Duals of Ann-categories

Nguyen Tien Quang and Dang Dinh Hanh

Department of Mathematics, Hanoi National University of Education
136 Xuan Thuy Street, Hanoi, Vietnam
nguyenquang272002@gmail.com ddhanhdhsphn@gmail.com

Abstract

Dual monoidal category \mathcal{C}^{*} of a monoidal functor $F: \mathcal{C} \rightarrow \mathcal{V}$ has been constructed by S . Majid. In this paper, we extend the construction of dual structures for an Ann-functor $F: \mathcal{B} \rightarrow \mathcal{A}$. In particular, when $F=i d_{\mathcal{A}}$, then the dual category \mathcal{A}^{*} is indeed the center of \mathcal{A} and this is a braided Ann-category.

Mathematics Subject Classification: 18D10, 16D20
Keywords: duals of Ann-categoies, braided Ann-category, functored, bimodules

1 Introduction

Categories with quasi-symmetry appeared under the heading "braided monoidal categories" in a connection with low dimensional topology [5], as well as in the context of quantum groups [6].

The concept "dual of monoidal category" appeared in [9] in the following case. The Hopf algebra can be built via a monoidal category \mathcal{C} and a functor $F: \mathcal{C} \rightarrow$ Vec. This event can be generalized as Vec is replaced by a monoidal category \mathcal{V}. Now, if F is a monoidal functor, then \mathcal{C} is called functored on \mathcal{V}, or (\mathcal{C}, F) is called a \mathcal{V}-category in A. Grothendieck's terminology [4]. In this situation, S. Majid built the monoidal category $(\mathcal{C}, F)^{*}=\left(\mathcal{C}^{*}, F^{*}\right)$, named "full dual category" of (\mathcal{C}, F). The objects of $(\mathcal{C}, F)^{*}$ are pairs $\left(V, u_{V}\right)$, consisting of $V \in \mathcal{C}$ and a natural transformation $u_{V}=\left(u_{V, X}: V \otimes F X \rightarrow F X \otimes\right.$ $V)$ satisfying the compatition with the monoidal functor (F, \widetilde{F}). The full subcategory $(\mathcal{C}, F)^{\circ}$ consists of objects $\left(V, u_{V}\right)$ where $u_{V, X}$ are isomorphisms. It is interesting when $\mathcal{V}=\mathcal{C}$ and $F=i d$, then $(\mathcal{C}, F)^{\circ}$ is a braided monoidal category, called the center $Z(\mathcal{C})$ of the monoidal category \mathcal{C}.

The notion of the center of a monoidal category appeared first in [5], 9]. It was a construction of a braided tensor category from an arbitrary tensor
category. Then, the center of a category appears as a tool to study categorical groups [1] and graded categorical groups [3].

The detail proofs of the construction of $(\mathcal{C}, F)^{*}$ have showed in [10]. Concurrently, in [10], S. Majid enriched the results of the dual categories and established links between dual categories and braided groups.

Monoidal categories were considered in a more general situation due to M. Laplaza with the name distributivity category [7]. After, A. Fröhllich and C. T. C. Wall [2] presented the concept of ring-like category. These two concepts are categorifications of the concept of commutative rings, as well as a generalization of the category of modules over a commutative ring R. The overlap of these two concepts has been proved in [14].

In order to have descriptions of structures, and a cohomological classification, N. T. Quang [11] has introduced the concept of Ann-categories, as a categorification of the concept of rings, with requirements of invertibility of objects and morphisms of the under-lying category, similar to those of categorical groups (see [1], 3]). In [13], N. T. Quang proved that each congruence class of an Ann-category \mathcal{A} is completely defined by three invariants: the ring $\Pi_{0}(\mathcal{A})$ of congruence classes of objects of \mathcal{A}, the $\Pi_{0}(\mathcal{A})$-bimodule $\Pi_{1}(\mathcal{A})$ of automorphisms of zero object, and an element in the cohomology group $H_{\text {MacL }}^{3}(R, M)$ due to Mac Lane [8]. The concept of braided Ann-categories is considered in [14], in which authors built the center of an Ann-category, an extension of the center construction of a monoidal category presented by A. Joyal and R. Street [5]. This motivation leads to the purpose of this paper is to construct a dual Ann-category of an arbitrary Ann-category (in Section 3). This gives us a new framework of the concept of Ann-categories, which is very close to the ring extension problem. We also note that the center of an Ann-category is a dual over \mathcal{A}. Thus, in the duals over \mathcal{A} there always exist braided Ann-categories.

In this paper, we sometimes denote by $X Y$ the tensor product of two objects X, Y instead of $X \otimes Y$.

2 Some basic definitions

Definition 2.1 ([11]). An Ann-category consists of:
(i) Category \mathcal{A} together with two bifunctors $\oplus, \otimes: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}$.
(ii) A fixed object $O \in \mathcal{A}$ together with naturality constraints a^{+}, c^{+}, g, d such that $\left(\mathcal{A}, \oplus, a^{+}, c^{+},(O, g, d)\right)$ is a symmetric categorical group.
(iii) A fixed object $I \in \mathcal{A}$ together with naturality constraints a, l, r such that $(\mathcal{A}, \otimes, a,(I, l, r))$ is a monoidal A-category.
(iv) Natural isomorphisms $\mathfrak{L}, \mathfrak{R}$

$$
\begin{array}{ll}
\mathfrak{L}_{A, X, Y}: & A \otimes(X \oplus Y) \rightarrow(A \otimes X) \oplus(A \otimes Y), \\
\mathfrak{R}_{X, Y, A}: & (X \oplus Y) \otimes A \rightarrow(X \otimes A) \oplus(Y \otimes A),
\end{array}
$$

such that the following conditions are satisfied:
(Ann-1) For each $A \in \mathcal{A}$, the pairs $\left(L^{A}, L^{A}\right),\left(R^{A}, \breve{R}^{A}\right)$ defined by relations:

$$
\begin{array}{cc}
L^{A}=A \otimes-, & R^{A}=-\otimes A \\
\breve{L}_{X, Y}^{A}=\mathfrak{L}_{A, X, Y}, & \breve{R}_{X, Y}^{A}=\mathfrak{R}_{X, Y, A}
\end{array}
$$

are \oplus-functors which are compatible with a^{+}and c^{+}.
(Ann-2) The following diagrams commute for all objects $A, B, X, Y \in \mathcal{A}$:

where $v=v_{U, V, Z, T}:(U \oplus V) \oplus(Z \oplus T) \rightarrow(U \oplus Z) \oplus(V \oplus T)$ is the unique morphism built from a^{+}, c^{+}, id in the symmetric monoidal category (\mathcal{A}, \oplus). (Ann-3) For the unit object $I \in \mathcal{A}$ of the operation \otimes, we have the following relations for all objects $X, Y \in \mathcal{A}$:

$$
l_{X \oplus Y}=\left(l_{X} \oplus l_{Y}\right) \circ \breve{L}_{X, Y}^{I}, \quad r_{X \oplus Y}=\left(r_{X} \oplus r_{Y}\right) \circ \breve{R}_{X, Y}^{I}
$$

Definition 2.2. Let \mathcal{A} and \mathcal{A}^{\prime} be Ann-categories. An Ann-functor from \mathcal{A} to \mathcal{A}^{\prime} is a triple $(F, \breve{F}, \widetilde{F})$, where (F, \breve{F}) is a symmetric monoidal functor respect to the operation $\oplus,(F, \widetilde{F})$ is an A-functor (i.e. an associativity functor)
respect to the operation \otimes, satisfying the two following commutative diagrams for all $X, Y, Z \in O b(\mathcal{A})$:

Definition 2.3. A braided Ann-category \mathcal{A} is an Ann-category \mathcal{A} together with a braid c such that $(\mathcal{A}, \otimes, a, c,(I, l, r))$ is a braided tensor category, concurrently c satisfies the following relation:

$$
\left(c_{A, X} \oplus c_{A, Y}\right) \circ \breve{L}_{X, Y}^{A}=\breve{R}_{X, Y}^{A} \circ c_{A, X \oplus Y}
$$

and the condition $c_{O, O}=i d$.
Let us recall a result which has been known of an Ann-category.
Proposition 2.4 ([11, Proposition 3.1]). In the Ann-category \mathcal{A}, there exist uniquely the isomorphisms:

$$
\hat{L}^{A}: A \otimes O \rightarrow A, \quad \hat{R}^{A}: O \otimes A \rightarrow A
$$

such that $\left(L^{A}, \breve{L}^{A}, \hat{L}^{A}\right),\left(R^{A}, \breve{R}^{A}, \hat{R}^{A}\right)$ are the functors which are compatible with the unit constraints of the operator \oplus (also called U-functors).

3 Duals of Ann-categories

In this section, we shall build duals of Ann-categories based on the construction of duals of monoidal categories by S. Majid [9].

Let \mathcal{A} be an Ann-category. An Ann-category \mathcal{B} is functored over \mathcal{A} if there is an Ann-functor $F: \mathcal{B} \rightarrow \mathcal{A}$.

First, let us recall that an Ann-category is called almost strict if all its natural constraints, except for the commutativity constraint and the left distributivity constraint, are identities. Each Ann-category is Ann-equivalent to an almost strict Ann-category of the type (R, M) (see [12]). In this category, for each $A \in O b(\mathcal{A})$, there exists an object $A^{\prime} \in O b(\mathcal{A})$ such that

$$
\begin{equation*}
A \oplus A^{\prime}=O \tag{1}
\end{equation*}
$$

So, hereafter, we always assume that \mathcal{A} is an almost strict Ann-category and satisfies the condition (1) and the Ann-functor $F: \mathcal{B} \rightarrow \mathcal{A}$ satisfies the conditions $F(O)=O, F(I)=I$.

Definition 3.1. Let \mathcal{A} be an Ann-category. Let (\mathcal{B}, F) be a functored Anncategory over \mathcal{A}. A right (\mathcal{B}, F)-module is a pair $\left(A, u_{A}\right)$ consisting of an object A in \mathcal{A} and a natural transformation $u_{A, X}: A \otimes F(X) \rightarrow F(X) \otimes A$ such that $u_{A, I}=i d$ and the following diagrams commute:

A morphism $f:\left(A, u_{A}\right) \rightarrow\left(B, u_{B}\right)$ between right (\mathcal{B}, F)-modules is a morphism $f: A \rightarrow B$ in \mathcal{A} such that the following diagram commutes for all $X \in \mathcal{B}$:

Let (\mathcal{B}, F) be a functored Ann-category over \mathcal{A}. We consider the category $\mathcal{B}^{*}=(\mathcal{B}, F)^{*}$ defined as follows. The objects of \mathcal{B}^{*} are right (\mathcal{B}, F)-modules. The morphisms of \mathcal{B}^{*} are morphisms between right (\mathcal{B}, F)-modules.

Now, we shall equip the operators and the structures for \mathcal{B}^{*} so that \mathcal{B}^{*} becomes an Ann-category.

Lemma 3.2. For any two objects $\left(A, u_{A}\right),\left(B, u_{B}\right)$ in $\mathcal{B}^{*},\left(A \oplus B, u_{A \oplus B}\right)$ is an object of \mathcal{B}^{*}, where $u_{A \oplus B}$ is defined by:

$$
u_{A \oplus B, X}=\mathfrak{L}_{F X, A, B}^{-1} \circ\left(u_{A, X} \oplus u_{B, X}\right), \text { for all } X \in \mathcal{A} .
$$

Proof. Since $u_{A, I}=i d, u_{B, I}=i d, \mathfrak{L}_{F I, A, B}=\mathfrak{L}_{I, A, B}=i d$, we have $u_{A \oplus B, I}=i d$.
To prove that $u_{A \oplus B}$ satisfies the diagram (2), we consider the diagram (5) (see page 12). In the diagram (5), the regions (I), (VII) commute thanks to the
determination of $u_{A \oplus B}$, the region (II) commutes thanks to the naturality of $\mathfrak{R}=i d$, the regions (III), (VI) commute since \mathcal{A} is an Ann-category, the region (V) commutes thanks to the naturality of \mathfrak{L}, the region (VIII) commutes thanks to the naturality of v, the perimeter commutes since $\left(A, u_{A}\right),\left(B, u_{B}\right)$ satisfy the diagram (2). Therefore, the region (IV) commutes, i.e., $\left(A \oplus B, u_{A \oplus B}\right)$ satisfies the diagram (2).

To prove that $u_{A \oplus B}$ satisfies the diagram (3), we consider the diagram (6) (see page 13). In the diagram (6), the regions (I), (II) commute thanks to the naturality of $\mathfrak{R}=i d$, the regions (III), (VI), (VIII) commute thanks to the determination of $u_{A \oplus B}$, the regions (IV), (X) commute since \mathcal{A} is an Anncategory, the regions (VII), (IX) commute thanks to the naturality of \mathfrak{L}, the perimeter commutes thanks to u_{A}, u_{B} satisfy the diagram (3). Therefore, the region (V) commutes, i.e., $u_{A \oplus B}$ satisfies the diagram (3). So, $\left(A \oplus B, u_{A \oplus B}\right)$ is an object of \mathcal{B}^{*}.

By Lemma 3.2, we can determine the operator "+" of \mathcal{B}^{*} where the sum of two objects is defined by

$$
\left(A, u_{A}\right)+\left(B, u_{B}\right)=\left(A \oplus B, u_{A \oplus B}\right),
$$

and the sum of two morphisms is the sum of morphisms in \mathcal{A}.
Proposition 3.3. \mathcal{B}^{*} is a symmetric categorical group where the associativity constraint is strict, the unit constraint is $\left(\left(O, u_{O, X}=\hat{L}_{F X}^{-1}\right), i d, i d\right)$, and the commutativity constraint is $c_{\left(A, u_{A}\right),\left(B, u_{B}\right)}^{+}=c_{A, B}^{+}$.

Proof. Assume that $f:\left(A, u_{A}\right) \rightarrow\left(B, u_{B}\right)$ and $g:\left(C, u_{C}\right) \rightarrow\left(D, u_{D}\right)$ are two morphisms in the category \mathcal{B}^{*}. We shall prove that

$$
f+g=f \oplus g
$$

satisfies the diagram (4), so it is a morphism of \mathcal{B}^{*}. We consider the diagram:

In this diagram, the region (I) commutes thanks to the naturality of $\Re=i d$, the region (II) commutes thanks to the determination of $u_{A \oplus C}$, the region (IV) commutes thanks to the determination of $u_{B \oplus D}$, the region (V) commutes thanks to the naturality of \mathfrak{L}; each component of the perimeter commutes since f and g are morphisms of \mathcal{B}^{*}. So, the perimeter commutes. Therefore, the region (III) commutes, i.e., $f+g=f \oplus g$ is a morphism of \mathcal{B}^{*}.

Next, we prove that $a^{+}=i d$ is a morphism

$$
\left(\left(A, u_{A}\right)+\left(B, u_{B}\right)\right)+\left(C, u_{C}\right) \rightarrow\left(A, u_{A}\right)+\left(\left(B, u_{B}\right)+\left(C, u_{C}\right)\right)
$$

in \mathcal{B}^{*}. We consider the following diagram:

w here $\alpha_{1}=\left(u_{A, X} \oplus u_{B, X}\right) \oplus u_{C, X}$

$$
\alpha_{3}=u_{A, X} \oplus u_{B \oplus C, X}
$$

$$
\begin{aligned}
& \alpha_{2}=u_{A \oplus B, X} \oplus u_{C, X} \\
& \alpha_{4}=u_{A, X} \oplus\left(u_{B, X} \oplus u_{C, X}\right)
\end{aligned}
$$

In the above diagram, the region (I) commutes thanks to the determination of $u_{A \oplus B}$, the region (II) commutes thanks to the determination of $u_{B \oplus C}$, the region (III) commutes thanks to the determination of $u_{(A \oplus B) \oplus C}$, the region (IV) commutes thanks to the determination of $u_{A \oplus(B \oplus C)}$, the region (VI) commutes since \mathcal{A} is an Ann-category, the perimeter commutes thanks to the naturality of $a^{+}=i d$. Therefore, the region (V) commutes, i.e., $a^{+}=i d$ is a morphism of \mathcal{B}^{*}.

To prove that c^{+}is the morphism

$$
\left(A, u_{A}\right)+\left(B, u_{B}\right) \rightarrow\left(B, u_{B}\right)+\left(A, u_{A}\right)
$$

in \mathcal{B}^{*}, we consider the following diagram. In this diagram, the region (I) commutes thanks to the determination of $u_{A \oplus B}$, the regions (II), (IV) commute
since \mathcal{A} is an Ann-category, the region (V) commutes thanks to the determination of $u_{B \oplus A}$, the perimeter commutes thanks to the naturality of c^{+}. Therefore, the region (III) commutes, i.e., c^{+}is a morphism in \mathcal{B}^{*}.

One can verify that $\left(\left(O, u_{O, X}=\hat{L}_{F X}^{-1}\right), i d, i d\right)$ is the unit constraint of \mathcal{B}^{*}. Finally, we shall prove that each object of \mathcal{B}^{*} is invertible.

Let $\left(A, u_{A}\right)$ be an object of \mathcal{B}^{*}. By the condition (1), there exsits an object $A^{\prime} \in O b(\mathcal{A})$ such that

$$
A \oplus A^{\prime}=O
$$

The family of natural transformations $u_{A^{\prime}, X}: A^{\prime} \otimes F X \rightarrow F X \otimes A^{\prime}$ is defined by:

$$
u_{A, X} \oplus u_{A^{\prime}, X}=\mathfrak{L}_{F X, A, A^{\prime}} \circ u_{O, X} .
$$

One can prove that $\left(A^{\prime}, u_{A^{\prime}}\right)$ is the invertible object of the object $\left(A, u_{A}\right)$ in the category \mathcal{B}^{*}.

Lemma 3.4. For any two objects $\left(A, u_{A}\right),\left(B, u_{B}\right)$ of $\mathcal{B}^{*},\left(A \otimes B, u_{A \otimes B}\right)$ is an object of \mathcal{B}^{*}, where $u_{A \otimes B}$ is defined by:

$$
u_{A \otimes B, X}=\left(u_{A, X} \otimes i d_{B}\right) \circ\left(i d_{A} \otimes u_{B, X}\right), \text { for all } X \in \mathcal{A} .
$$

Proof. Let $\left(A, u_{A}\right),\left(B, u_{B}\right)$ be two objects of \mathcal{B}^{*}. Since $u_{A, I}=i d$ and $u_{B, I}=i d$, we have $u_{A \otimes B, I}=i d$. Moreover, by Theorem 3.3 [9], $u_{A \otimes B}$ satisfies the diagram (3).

Finally, to prove that $u_{A \otimes B}$ satisfies the diagram (2), we consider the diagram (7) (see page 14). In the diagram (7), the region (I) commutes since $\left(B, u_{B}\right)$ satisfies the diagram (22), the regions (II), (VII) and (IX) commute thanks to the naturality of $a^{+}=i d$, the region (III) commutes thanks to the naturality of \mathfrak{L}, the regions (IV), (XI) and the perimeter commutes since \mathcal{A} is an Ann-category, the regions (VI), (VIII) commute thanks to the determination of $u_{A B}$, the region (X) commutes since $\left(A, u_{A}\right)$ satisfies the diagram
(21), the region (XII) commutes thanks to the naturality of $\mathfrak{R}=i d$. Therefore, the region (V) commutes, i.e., $\left(A B, u_{A B}\right)$ satisfies the diagram (2). So $\left(A \otimes B, u_{A \otimes B}\right)$ is an object of \mathcal{B}^{*}.

By Lemma 3.4, we can determine the operator " \times " of \mathcal{B}^{*} where the product of two objects is defined by

$$
\left(A, u_{A}\right) \times\left(B, u_{B}\right)=\left(A \otimes B, u_{A \otimes B}\right)
$$

and the tensor product of two morphisms is the tensor product of two morphisms in \mathcal{A}.

Proposition 3.5. \mathcal{B}^{*} is a strict monoidal category.
Proof. Assume that $f:\left(A, u_{A}\right) \rightarrow\left(B, u_{B}\right)$ and $g:\left(C, u_{C}\right) \rightarrow\left(D, u_{D}\right)$ are two morphisms in the category \mathcal{B}^{*}. By Theorem 3.3 [9], the morphism

$$
f \times g=f \otimes g:\left(A, u_{A}\right) \times\left(C, u_{C}\right) \rightarrow\left(B, u_{B}\right) \times\left(D, u_{D}\right)
$$

satisfies the diagram (4), i.e., $f \times g$ is a morphism in \mathcal{B}^{*}.
The composition of two morphisms in \mathcal{B}^{*} is the normal composition. By Theorem 3.3 [9], \mathcal{B}^{*} has the associativity constraint be strict. One can easily prove that $(I, i d)$ is an object in \mathcal{B}^{*} and it together with the strict constraints $l=i d, r=i d$ is the unit constraint of the operator \times in \mathcal{B}^{*}.

Theorem 3.6. \mathcal{B}^{*} is an Ann-category with the distributivity constraints are given by

$$
\mathfrak{L}_{\left(A, u_{A}\right),\left(B, u_{B}\right),\left(C, u_{C}\right)}=\mathfrak{L}_{A, B, C}, \mathfrak{R}_{\left(A, u_{A}\right),\left(B, u_{B}\right),\left(C, u_{C}\right)}=i d
$$

Proof. By Proposition 3.3, $\left(\mathcal{B}^{*},+\right)$ is a symmetric categorical group. By Proposition 3.5, $\left(\mathcal{B}^{*}, \times\right)$ is a monoidal category. One can prove that

$$
\begin{array}{r}
\mathfrak{L}:\left(A, u_{A}\right) \times\left(\left(B, u_{B}\right)+\left(C, u_{C}\right)\right) \rightarrow\left(A, u_{A}\right) \times\left(B, u_{B}\right)+\left(A, u_{A}\right) \times\left(C, u_{C}\right), \\
\mathfrak{R}=i d:\left(\left(A, u_{A}+\left(B, u_{B}\right)\right) \times\left(C, u_{C}\right) \rightarrow\left(A, u_{A}\right) \times\left(C, u_{C}\right)+\left(B, u_{B}\right) \times\left(C, u_{C}\right)\right.
\end{array}
$$

are morphisms in \mathcal{B}^{*}.
Moreover, the constraints $a^{+}=i d, c^{+}, a=i d, \mathfrak{L}, \mathfrak{R}=i d$ of the Anncategory \mathcal{A} satisfy the conditions (Ann-1), (Ann-2), (Ann-3), so, in the category \mathcal{B}^{*}, they also satisfy these conditions. Thus \mathcal{B}^{*} is an Ann-category.

The following proposition is obvious.
Proposition 3.7. \mathcal{B}^{*} is functored over \mathcal{A} with the forgetful Ann-functor

$$
F^{*}: \mathcal{B}^{*} \rightarrow \mathcal{A}
$$

Example 1. The center of an Ann-category \mathcal{A}

Let \mathcal{A} be an Ann-category. Let $\mathcal{B}=\mathcal{A}$ and $F=i d$. Then $\mathcal{B}^{*}=\mathcal{C}_{\mathcal{A}}$, where $\mathcal{C}_{\mathcal{A}}$ is the center of the Ann-category \mathcal{A} which is built in [14]. This is a braided Ann-category with the quasi-symmetric

$$
c_{\left(A, u_{A}\right),\left(B, u_{B}\right)}=u_{A, B}: A \otimes B \rightarrow B \otimes A .
$$

Next, we shall apply above results to build the dual Ann-category of the pair (\mathcal{B}, F), where $\mathcal{B}=\left(R^{\prime}, M^{\prime}, f^{\prime}\right), \mathcal{A}=(R, M, f)$ are Ann-categories.
Example 2. Duals of an Ann-category of the type (R, M)
Let R be a ring and M be a R-bimodule. An Ann-category of the type (R, M) is a category \mathcal{I} whose objects are elements of R, and whose morphisms are automorphisms, $(x, a): x \rightarrow x, \forall a \in M$. The composition of morphisms is the addition in M. The two operators \oplus and \otimes of \mathcal{I} are given by

$$
\begin{array}{r}
x \oplus y=x+y, \quad(x, a) \oplus(y, b)=(x+y, a+b), \\
x \otimes y=x . y, \quad(x, a) \otimes(y, b)=(x y, x b+a y) .
\end{array}
$$

All constraints of \mathcal{I} are strict, except for the left distributivity constraint and the commutativity constraint given by

$$
\begin{aligned}
\mathfrak{L}_{x, y, z} & =(\bullet, \lambda(x, y, z)): x(y+z) \rightarrow x y+x z \\
c_{x, y}^{+} & =(\bullet, \eta(x, y)): x+y \rightarrow y+x
\end{aligned}
$$

where $\lambda: R^{3} \rightarrow M, \eta: R^{2} \rightarrow M$ are functions satisfying the some certain coherence conditions (for detail, see [12], [13]).

Let \mathcal{A} be an almost strict Ann-category of the type (R, M) and \mathcal{B} be an almost strict Ann-category of the type $\left(R^{\prime}, M^{\prime}\right)$. Let $(F, \breve{F}, \widetilde{F}): \mathcal{B} \rightarrow \mathcal{A}$ be an Ann-functor. Then, by Theorem 4.3 [15], F is a functor of the type (p, q), i.e.,

$$
F(x)=p(x), F(x, a)=(p(x), q(a)),
$$

where $p: R^{\prime} \rightarrow R$ is a ring homomorphism and $q: M^{\prime} \rightarrow M$ is a group homomorphism and

$$
q(x a)=p(x) q(a), \quad q(a x)=q(a) p(x), \text { for all } x \in R, a \in M
$$

Moreover, \breve{F}, \widetilde{F} are associated, respectively, to μ, ν which satisfy some certain coherence conditions (for detail, see Theorem 4.4 [15]).

According to the above steps, each object of \mathcal{B}^{*} is a pair $\left(r, u_{r}\right)$, where r is in the centerization of $\operatorname{Imp}=p\left(R^{\prime}\right)$ in the ring R, (i.e., $r p(x)=p(x) r \forall x \in R^{\prime}$) and $u_{r}: R^{\prime} \rightarrow M$ is a function satisfying the condition $u_{r, 1}=0$ and the two following conditions for all $x, y \in R^{\prime}$:

$$
\begin{aligned}
u(r, x)-u(r, x+y)+u(r, y) & =\mu(x, y) r+r \mu(x, y)-\lambda(r, p x, p y) \\
x u(r, y)-u(r, x y)+u(r, x) y & =r \nu(x, y)-\nu(x, y) r .
\end{aligned}
$$

We now describe a morphism $f:\left(r, u_{r}\right) \rightarrow\left(s, u_{s}\right)$ of \mathcal{B}^{*}. Since $f: r \rightarrow s$ is a morphism in the Ann-category $\mathcal{A}, s=r$, and $f=(r, a)$ with $a \in M$.

From the commutation of the diagram (4), we have

$$
p(x) a=a p(x), \text { for all } x \in R^{\prime}
$$

Now, \mathcal{B}^{*} is an Ann-category with the two operators given by

$$
\begin{aligned}
\left(r, u_{r}\right)+\left(s, u_{s}\right) & =\left(r+s, u_{r+s}\right) \\
\left(r, u_{r}\right) \times\left(s, u_{s}\right) & =\left(r s, u_{r s}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
u_{r+s, x} & =u_{r, x}+u_{s, x}-\lambda(p x, r, s), \\
u_{r s, x} & =u_{r, x} s+r \cdot u_{s, x}
\end{aligned}
$$

and $f+g=f \oplus g, f \times g=f \otimes g$ where $f:\left(r, u_{r}\right) \rightarrow\left(r, u_{r}\right), g:\left(s, u_{s}\right) \rightarrow\left(s, u_{s}\right)$.
All constraints of \mathcal{B}^{*} are strict, except for the commutativity constraint and the left distributivity constraint given by

$$
\begin{aligned}
c_{\left(r, u_{r}\right),\left(s, u_{s}\right)}^{+} & =c_{r, s}^{+}=(\bullet, \eta(r, s)), \\
\mathfrak{L}_{\left(r, u_{r}\right),\left(s, u_{s}\right),\left(t, u_{t}\right)} & =\mathfrak{L}_{r, s, t}=(\bullet, \lambda(r, s, t)) .
\end{aligned}
$$

The invertible object of the object $\left(r, u_{r}\right)$ respect to the operator + is $\left(-r, u_{-r}\right)$, where $-r$ is the opposite element of r in the group $(R,+)$ and $u_{-r}: R^{\prime} \rightarrow M$ is given by:

$$
u_{-r, x}=\lambda(p x, r,-r)-u_{r, x} .
$$

Diagram (5)
w here $t_{1}=u_{A, X \oplus Y} \oplus u_{B, X \oplus Y}$
$t_{2}=\left(u_{A, X} \oplus u_{B, X}\right) \oplus\left(u_{A, Y} \oplus u_{B, Y}\right)$
$t_{3}=\left(u_{A, X} \oplus u_{A, Y}\right) \oplus\left(u_{B, X} \oplus u_{B, Y}\right)$
Nguyen Tien Quang and Dang Dinh Hanh

Nguyen Tien Quang and Dang Dinh Hanh

References

[1] P. Carrasco and A. R. Garzón, Obstruction theory for extensions of categorical groups, Applied Categorical Structures 12 (2004), 35-61.
[2] A. Fröhlich and C. T. C. Wall, Graded monoidal categories, Compositio Mathematical 28, No 3 (1974), 229-285.
[3] A. R. Garzón and A. del Río, Equivariant extensions of categorical groups, Applied Categorical Structures 13 (2005), 131-140.
[4] A. Grothendieck, Catégories fibrées et déscente, (SGA1) Exposé VI, Lecture Notes in Mathematics 224, 145-194, Springer-Verlag, Berlin, 1971.
[5] A. Joyal and R. Street, Braided tensor categories, Advances in Mathematics 102 (1993), 20-78.
[6] C. Kassel, Quantum Groups, Graduate texts in mathematics, Vol 155 (1995), Springer-Verlag, Berlin/ New York.
[7] M. L. Laplaza, Coherence for distribution, Lecture Notes in Math 281 (1972), 29-65.
[8] S. Mac Lane, Extensions and obstructions for rings, Illnois Journal of Mathematics Vol 2 (1958), 316-345.
[9] S. Majid, Representations, duals and quantum doubles of monoidal categories, Suppl. Rend. Circ. Mat. Palermo, Series II, 26 (1991), 197-206.
[10] S. Majid, Braided groups and duals of monoidal categories, Canad. Math. Soc. Conf. Proc. 13 (1992), 329-343.
[11] N. T. Quang, Introduction to Ann-categories, J. Math. Hanoi, No.15, 4 (1987), 14-24. arXiv: 0702588v2 [math.CT] 21 Feb 2007.
[12] N. T. Quang, Structure of Ann-categories of Type (R, N), Vietnam Journal of Mathematics 32:4 (2004), 379-388.
[13] N. T. Quang, Structure of Ann-categories, arXiv. 0805. 1505 v4 [math. CT] 20 Apr 2009.
[14] N. T. Quang, D. D. Hanh, On the braiding of an Ann-category, arXiv: 0909.1486v1 [math.CT] 8 Sep 2009 [Asian-European Journal of Mathematics (to appear)].
[15] N. T. Quang, D. D. Hanh, Homological classification of Ann-functors, East-West J. of Mathematics, Vol 11, No 2 (2009), 195-210.

