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Abstract

Dual monoidal category C∗ of a monoidal functor F : C → V has been

constructed by S. Majid. In this paper, we extend the construction of

dual structures for an Ann-functor F : B → A. In particular, when

F = idA, then the dual category A∗ is indeed the center of A and this

is a braided Ann-category.
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1 Introduction

Categories with quasi-symmetry appeared under the heading “braided monoidal
categories” in a connection with low dimensional topology [5], as well as in the
context of quantum groups [6].

The concept “dual of monoidal category” appeared in [9] in the following
case. The Hopf algebra can be built via a monoidal category C and a functor
F : C → Vec. This event can be generalized as Vec is replaced by a monoidal
category V. Now, if F is a monoidal functor, then C is called functored on V,
or (C, F ) is called a V-category in A. Grothendieck’s terminology [4]. In this
situation, S. Majid built the monoidal category (C, F )∗ = (C∗, F ∗), named “full
dual category” of (C, F ). The objects of (C, F )∗ are pairs (V, uV ), consisting
of V ∈ C and a natural transformation uV = (uV,X : V ⊗ FX → FX ⊗

V ) satisfying the compatition with the monoidal functor (F, F̃ ). The full
subcategory (C, F )◦ consists of objects (V, uV ) where uV,X are isomorphisms.
It is interesting when V = C and F = id, then (C, F )◦ is a braided monoidal
category, called the center Z(C) of the monoidal category C.

The notion of the center of a monoidal category appeared first in [5], [9].
It was a construction of a braided tensor category from an arbitrary tensor
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category. Then, the center of a category appears as a tool to study categorical
groups [1] and graded categorical groups [3].

The detail proofs of the construction of (C, F )∗ have showed in [10]. Con-
currently, in [10], S. Majid enriched the results of the dual categories and
established links between dual categories and braided groups.

Monoidal categories were considered in a more general situation due to M.
Laplaza with the name distributivity category [7]. After, A. Fröhllich and C.
T. C. Wall [2] presented the concept of ring-like category. These two concepts
are categorifications of the concept of commutative rings, as well as a general-
ization of the category of modules over a commutative ring R. The overlap of
these two concepts has been proved in [14].

In order to have descriptions of structures, and a cohomological classifi-
cation, N. T. Quang [11] has introduced the concept of Ann-categories, as a
categorification of the concept of rings, with requirements of invertibility of ob-
jects and morphisms of the under-lying category, similar to those of categorical
groups (see [1], [3]). In [13], N. T. Quang proved that each congruence class of
an Ann-category A is completely defined by three invariants: the ring Π0(A)
of congruence classes of objects of A, the Π0(A)-bimodule Π1(A) of automor-
phisms of zero object, and an element in the cohomology group H3

MacL(R,M)
due to Mac Lane [8]. The concept of braided Ann-categories is considered in
[14], in which authors built the center of an Ann-category, an extension of the
center construction of a monoidal category presented by A. Joyal and R. Street
[5]. This motivation leads to the purpose of this paper is to construct a dual
Ann-category of an arbitrary Ann-category (in Section 3). This gives us a new
framework of the concept of Ann-categories, which is very close to the ring
extension problem. We also note that the center of an Ann-category is a dual
over A. Thus, in the duals over A there always exist braided Ann-categories.

In this paper, we sometimes denote by XY the tensor product of two
objects X, Y instead of X ⊗ Y .

2 Some basic definitions

Definition 2.1 ([11]). An Ann-category consists of:
(i) Category A together with two bifunctors ⊕,⊗ : A×A → A.
(ii) A fixed object O ∈ A together with naturality constraints a+, c+, g, d such
that (A,⊕, a+, c+, (O, g, d)) is a symmetric categorical group.
(iii) A fixed object I ∈ A together with naturality constraints a, l, r such that
(A,⊗, a, (I, l, r)) is a monoidal A-category.
(iv) Natural isomorphisms L,R

LA,X,Y : A⊗ (X ⊕ Y ) → (A⊗X)⊕ (A⊗ Y ),
RX,Y,A : (X ⊕ Y )⊗A → (X ⊗A)⊕ (Y ⊗A),
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such that the following conditions are satisfied:
(Ann-1) For each A ∈ A, the pairs (LA, L̆A), (RA, R̆A) defined by relations:

LA = A⊗−, RA = −⊗A,

L̆A
X,Y = LA,X,Y , R̆A

X,Y = RX,Y,A

are ⊕-functors which are compatible with a+ and c+.
(Ann-2) The following diagrams commute for all objects A,B,X, Y ∈ A:

(AB)(X ⊕ Y ) A(B(X ⊕ Y )) A(BX ⊕ BY )

(AB)X ⊕ (AB)Y A(BX) ⊕ A(BY )

?

L̆AB

-idA⊗L̆B

�
aA,B,X⊕Y

?

L̆A

�
aA,B,X⊕aA,B,Y

(X ⊕ Y )(BA) ((X ⊕ Y )B)A (XB ⊕ Y B)A

X(BA) ⊕ Y (BA) (XB)A ⊕ (Y B)A

?

R̆BA

-
aX⊕Y,B,A -R̆B

⊗idA

?

R̆A

-
aX,B,A⊕aY,B,A

(A(X ⊕ Y ))B A((X ⊕ Y )B) A(XB ⊕ Y B)

(AX ⊕ AY )B (AX)B ⊕ (AY )B A(XB) ⊕ A(Y B)

?

L̆A
⊗idB

�
aA,X⊕Y,B -idA⊗R̆B

?
L̆A

-R̆B

�a ⊕ a

(A⊕B)X ⊕ (A⊕B)Y (A⊕ B)(X ⊕ Y ) A(X ⊕ Y )⊕ B(X ⊕ Y )

(AX ⊕BX) ⊕ (AY ⊕ BY ) (AX ⊕ AY )⊕ (BX ⊕BY )

?

R̆X
⊕R̆Y

� L̆ -R̆

?

L̆A
⊕L̆B

-v

where v = v
U,V,Z,T

: (U ⊕ V ) ⊕ (Z ⊕ T ) → (U ⊕ Z) ⊕ (V ⊕ T ) is the unique
morphism built from a+, c+, id in the symmetric monoidal category (A,⊕).
(Ann-3) For the unit object I ∈ A of the operation ⊗, we have the following
relations for all objects X, Y ∈ A:

lX⊕Y = (lX ⊕ lY ) ◦ L̆
I
X,Y , rX⊕Y = (rX ⊕ rY ) ◦ R̆

I
X,Y .

Definition 2.2. Let A and A′ be Ann-categories. An Ann-functor from
A to A′ is a triple (F, F̆ , F̃ ), where (F, F̆ ) is a symmetric monoidal functor

respect to the operation ⊕, (F, F̃ ) is an A-functor (i.e. an associativity functor)
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respect to the operation ⊗, satisfying the two following commutative diagrams
for all X, Y, Z ∈ Ob(A):

F (X(Y ⊕ Z)) FX.F (Y ⊕ Z) FX(FY ⊕ FZ)

F (XY ⊕XZ) F (XY )⊕ F (XZ) FX.FY ⊕ FX.FZ

?

F (L)

� F̃ � id⊗F̆

?

L
′

� F̆ �F̃⊕F̃

F ((X ⊕ Y )Z) F (X ⊕ Y ).FZ (FX ⊕ FY ).FZ

F (XZ ⊕ Y Z) F (XZ)⊕ F (Y Z) FX.FZ ⊕ FY.FZ

?

F (R)

� F̃ �F̆⊗id

?

R
′

� F̆ �F̃⊕F̃

Definition 2.3. A braided Ann-category A is an Ann-category A together
with a braid c such that (A,⊗, a, c, (I, l, r)) is a braided tensor category, con-
currently c satisfies the following relation:

(cA,X ⊕ cA,Y ) ◦ L̆
A
X,Y = R̆A

X,Y ◦ cA,X⊕Y ,

and the condition c
O,O

= id.

Let us recall a result which has been known of an Ann-category.

Proposition 2.4 ([11, Proposition 3.1]). In the Ann-category A, there exist
uniquely the isomorphisms:

L̂A : A⊗ O → A, R̂A : O ⊗ A → A

such that (LA, L̆A, L̂A), (RA, R̆A, R̂A) are the functors which are compatible with
the unit constraints of the operator ⊕ (also called U-functors).

3 Duals of Ann-categories

In this section, we shall build duals of Ann-categories based on the construction
of duals of monoidal categories by S. Majid [9].

Let A be an Ann-category. An Ann-category B is functored over A if there
is an Ann-functor F : B → A.

First, let us recall that an Ann-category is called almost strict if all its
natural constraints, except for the commutativity constraint and the left dis-
tributivity constraint, are identities. Each Ann-category is Ann-equivalent to
an almost strict Ann-category of the type (R,M) (see [12]). In this category,
for each A ∈ Ob(A), there exists an object A′ ∈ Ob(A) such that

A⊕A′ = O. (1)
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So, hereafter, we always assume that A is an almost strict Ann-category
and satisfies the condition (1) and the Ann-functor F : B → A satisfies the
conditions F (O) = O,F (I) = I.

Definition 3.1. Let A be an Ann-category. Let (B, F ) be a functored Ann-
category over A. A right (B, F )-module is a pair (A, uA) consisting of an object
A in A and a natural transformation uA,X : A⊗F (X) → F (X)⊗A such that
uA,I = id and the following diagrams commute:

A⊗ (FX ⊕ FY ) (A⊗ FX)⊕ (A⊗ FY ) (FX ⊗A)⊕ (FY ⊗ A)

A⊗ F (X ⊕ Y ) F (X ⊕ Y )⊗ A (FX ⊕ FY ) ⊗A

-
L̆A

FX,FY

?

id⊗F̆

-
uA,X⊕uA,Y

?

id

-
uA,X⊕Y � F̆⊗id

(2)

A⊗ (FX ⊗ FY ) FX ⊗A⊗ FY FX ⊗ FY ⊗ A

A⊗ F (X ⊗ Y ) F (X ⊗ Y )⊗ A

-
uA,X⊗id

?
id⊗F̃

-
id⊗uA,Y

?
F̃⊗id

-
uA,X⊗Y

(3)

A morphism f : (A, uA) → (B, uB) between right (B, F )-modules is a morphism
f : A → B in A such that the following diagram commutes for all X ∈ B:

A⊗ FX FX ⊗A

B ⊗ FX FX ⊗B

-
uA,X

?
f⊗id

?
id⊗f

-
uB,X

(4)

Let (B, F ) be a functored Ann-category over A. We consider the category
B∗ = (B, F )∗ defined as follows. The objects of B∗ are right (B, F )-modules.
The morphisms of B∗ are morphisms between right (B, F )-modules.

Now, we shall equip the operators and the structures for B∗ so that B∗

becomes an Ann-category.

Lemma 3.2. For any two objects (A, uA), (B, uB) in B∗, (A⊕ B, uA⊕B) is
an object of B∗, where uA⊕B is defined by:

uA⊕B,X = L
−1
FX,A,B ◦ (uA,X ⊕ uB,X), for all X ∈ A.

Proof. Since uA,I = id, uB,I = id, LFI,A,B = LI,A,B = id, we have uA⊕B,I = id.
To prove that uA⊕B satisfies the diagram (2), we consider the diagram (5)

(see page 12). In the diagram (5), the regions (I), (VII) commute thanks to the
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determination of uA⊕B, the region (II) commutes thanks to the naturality of
R = id, the regions (III), (VI) commute since A is an Ann-category, the region
(V) commutes thanks to the naturality of L, the region (VIII) commutes thanks
to the naturality of v, the perimeter commutes since (A, uA), (B, uB) satisfy
the diagram (2). Therefore, the region (IV) commutes, i.e., (A ⊕ B, uA⊕B)
satisfies the diagram (2).

To prove that uA⊕B satisfies the diagram (3), we consider the diagram (6)
(see page 13). In the diagram (6), the regions (I), (II) commute thanks to
the naturality of R = id, the regions (III), (VI), (VIII) commute thanks to
the determination of uA⊕B, the regions (IV), (X) commute since A is an Ann-
category, the regions (VII), (IX) commute thanks to the naturality of L, the
perimeter commutes thanks to uA, uB satisfy the diagram (3). Therefore, the
region (V) commutes, i.e., uA⊕B satisfies the diagram (3). So, (A ⊕ B, uA⊕B)
is an object of B∗.

By Lemma 3.2, we can determine the operator “+” of B∗ where the sum
of two objects is defined by

(A, uA) + (B, uB) = (A⊕ B, uA⊕B),

and the sum of two morphisms is the sum of morphisms in A.

Proposition 3.3. B∗ is a symmetric categorical group where the associa-
tivity constraint is strict, the unit constraint is ((O, uO,X = L̂−1

FX), id, id), and
the commutativity constraint is c+(A,uA),(B,uB) = c+A,B.

Proof. Assume that f : (A, uA) → (B, uB) and g : (C, uC) → (D, uD) are two
morphisms in the category B∗. We shall prove that

f + g = f ⊕ g

satisfies the diagram (4), so it is a morphism of B∗. We consider the diagram:

AFX ⊕ CFX

(A⊕ C)FX

(B ⊕D)FX

BFX ⊕DFX

(FX)A⊕ (FX)C

(FX)(A ⊕ C)

(FX)(B ⊕D)

(FX)B ⊕ (FX)D

?
(f ⊕ g)⊗ id

6̆
L

?
id⊗ (f ⊕ g)

?
L̆

-uA,X ⊕ uC,X

-uA⊕C,X

-uB⊕D,X

-uB,X ⊕ uD,X-

(f ⊗ id) ⊕ (g ⊗ id)

�

(id ⊗ f) ⊕ (id ⊗ g)

(I) (II)

(III)

(IV)

(V)
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In this diagram, the region (I) commutes thanks to the naturality ofR = id,
the region (II) commutes thanks to the determination of uA⊕C, the region (IV)
commutes thanks to the determination of uB⊕D, the region (V) commutes
thanks to the naturality of L; each component of the perimeter commutes
since f and g are morphisms of B∗. So, the perimeter commutes. Therefore,
the region (III) commutes, i.e., f + g = f ⊕ g is a morphism of B∗.

Next, we prove that a+ = id is a morphism

((A, uA) + (B, uB)) + (C, uC) → (A, uA) + ((B, uB) + (C, uC))

in B∗. We consider the following diagram:

(AFX ⊕ BFX)⊕ CFX

(A⊕B)FX ⊕ CFX

((A⊕ B)⊕ C)FX

(FX)((A ⊕B) ⊕ C)

(FX)(A⊕ B) ⊕ (FX)C

((FX)A⊕ (FX)B) ⊕ (FX)C

AFX ⊕ (BFX ⊕ CFX)

AFX ⊕ (B ⊕ C)FX

(A⊕ (B ⊕ C))FX

(FX)(A ⊕ (B ⊕ C))

(FX)A⊕ (FX)(B ⊕ C)

(FX)A⊕ ((FX)B ⊕ (FX)C)

?
u(A⊕B)⊕C,X

?
L̆

?
L̆⊗ id

?
uA⊕(B⊕C),X

?
L̆

?
id⊗ L̆

-

α2

-

α1

�

α3

�

α4

(I)

(III)

(II)

(IV)

(V)

(VI)

where α1 = (uA,X ⊕ uB,X)⊕ uC,X α2 = uA⊕B,X ⊕ uC,X

α3 = uA,X ⊕ uB⊕C,X α4 = uA,X ⊕ (uB,X ⊕ uC,X)

In the above diagram, the region (I) commutes thanks to the determination
of uA⊕B, the region (II) commutes thanks to the determination of uB⊕C , the
region (III) commutes thanks to the determination of u(A⊕B)⊕C , the region (IV)
commutes thanks to the determination of uA⊕(B⊕C), the region (VI) commutes
since A is an Ann-category, the perimeter commutes thanks to the naturality
of a+ = id. Therefore, the region (V) commutes, i.e., a+ = id is a morphism
of B∗.

To prove that c+ is the morphism

(A, uA) + (B, uB) → (B, uB) + (A, uA)

in B∗, we consider the following diagram. In this diagram, the region (I) com-
mutes thanks to the determination of uA⊕B, the regions (II), (IV) commute
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since A is an Ann-category, the region (V) commutes thanks to the deter-
mination of uB⊕A, the perimeter commutes thanks to the naturality of c+.
Therefore, the region (III) commutes, i.e., c+ is a morphism in B∗.

AFX ⊕ BFX

(A⊕B)FX

(FX)(A⊕ B)

(FX)A⊕ (FX)B

BFX ⊕ AFX

(B ⊕A)FX

(FX)(B ⊕ A)

(FX)B ⊕ (FX)A

?
uA⊕B,X

?
L̆

?
uB⊕A,X

?
L̆

-c+

-c+ ⊗ id

-id⊗ c+

-c+-

uA,X ⊕ uB,X

�

uB,X ⊕ uA,X

(I) (II)

(III)

(IV)

(V)

One can verify that ((O, uO,X = L̂−1
FX), id, id) is the unit constraint of B∗.

Finally, we shall prove that each object of B∗ is invertible.
Let (A, uA) be an object of B∗. By the condition (1), there exsits an object

A′ ∈ Ob(A) such that

A⊕A′ = O.

The family of natural transformations uA′,X : A′ ⊗ FX → FX ⊗A′ is defined
by:

uA,X ⊕ uA′,X = LFX,A,A′ ◦ uO,X.

One can prove that (A′, uA′) is the invertible object of the object (A, uA)
in the category B∗.

Lemma 3.4. For any two objects (A, uA), (B, uB) of B
∗, (A⊗ B, uA⊗B) is

an object of B∗, where uA⊗B is defined by:

uA⊗B,X = (uA,X ⊗ idB) ◦ (idA ⊗ uB,X), for all X ∈ A.

Proof. Let (A, uA), (B, uB) be two objects of B
∗. Since uA,I = id and uB,I = id,

we have uA⊗B,I = id. Moreover, by Theorem 3.3 [9], uA⊗B satisfies the diagram
(3).

Finally, to prove that uA⊗B satisfies the diagram (2), we consider the di-
agram (7) (see page 14). In the diagram (7), the region (I) commutes since
(B, uB) satisfies the diagram (2), the regions (II), (VII) and (IX) commute
thanks to the naturality of a+ = id, the region (III) commutes thanks to the
naturality of L, the regions (IV), (XI) and the perimeter commutes since A

is an Ann-category, the regions (VI), (VIII) commute thanks to the determi-
nation of uAB, the region (X) commutes since (A, uA) satisfies the diagram
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(2), the region (XII) commutes thanks to the naturality of R = id. There-
fore, the region (V) commutes, i.e., (AB, uAB) satisfies the diagram (2). So
(A⊗ B, uA⊗B) is an object of B∗.

By Lemma 3.4, we can determine the operator “×” of B∗ where the product
of two objects is defined by

(A, uA)× (B, uB) = (A⊗ B, uA⊗B),

and the tensor product of two morphisms is the tensor product of two mor-
phisms in A.

Proposition 3.5. B∗ is a strict monoidal category.

Proof. Assume that f : (A, uA) → (B, uB) and g : (C, uC) → (D, uD) are two
morphisms in the category B∗. By Theorem 3.3 [9], the morphism

f × g = f ⊗ g : (A, uA)× (C, uC) → (B, uB)× (D, uD)

satisfies the diagram (4), i.e., f × g is a morphism in B∗.
The composition of two morphisms in B∗ is the normal composition. By

Theorem 3.3 [9], B∗ has the associativity constraint be strict. One can easily
prove that (I, id) is an object in B∗ and it together with the strict constraints
l = id, r = id is the unit constraint of the operator × in B∗.

Theorem 3.6. B∗ is an Ann-category with the distributivity constraints are
given by

L(A,uA),(B,uB),(C,uC) = LA,B,C , R(A,uA),(B,uB),(C,uC) = id.

Proof. By Proposition 3.3, (B∗,+) is a symmetric categorical group. By Propo-
sition 3.5, (B∗,×) is a monoidal category. One can prove that

L : (A, uA)× ((B, uB) + (C, uC)) → (A, uA)× (B, uB) + (A, uA)× (C, uC),

R = id : ((A, uA + (B, uB))× (C, uC) → (A, uA)× (C, uC) + (B, uB)× (C, uC)

are morphisms in B∗.
Moreover, the constraints a+ = id, c+, a = id,L,R = id of the Ann-

category A satisfy the conditions (Ann-1), (Ann-2), (Ann-3), so, in the cate-
gory B∗, they also satisfy these conditions. Thus B∗ is an Ann-category.
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The following proposition is obvious.

Proposition 3.7. B∗ is functored over A with the forgetful Ann-functor

F ∗ : B∗
→ A.

Example 1. The center of an Ann-category A

Let A be an Ann-category. Let B = A and F = id. Then B∗ = CA, where
CA is the center of the Ann-category A which is built in [14]. This is a braided
Ann-category with the quasi-symmetric

c(A,uA),(B,uB) = uA,B : A⊗ B → B ⊗ A.

Next, we shall apply above results to build the dual Ann-category of the
pair (B, F ), where B = (R′,M ′, f ′), A = (R,M, f) are Ann-categories.

Example 2. Duals of an Ann-category of the type (R,M)
Let R be a ring and M be a R-bimodule. An Ann-category of the type

(R,M) is a category I whose objects are elements of R, and whose morphisms
are automorphisms, (x, a) : x → x, ∀a ∈ M . The composition of morphisms
is the addition in M . The two operators ⊕ and ⊗ of I are given by

x⊕ y = x+ y, (x, a)⊕ (y, b) = (x+ y, a+ b),

x⊗ y = x.y, (x, a)⊗ (y, b) = (xy, xb+ ay).

All constraints of I are strict, except for the left distributivity constraint
and the commutativity constraint given by

Lx,y,z = (•, λ(x, y, z)) : x(y + z) → xy + xz,

c+x,y = (•, η(x, y)) : x+ y → y + x,

where λ : R3 → M, η : R2 → M are functions satisfying the some certain
coherence conditions (for detail, see [12], [13]).

Let A be an almost strict Ann-category of the type (R,M) and B be an

almost strict Ann-category of the type (R′,M ′). Let (F, F̆ , F̃ ) : B → A be an
Ann-functor. Then, by Theorem 4.3 [15], F is a functor of the type (p, q), i.e.,

F (x) = p(x), F (x, a) = (p(x), q(a)),

where p : R′ → R is a ring homomorphism and q : M ′ → M is a group
homomorphism and

q(xa) = p(x)q(a), q(ax) = q(a)p(x), for all x ∈ R, a ∈ M.

Moreover, F̆ , F̃ are associated, respectively, to µ, ν which satisfy some certain
coherence conditions (for detail, see Theorem 4.4 [15]).



Duals of Ann-categories 11

According to the above steps, each object of B∗ is a pair (r, ur), where r is
in the centerization of Imp = p(R′) in the ring R, (i.e., rp(x) = p(x)r ∀x ∈ R′)
and ur : R′ → M is a function satisfying the condition ur,1 = 0 and the two
following conditions for all x, y ∈ R′:

u(r, x)− u(r, x+ y) + u(r, y) = µ(x, y)r + rµ(x, y)− λ(r, px, py),

xu(r, y)− u(r, xy) + u(r, x)y = rν(x, y)− ν(x, y)r.

We now describe a morphism f : (r, ur) → (s, us) of B
∗. Since f : r → s is a

morphism in the Ann-category A, s = r, and f = (r, a) with a ∈ M .
From the commutation of the diagram (4), we have

p(x)a = ap(x), for all x ∈ R′.

Now, B∗ is an Ann-category with the two operators given by

(r, ur) + (s, us) = (r + s, ur+s),

(r, ur)× (s, us) = (rs, urs),

where

ur+s,x = ur,x + us,x − λ(px, r, s),

urs,x = ur,xs+ r.us,x,

and f+g = f⊕g, f×g = f⊗g where f : (r, ur) → (r, ur), g : (s, us) → (s, us).
All constraints of B∗ are strict, except for the commutativity constraint

and the left distributivity constraint given by

c+(r,ur),(s,us)
= c+r,s = (•, η(r, s)),

L(r,ur),(s,us),(t,ut) = Lr,s,t = (•, λ(r, s, t)).

The invertible object of the object (r, ur) respect to the operator + is
(−r, u−r), where −r is the opposite element of r in the group (R,+) and
u−r : R

′ → M is given by:

u−r,x = λ(px, r,−r)− ur,x.
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AF (X ⊕ Y )⊕ BF (X ⊕ Y )

(A⊕ B)F (X ⊕ Y )

(F (X ⊕ Y ))(A ⊕B)

(F (X ⊕ Y ))A⊕ (F (X ⊕ Y ))B

A(FX ⊕ FY )⊕ B(FX ⊕ FY )
�
�
���

L̆⊕ L̆

(A⊕B)(FX ⊕ FY ) -L̆A⊕B
FX,FY

(FX ⊕ FY )(A ⊕B) -id

(FX ⊕ FY )A⊕ (FX ⊕ FY )B

@
@
@@R

id

(AFX ⊕ AFY ) ⊕ (BFX ⊕BFY )

(AFX ⊕ BFX)⊕ (AFY ⊕BFY )

(A⊕ B)FX ⊕ (A⊕B)FY

(FX)(A ⊕B) ⊕ (FY )(A ⊕B)

((FX)A ⊕ (FX)B) ⊕ ((FY )A⊕ (FY )B)

((FX)A ⊕ (FY )A)⊕ ((FX)B ⊕ (FY )B)

?
uA⊕B,X⊕Y

?
L̆
F (X⊕Y )
A,B

?
L̆FX⊕FY
A,B

�

(F̆ ⊗ id) ⊕ (F̆ ⊗ id)

� F̆ ⊗ id

� id⊗ F̆

�(id ⊗ F̆ )⊕ (id⊗ F̆ )

6
v

?
uA⊕B,X ⊕ uA⊕B,Y

?
L̆⊕ L̆

?
v

-

t1

�

t2

�

t3

(I) (II) (III)

(V) (VI)

(IV) (VII)

(VIII)

Diagram (5)

where t1 = uA,X⊕Y ⊕ uB,X⊕Y

t2 = (uA,X ⊕ uB,X )⊕ (uA,Y ⊕ uB,Y )

t3 = (uA,X ⊕ uA,Y )⊕ (uB,X ⊕ uB,Y )
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A(FXFY ) ⊕B(FXFY )

id

-

(AFX)FY ⊕ (BFX)FY -(uA,X ⊗ id) ⊕ (uB,X ⊗ id)

(AFX ⊕ BFX)FY -(uA,X ⊕ uB,X)⊗ id

((A ⊕B)FX)FY

(A⊕ B)(FXFY ) -uA⊕B,X ⊗ id

(A⊕ B)F (XY ) -uA⊕B,XY

AF (XY )⊕ BF (XY ) -uA,XY ⊕ uB,XY

((FX)A ⊕ (FX)B)FY
�
�
���

id

(FX)(AFY ⊕BFY ) -id⊗ (uA,Y ⊕ uB,Y )@
@

@@I
L̆

((FX)A)FY ⊕ ((FX)B)FY -(id⊗ uA,Y )⊕ (id⊗ uB,Y )

(FX)(A ⊕B)FY -id⊗ uA⊕B,Y@
@

@@I
L̆⊗ id

�
�
���
id

(FXFY )A⊕ (FXFY )B

(FX)((FY )A) ⊕ (FX)((FY )B)

(FX)((FY )A⊕ (FY )B)

(FX)((FY )(A ⊕B))

(FXFY )(A⊕ B)

F (XY )(A⊕ B)

(F (XY ))A⊕ (F (XY ))B

?
id⊗ F̃

6
L̆FX
(FY )A,(FY )B

6
id⊗ L̆FY

A,B

?
F̃ ⊗ id

?
L̆
F (XY )
A,B

-

t4

�

t5

L̆

�

(I) (IX)

(X)

(II) (VII)

(III) (VIII)(IV)

(V)

(VI)

Diagram (6)

where t4 = (idA ⊗ F̃X,Y )⊕ (idA ⊗ F̃X,Y )

t5 = (F̃X,Y ⊗ idA) ⊕ (F̃X,Y ⊗ idB)
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A((FX)B ⊕ (FY )B)

A(BFX ⊕ BFY )

A(B(FX ⊕ FY ))

(AB)(FX ⊕ FY )

(AB)F (X ⊕ Y )

A(B(F (X ⊕ Y )))

A((F (X ⊕ Y ))B)

A((FX ⊕ FY )B)

A((FX)B) ⊕ A((FY )B)

A(BFX) ⊕A(BFY )

(AB)FX ⊕ (AB)FY

(F (X ⊕ Y ))(AB)

(F (X ⊕ Y )A)B

(A(F (X ⊕ Y ))B

(A(FX ⊕ FY ))B

(AFX)B ⊕ (AFY )B

((FX)A)B ⊕ ((FY )A)B

(FX)(AB) ⊕ (FY )(AB)

(FX ⊕ FY )(AB)

((FX ⊕ FY )A)B

((FX)A ⊕ (FY )A)B

(AFX ⊕AFY )B

6
id ⊗ (uB,X ⊕ uB,Y )

6
id⊗ L̆

?
id⊗ F̆

?
id⊗ uB,X⊕Y

6
id⊗ (F̆ ⊗ id)

6
id⊗ (uB,X ⊕ uB,Y )

6
uA,X⊕Y ⊗ id

6
(id⊗ F̆ )⊗ id

?
(uA,X ⊗ id)⊕ (uA,Y ⊗ id)

6
(uA,X ⊕ uA,Y ) ⊗ id

-L̆

-L̆

-L̆

-uAB,X⊕Y

-a = id

-a = id

-id⊕ id

-uAB,X ⊕ uAB,Y

� F̆ ⊗ id

� (F̆ ⊗ id)⊗ id

-L̆⊗ id

-

id⊗ (id⊗ F̆ )

-id⊗ R̆

�

R̆⊗ id

�

R̆ = id

(I)

(II)

(III)

(IV)

(VI)

(VII)

(V)

(VIII)

(IX)

(X)

(XI)

(XII)

Diagram (7)
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