1, \ldots, k s\}$, then $k l(k s-i-1)+\lambda_{i} \geq(k s-i)\left(\lambda_{k s-1}-\frac{s-r}{s}\right)$, where $(k s-1) l=t s+r$ with $1 \leq r \leq s$.

Proof. By the note before the lemma we have $k l(k s-i-1)+\lambda_{i}=\left\lceil\frac{[k s(k s-i-1)+i] l}{s}\right\rceil=$ $\left\lceil(k s-i) \frac{(k s-1) l}{s}\right\rceil \geq(k s-i)\left(\left\lceil\frac{(k s-1) l}{s}\right\rceil-\frac{s-r}{s}\right)=(k s-i)\left(\lambda_{k s-1}-\frac{s-r}{s}\right)$.
Definition 5 Let $F_{k}=\left\{x_{i_{1}} \cdots x_{i_{k s-a}} y_{j_{1}} \cdots y_{j_{\lambda_{a}}} \mid a=0,1,2, \ldots, k s, 1 \leq i_{1} \leq i_{2} \leq \cdots \leq\right.$ $i_{k s-a} \leq m$, and $\left.1 \leq j_{1} \leq j_{2} \leq \cdots \leq j_{\lambda_{a}} \leq n\right\}$, J ${ }_{k}$ the ideal generated by all the monomials in $F_{k}$, and $I_{k}=\left(x_{1}^{k s}, \ldots, x_{m}^{k s}, y_{1}^{k l}, \ldots, y_{n}^{k l}\right) \subset K\left[x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right]$. Also, let $J=J_{1}$, $F=F_{1}$, and $I=I_{1}$.

Lemma $6 J_{k}$ is integral over the ideal $I_{k}$, that is, $J_{k} \subseteq \overline{I_{k}}$.
Proof. By Proposition 2 it suffices to show that every element of $F_{k}$ is integral over $I_{k}$. Note $x_{i_{1}}^{k s l} \cdots x_{i_{k s-a}}^{k s l} \in I_{k}^{l(k s-a)}$ and $y_{j_{1}}^{k s l} \cdots y_{j_{\lambda_{a}}}^{k s l} \in I_{k}^{s \lambda_{a}}$. Also note $l(k s-a)+s \lambda_{a}=k s l-l a+s$ $\left\lceil a \frac{l}{s}\right\rceil \geq k s l$. Therefore, $\left(x_{i_{1}} \cdots x_{i_{k s-a}} y_{j_{1}} \cdots y_{j_{\lambda_{a}}}\right)^{k s l} \in I_{k}^{k s l}$.

The figure below is an illustration of $J_{3} \subset K[x, y, z]$ with $s=2, l=7$ and $I=\left(x^{s}, y^{s}, z^{l}\right)$. In this case $I_{3}=\left(x^{3 s}, y^{3 s}, z^{3 l}\right)=\left(x^{6}, y^{6}, z^{21}\right)$ and $F_{3}=\left\{x^{i} y^{j} z^{\lambda_{6-(i+j)}} \mid i+j=0,1,2,3,4,5,6\right.$ and $\left.\lambda_{a}=\left\lceil\frac{7 a}{2}\right\rceil\right\}$. The elements of $F_{3}$ are represented by black circles. From the figure it is clear that the set $F_{3}$ minimally generates $\overline{I_{3}}$.

Later we will prove that $J_{k}$ is the integral closure of $I_{k}$.
Lemma $7 J^{k}=J_{k}$.
Proof. We show $J_{k} J=J_{k+1}$. Let $x_{i_{1}} \cdots x_{i_{s-a}} y_{j_{1}} \cdots y_{j_{\lambda_{a}}} \in F$ and $x_{i_{1}} \cdots x_{i_{k s-b}} y_{j_{1}} \cdots y_{j_{\lambda_{b}}} \in$ $F_{k}$. Multiplying these two monomials we get $x_{h_{1}} \cdots x_{h_{(k+1) s-(b+a)}} y_{t_{1}} \cdots y_{t_{\lambda_{a}+\lambda_{b}}}$ (with $1 \leq$ $h_{1} \leq h_{2} \leq \ldots \leq m$ and $\left.1 \leq t_{1} \leq t_{2} \leq \ldots \leq n\right)$. This is a multiple of $x_{h_{1}} \cdots x_{h_{(k+1) s-(b+a)}} y_{t_{1}} \cdots y_{t_{\lambda_{a+b}}} \in$ $J_{k+1}$ as $\lambda_{a+b} \leq \lambda_{a}+\lambda_{b}$. To show the other inclusion let $x_{i_{1}} \cdots x_{i_{(k+1) s-a}} y_{j_{1}} \cdots y_{j_{\lambda_{a}}} \in F_{k+1}$. If $a \geq k s$, write $a=k s+r$ with $0 \leq r \leq s$, then $\lambda_{a}=\lambda_{k s+r}=\left\lceil(k s+r) \frac{l}{s}\right\rceil=$ $k l+\lambda_{r}$. Thus this monomial equals $x_{i_{1}} \cdots x_{i_{s-r}} y_{j_{1}} \cdots y_{j_{\lambda_{r}+k l}}$. But $y_{j_{1}} \cdots y_{j_{k l}} \in F_{k}$ and $x_{i_{1}} \cdots x_{i_{s-r}} y_{j_{k l+1}} \cdots y_{j_{k l+\lambda_{r}}} \in F$ as $0 \leq s-r \leq s$. If $a<k s$, then $x_{i_{1}} \cdots x_{i_{(k+1) s-a}} y_{j_{1}} \cdots y_{j_{\lambda_{a}}}=$ $x_{t_{1}} \cdots x_{t_{s}} x_{h_{1}} \cdots x_{h_{k s-a}} y_{j_{1}} \cdots y_{j_{\lambda_{a}}} \in J J_{k}$ as $x_{t_{1}} \cdots x_{t_{s}} \in J$ and $x_{h_{1}} \cdots x_{h_{k s-a}} y_{j_{1}} \cdots y_{j_{\lambda_{a}}} \in J_{k}$.

The main goal of this paper is to prove the following theorem
Theorem 8 The integral closure of the ideal $\left(x_{1}^{\alpha_{1}}, \ldots, x_{n}^{\alpha_{n}}\right) \subset K\left[x_{1}, \ldots, x_{n}\right]$ is normal, where $\alpha_{i} \in\{s, l\}$ with $s$ and $l$ arbitrary positive integers. Or equivalently, the ideal $J$ is normal.

By Lemma 6 and since $I_{k} \subseteq J_{k}$ we have

$$
I_{k} \subseteq J_{k} \subseteq \overline{I_{k}} \subseteq \overline{J_{k}}
$$

We will use Theorem 1 to show that $J_{k}$ is integrally closed, hence $J_{k}$ is the integral closure of $I_{k}$. Therefore we need the following.

Remark 9 Let $R=K\left[x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right]$. For $1 \leq i \leq m$, it is easy to see that $\left(J_{k}:\left(x_{i}\right)\right) / J_{k}$ is generated by $\left\{z_{i_{1}} \cdots z_{i_{k s-a-1}} w_{j_{1}} \cdots w_{j_{\lambda_{a}}} \mid a=0, \ldots, k s-1 ; 1 \leq i_{1} \leq\right.$ $i_{2} \leq \cdots \leq i_{k s-a-1} \leq m$ and $\left.1 \leq j_{1} \leq j_{2} \leq \cdots \leq j_{\lambda_{a}} \leq n\right\}$ where $z_{i}$ and $w_{i}$ are the images of $x_{i}$ and $y_{i}$, respectively, in $R / J_{k}$. Also, for $1 \leq j \leq n$ note that $\left(J_{k}:\left(y_{j}\right)\right) / J_{k}$ is generated by $\left\{z_{i_{1}} \cdots z_{i_{k s-b}} w_{j_{1}} \cdots w_{j_{\lambda_{b}-1}} \mid b=1, \ldots, k s ; 1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{k s-b} \leq m\right.$ and $\left.1 \leq j_{1} \leq j_{2} \leq \cdots \leq j_{\lambda_{b}} \leq n\right\}$. As the intersection of two monomial ideals is generated by the set of the least common multiples of the generators of the two ideals, it follows that $\left(J_{k}:\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right)\right) / J_{k}$ is generated by $\left\{z_{i_{1}} \cdots z_{i_{k s-e}} w_{j_{1}} \cdots w_{j_{\lambda_{e}-1}} \mid e=1, \ldots, k s\right.$; $1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{k s-e} \leq m$ and $\left.1 \leq j_{1} \leq j_{2} \leq \cdots \leq j_{\lambda_{e}} \leq n\right\}$.

Lemma 10 The ideal $J_{k}$ is integrally closed.
Proof. By Theorem 1 we need to show that none of the preimages, in $K\left[x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right]$, of the monomial generators of $\left(J_{k}:\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right)\right) / J_{k}$ is in $\overline{J_{k}}$. Assume not, that is, assume $\sigma=x_{i_{1}} \cdots x_{i_{k s-e}} y_{j_{1}} \cdots y_{j_{\lambda_{e}-1}} \in \overline{J_{k}}$ for some $e \in\{1, \ldots, k s\}$. This implies $\sigma^{d} \in J_{k}^{d}$ for some positive integer $d$, thus $\sigma^{d}=x_{i_{1}}^{d} x_{i_{2}}^{d} \cdots x_{i_{k s-e}}^{d} y_{j_{1}}^{d} \cdots y_{j_{\lambda_{e}-1}}^{d}$ equals the following product of products of the generators of $J_{k}$

$$
\beta \prod_{1 \leq j_{1} \leq \cdots \leq j_{k l} \leq n}\left(y_{j_{1}} y_{j_{2}} \cdots y_{j_{k l}}\right)^{c_{j_{1}, \ldots, j_{k l}}}
$$

$$
\begin{aligned}
& \prod_{\substack{1 \leq i_{1} \leq m \\
1 \leq j_{1} \leq \cdots \leq j_{\lambda_{k s-1}} \leq n}}\left(x_{i_{1}} y_{j_{1}} y_{j_{2}} \cdots y_{j_{\lambda_{k s-1}}}\right)^{l_{i_{1}, j_{1}, \ldots, j_{\lambda_{k s-1}}}} \\
& \prod_{\substack{1 \leq i_{1} \leq i_{2} \leq m \\
1 \leq j_{1} \leq \cdots \leq j_{\lambda_{k s-2}} \leq n}}\left(x_{i_{1}} x_{i_{2}} y_{j_{1}} y_{j_{2}} \cdots y_{j_{\lambda_{k s-2}}}\right)^{l_{i_{1}, i_{2}, j_{1}, \ldots, j_{\lambda_{k s-2}}}}
\end{aligned}
$$

$$
\begin{aligned}
& \prod_{\substack{1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{k s-1} \leq m \\
1 \leq j_{1} \leq \cdots \leq j_{\lambda_{1}} \leq n}}\left(x_{i_{1}} \cdots x_{i_{k s-1}} y_{j_{1}} \cdots y_{j_{\lambda_{1}}}\right)^{l_{i_{1}, i_{2}, \ldots, i_{k s-1}, j_{1}, \ldots, j_{\lambda_{1}}}} \\
& \prod_{1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{k s} \leq m}\left(x_{i_{1}} x_{i_{2}} \cdots x_{i_{k s}}\right)^{l_{i_{1}, i_{2}}, \cdots, i_{k s}}
\end{aligned}
$$

where $\beta$ is some monomial, $c_{j_{1}, \ldots, j_{k l}}$ and $l_{i_{1}, \ldots, i_{t}, j_{1}, \ldots, j_{\lambda_{k s-t}}}$ (with $1 \leq t \leq k s$ ) are nonnegative integers. For $1 \leq t \leq k s$ let $L_{t}=\sum_{\substack{1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{t} \leq m \\ 1 \leq j_{1} \leq \cdots \leq j_{\lambda_{k s-t}} \leq n}} l_{i_{1}, \ldots, i_{t}, j_{1}, \ldots, j_{\lambda_{k s-t}}}$ and let $C=\sum_{1 \leq j_{1} \leq \cdots \leq j_{k l} \leq n} c_{j_{1}, \ldots, j_{k l}}$. By summing powers we have

$$
\begin{equation*}
L_{k s}+L_{k s-1}+\cdots+L_{3}+L_{2}+L_{1}+C=d \tag{1}
\end{equation*}
$$

Also, by the total-degree count of the monomial $x_{i_{1}} \cdots x_{i_{k s-e}}$ we have the following equality

$$
\begin{equation*}
(k s) L_{k s}+(k s-1) L_{k s-1}+\cdots+3 L_{3}+2 L_{2}+L_{1}+\varepsilon=(k s-e) d \tag{2}
\end{equation*}
$$

where $\varepsilon$ is the total-degree of the monomial $x_{i_{1}} \cdots x_{i_{k s-e}}$ in $\beta$. By the total-degree count of the monomial $y_{1} \cdots y_{j_{\lambda_{e}}-1}$ we must have the following inequality

$$
\begin{equation*}
\lambda_{1} L_{k s-1}+\lambda_{2} L_{k s-2}+\cdots+\lambda_{k s-3} L_{3}+\lambda_{k s-2} L_{2}+\lambda_{k s-1} L_{1}+C k l \leq\left(\lambda_{e}-1\right) d \tag{3}
\end{equation*}
$$

We finish the proof by showing that (11), (22), and (3) can not hold simultaneously.
From (11) and (21)

$$
\begin{equation*}
C=(k s-1) L_{k s}+(k s-2) L_{k s-1}+\cdots+2 L_{3}+L_{2}+\varepsilon-(k s-e-1) d \tag{4}
\end{equation*}
$$

Recall, $(k s-1) l=t s+r$ with $1 \leq r \leq s$ and $\lambda_{k s-1}<\lambda_{k s}=k l$. Now consider the left-hand
side of (3)

$$
\begin{aligned}
& \lambda_{1} L_{k s-1}+\lambda_{2} L_{k s-2}+\cdots+\lambda_{k s-3} L_{3}+\lambda_{k s-2} L_{2}+\lambda_{k s-1} L_{1}+C k l \\
= & {\left[\sum_{i=0}^{k s-1}\left[k l(k s-1-i)+\lambda_{i}\right] L_{k s-i}\right]+\varepsilon k l-k l(k s-e-1) d \quad(\text { By (44) }) } \\
\geq & {\left[\sum_{i=0}^{k s-1}(k s-i)\left(\lambda_{k s-1}-\frac{s-r}{s}\right) L_{k s-i}\right]+\varepsilon k l-k l(k s-e-1) d \quad \text { (by Lemma 4) } } \\
\geq & \left(\lambda_{k s-1}-\frac{s-r}{s}\right)(k s-e) d-k l(k s-e-1) d \\
= & \frac{(k s-1) l}{s}(k s-e) d-k l(k s-e-1) d \\
= & \left(\frac{e}{s} l\right) d \\
> & \left(\lambda_{e}-1\right) d .
\end{aligned}
$$

This is a contradiction to (3) as required.

Proof. (of Theorem (8) The proof follows by the above lemma and Lemma 7
We have already proved that if $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}$ with the entries of $\boldsymbol{\alpha}$ consisting of two positive integers, then $I(\boldsymbol{\alpha})$, the integral closure of $\left(x_{1}^{\alpha_{1}}, \ldots, x_{n}^{\alpha_{n}}\right) \subset K\left[x_{1}, \ldots, x_{n}\right]$, is normal. Noting that the ideal $I\left(x^{4}, y^{5}, z^{7}\right) \subset K[x, y, z]$ is not normal, the following question arises: when is $I(\boldsymbol{\alpha})$ normal provided that $\boldsymbol{\alpha}$ consists of three distinct positive integers? In the proposition below we give a partial answer for this question.

Theorem 11 (Theorem 5.1, $R R V])$ Let $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}, c=\operatorname{lcm}\left(\alpha_{1}, \ldots, \alpha_{n-1}\right)$. Let $I(\boldsymbol{\alpha})$ be the integral closure of $\left(x_{1}^{\alpha_{1}}, \ldots, x_{n}^{\alpha_{n}}\right) \subset K\left[x_{1}, \ldots, x_{n}\right]$ and $I\left(\boldsymbol{\alpha}^{\prime}\right)$ the integral closure of $\left(x_{1}^{\alpha_{1}}, \ldots, x_{n-1}^{\alpha_{n-1}}, x_{n}^{\alpha_{n}+c}\right) \subset K\left[x_{1}, \ldots, x_{n}\right]$. If $I\left(\boldsymbol{\alpha}^{\prime}\right)$ is normal, then $I(\boldsymbol{\alpha})$ is normal. Conversely, If $I(\boldsymbol{\alpha})$ is normal and $\alpha_{n} \geq c$, then $I\left(\boldsymbol{\alpha}^{\prime}\right)$ is normal.

Proposition 12 If $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}$ with $\alpha_{i} \in\{s, l\}$ for $i=1, \ldots, n-1$ such that $s$ divides $l$ and $l$ divides $\alpha_{n}$, then $I(\boldsymbol{\alpha})$ is normal.

Proof. We proceed by induction on the integer $q=\alpha_{n} / l$. By Theorem $\mathbf{8}$ the ideal $I(\boldsymbol{\alpha})$ is normal whenever $q=1$. Note $l=\operatorname{lcm}\{s, l\}$ as $s$ divides $l$. Assume $I(\boldsymbol{\alpha})$ is normal for $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n-1}, q l\right)$ with $\alpha_{i} \in\{s, l\}$ for $i=1, \ldots, n-1$. Then by the above Theorem $I\left(\boldsymbol{\alpha}^{\prime}\right)$ is normal where $\boldsymbol{\alpha}^{\prime}=\left(\alpha_{1}, \ldots, \alpha_{n-1}, q l+l\right)$.

## References

[CHV] A. Corso ,C. Huneke and W. Vasconcelos, On the integral closure of ideals, Manuscripta Math. 95 (1998), 331-347.
[Far] S. Faridi, Normal ideals of graded rings, Comm. Algebra 28 (2000), 1971-1977.
[GPS05] G.-M. Greuel, G. Pfister, and H. Schönemann, Singular 3.0. A Computer Algebra System for Polynomial Computations, Centre for Computer Algebra, University of Kaiserslautern (2005), http://www.singular.uni-kl.de.
[RRV] L. Reid, L. G. Roberts, and M. A. Vitulli, Some results on normal monomial ideals, Comm. Algebra 31 (2003), 4485-4506.
[SH] I. Swanson and C. Huneke, Integral Closure of Ideals, Rings, and Modules, Cambridge University Press, Cambridge, 2006.
[Vit] M. A. Vitulli, Some normal monomial ideals, Topics in algebraic and noncommutative geometry (Luminy/Annapolis, MD, 2001), Contemp. Math. 324, Amer Math. Soc., Providence, 205-217.
[ZS] O. Zariski and P. Samuel, Commutative Algebra, Vol. 2, D. Van Nostrand Co., Inc., Princeton, 1960.

Ibrahim Al-Ayyoub, assistant professor.
Department of Mathematics and Statistics.
Jordan University of Science and Technology.
P O Box 3030, Irbid 22110, Jordan.
Email address: iayyoub@just.edu.jo

