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1. Introduction

Modern pneumatic systems consist of various
functional elements such as compressors, engines,
valves, cylinders, filters, pipelines etc. The processes
occurring in these systems quickly vary, i.e. speed and
pressure quickly vary in time. The speed of a sound in
a pneumatic system is much less in comparison with
the speed of a sound in a hydraulic system, therefore
the dynamic processes in pneumatic system occur
much slowly. The account of physical processes in
pneumatic systems depending on the properties of the
system has the significant applied importance.

The movement of gas in a pneumatic pipeline is
accepted as one dimension and unsteady i.e. all local
speeds are considered equal to average speed and
depend on time. The pressure also is considered
identical in al points of cross section and depends on
longitudinal coordinate of a pipeline and on time. Such
movement of gas is characterized by the occurrence of
a wave of increased and lowered pressure which is
distributed from the place of change of pressure and
the deformation of walls of the pipeline.

The differential equations of the movement of gas
in pipelines are solved by the finite difference method
and more precisely - by a characteristics method [1, 2,
3].

The theory of characteristics is of paramount
importance in the treatment of gas dynamics equa-
tions.

It is helpful in the solution of problems and in the
physical interpretation of associated phenomena.

Let us consider the following set of quasi-linear
partial differential equations. The term quasi-linear
refers to the fact that the equations are linear in the
derivates of the dependent variables, but in general are
nonlinear.
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2. Theoretical results

The system of continuity, momentum equations
and perfect gas equation of stateis[4, 5]:
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where P- gas density; p - pressure; v- velocity; S =
S(X)- cross section area of a pipeline; T -shear stresses
on the inner surface of a pipeline, a,- acceleration
along x axis; c- wave speed in medium (gas); Y -
ration of specific heat;

distributed tribu-

5 tary mass through
(x) M L0V, (0 —— 1 [1(x) - perimeter of in-
surface of a
pipelineg;
ner surface of a pipeling R - gas constant; j-
temperature.

When the speed of the movement of gasis larger
than the speed of a sound (v « c)the member pv? in the
equation of a momentum can not be taken into
account.

The system of the equations of dynamics of gasin

(D)

the variable mass charge Q = pv and pressure p looks
like:

where



when Re< 2300;

when Re > 2300;

Re - Reynolds number,

V- Kinematics viscosity
of gas (air) [5]:

A - roughness of awall of a pipeline; d - diameter
of apipeline.

System of equations (4) and (5) in the matrix form
is.

where

Equating the determinant to zero, that is

we shall receive the equation which alows to deter-

mine '__' determining characteristic directions.

If this equation has two various real
roots
O, r=12). theinitia system of the differ-
ential equationsrefersto as
hyperbolic. Theinclination tangent to the
characteristic depends not only

on independent coordinates ( X, t), but also from
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the decision (p, Q). For this problem we have:

(&)

However, for existence of not unique solution of
the system of the equations (6) the fulfillment of one
condition (8) is not enough. Sufficient condition is the
reference in a zero of the extended determinant. This
condition refers to as by a condition of compatibility.
In our case the equation looks like:

dQ | dp K

+ )" (9)

By substituting two meanings of the characteristics
from expression (8) we shall receive system of two
equations:

Whole length of a pneumatic pipeline is divided
into elements of length Ax. Unknown variable -mass
charge and pressure of gas at the moment of time t + 1
are determined by values of these parameters at the
moment of time t (Fig 1).

Pressure and speed in a point D at the moment of
time t + x are determined from system of nonlinear
algebraic equations of the following kind:

Fig 1. Thecircuit of determination of parameters of a
point D by amethod of characteristics
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(13)

The system of nonlinear algebraic equations (12)
and (13) is solved by the Newton method in the matrix
form have the following kind:
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(14)

where {aYY =[ap, A0, {®) =(@,;.@y); i -

number of iteration; [J] - Jacobi matrix,
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when Re<2300; when Re

> 2300; (15)

R By solving the
system of the equations
(14), we determine a new value of variable:

W =) +{ay) - (16)

We shall consider afew numbers of units of a branching
of model of pneumatic system representing practically
interest of technical applications. Unit of a branching of
pipelines (Fig 2):

General unit of pneumatic system is considered in
which input n; and output n, are in pipelines. In the
unit inflow of gas my, and outflow of gas my, are
available. The system of the equations of the
movement of gas in general unit x accepts the fol-
lowing kind:

Fig 2. The circuit of unit of abranching of pipelines
with inflow and selection of gas



For the unit of connection of pipelines the de-
pendence of material balanceisfair:

where m - inflow of gas; m,; - selection of
gas, S; Sj - areaof cross sections of pipelines.
The pressure in general unit is determined by

the next expression:

The system of nonlinear algebraic equations (17)-
(19) is solved by the Newton method:

where

On an input in a pipeline the charge is given On an
input in a pipeline the charge of gasq(t,x=0) = Q1 is
given.

The equations for the determination of pressure
on an input in a pipeline (node 1) have the following
kind:

The equation (22) is solved by the Newton
method:

where

On an input in a pipeline the pressure is given

On an input in a pipeline the pressure of gas

P(t, x=0) = p; isgiven.

The equation for the determination of charge on an
input in a pipeline (node 1) is (22).

The equation (22) is solved by the Newton
method:

where:

On an output from a pipeline chargeis given Equation
for the determination of the pressure on an output from
apipeline (node « ) hasthe following kind:

where

The given equation is solved by the Newton
method:

[7):4ps,; = -, (26)
o 1 A a(Rz)
J]=—= e —sr
[ L apk ¢ 2 apk i (2?)
m a pipeling pry s prv

Equation for the determination of the charge on

an output from a pipeline (node &) is (25).
The equation (25) is solved by the Newton
method:;
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The expiration of gas from a cavity of constant

volume (Fig 3)
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Fig 3. Thecircuit of expiration of gas from a cavity of
constant volume

The change of pressure of constant volume (V =
congt) of a cavity is determined from the following
eguation:

The differential equation (30) is solved by atrap-
ezoid method:

Applying atrapezoid method to the equation (30)
we shall receive the following equation:

In node 1 local losses of pressure are taken into
account. The dependence between pressure  p, and
pressure p; isdetermined from the following rela-

tion:

Dependence between pressure p, and mass
charge Q is

System of nonlinear algebraic equations (34)-(36)
is solved by the Newton method:

where

During gasin a cavity of constant volume (Fig 4)
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Fig 4. Thecircuit of during gasin a cavity of constant
volume The change of pressure of constant volume
(V = congt) of acavity is determined from the
following equation:

where yy - ration of chargeinthe x node.

The differential equation (38) is aso solved by a
trapezoid method. Applying a trapezoid method to the
equation (38) we shall receive the following equation:

In node A- local losses of pressure are taken into
account. The dependence between pressure py. and

pressure p, is determined from the following relation:
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Dependence between pressure p, and mass charge

Q« is.

System of nonlinear algebraic equations (39)-(41)
is solved by the Newton method:
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where
During gas and the expiration of gasfrom a
cavity of constant volume (Fig 5)
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Fig 5. Thecircuit of during gas and the expiration of
gas from a cavity of constant volume

Dependence between pressure p, and mass charge

Qk is

where n; - number of input pipeline to cavity.

Innodes k local losses of pressure are taken into
account. The dependence between pressures pyand
pressure p, are determined from the following
relations:

P

The change of pressure of constant volume (V =
const) of a cavity is determined from the following
equation:

~

where
cavity.
The differential equation (45) is solved by a trap-
ezoid method. Applying a trapezoid method to the
equation (45) we shall receive the following equation:

n, - number of output pipeline from the

- P O -

In nodes k +1 local losses of pressure are taken
into account. The dependence between pressures p,
and pressure Py, are determined from the following
relations:

¢'2n,+l+j = Pugrar ™ Pjkelerar =

2 .
E.bj,k+lRTj.k+l.l'+A!Q j.k+l.r+mslgﬂ(Qj,k+l.:+A:) _

0,
2P} kel ieas

j = l,...,ﬂz_
(47)

Dependence between pressure Py,;  and mass

charge Q1 is

1
Ply2n4n,+j = Ljant =) ksz - (Pjast - Pj,k+2)+
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(48)
System of nonlinear algebraic equations (44)-(48)
is solved by the Newton method:
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where
Node of a pipeline arc connected to cavities of the

cylinder (Fig 6)

Fig 6. Thecircuit of n working cavity of the cylinder
with apipeline

The equation for determination of the charge of gas
innode k pipelinelookslike:

In node x local losses of pressure are taken into
account. The dependence between pressure p, and
pressure p. is determined from the following relation:

According to the first law of thermodynamics the

O

whole thermal energy moved with gas is spent for the
change of internal energy and for the work of
expansion of gas in a cavity of the cylinder. The
dependence of pressure in a working cavity of the
cylinder looks like:

where Gy - mass charge of gas, determined on the
formula Scn-Vcnan and Vencel [4]:
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when P > py

where y- factor of the charge in node; S - cross
section area of node «;

\
¥

V. - volume of gasin aworking cavity of the
cylinder,

V., =V, +S.4, (55)

1

Ve - initial volume of gas in a working cavity of
the cylinder; S, - area of the piston; g- displacement of
the piston.

The differential equation (52) is aso solved by a
trapezoid method. Applying a trapezoid method to the
eguation (52) we shall receive the following equation:

Pe, > Prs (58)

! 3 of (59)
The dependence of pressure in the second cavity of

the cylinder looks like:
when

V., - volume ot gasin the second cavity of the
cylinder,

Vo , S - initid volume of gas and area of the
cylinder in the second cavity.

The differential equation (57) is aso solved by a
trapezoid method. Applying a trapezoid method to the
equation (57) we shall receive the following equation:
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In node k+1 local losses of pressure are taken into
account. The dependence between pressure p., and
pressure Py, is determined from the following
relation:

The equation of a movement of the piston has the
following kind:

where F - general force, working on the piston,

I . » 5 y /. f 1
/ S ..t / | / 63)

Fex(t)- external force; Fn- damping force,

k., kg coefficients of acondition of rest and
movement [6],

threshold value of velocity of piston
The differential equation (62) is aso solved by a
trapezoid method. Applying a trapezoid method to the

equation (62) we shall receive the following equation:

D, = : — 2 )4 ). (68
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where: (0¥)
System of nonlinear algebraic equations (50)-(69)
is solved by the Newton method:

3. Conclusions

.\{-} \f'r \JL)_ \.fj \IIrJ

The movement of gas in pneumatic systems is
described by the differential equations with a partial
derivative which allows to investigate wave processes
in these systems. The occurring wave processes de-
pend on physical properties of gas, mechanica pa
rameters of pneumatic system, external influence. The
theory of mathematical modelling of dynamic pro-
cesses in pneumatic systems is offered. It will alow
more precisely to describe physical processes in
pipelines connected by cavities and cylinders. At small
and variable speeds of the movement of the piston in
the pneumatic cylinder it is necessary to take into
account the force of friction. Depending on external
forces and the force of friction the movement of the
piston can be with stops, that is a discrete movement.
The common external force working on the piston
depends on dynamic parameters of a pneumatic
system, therefore it is necessary to investigate dynamic
processes of separate units together with a common
pneumatic system. The developed mathematical
models of separate parts of pneumatic systems will add
to the created library of mathematical models of
pneumatic, hydraulic and mechanical systems.
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SUDETINGU PNEUMATINIU SISTEM U
MODELIAVIMAS

M. Bogdevi¢ius
Santrauka

Pateikiama sudétingy pneumatiniy sistemy matematinio
modeliavimo teorija.  Pneumatiné sistema sudaryta i3
vamzdyno, pastoviy tariy talpykly, pneumatiniy cilindry.
Zinomos kradtinés salygos - slégio ar masés debito kitimas
lake. Duju judéjimas vamzdyne apraSomas dife-
renciainémis lygtimis su dalinémis iSvestinemis. Tai leidzia
modeliuoti slégio bangy kitima vamzdynuose, jvertinant
duju spuduma, trinties nuostolius tarp vamzdyno sienelés ir
dujy, vietinius slégio nuostolius dél skirtingy vamzdyno
geometriniy parametry. Sudaryti dujy judéjimo matematiniai
modeliai pneumatingje sistemoje: vamzdynas ir pastovaus
tario talpykla, vamzdyno bendras mazgas, i kurj gali jtekéti
ar iStekéti tam tikras duju masés kiekis, vamzdynas ir
pneumatinis  cilindras.  Pneumatiniame cilindre taip
stamoklio ir cilindro veikia trinties jéga, kurios skaitiné
reikSmé kinta priklausomai nuo stimoklio judéjimo greidio.
Sudarytas stimoklio judéjimo matematinis modelis, kuriuo
jvertinama rimties trinties jéga Ta leidZzia nagrinéti
stamoklio judéjima nedideliais greigiais ir jo judéjima su
sustojimais. Tai labai svarbu precizinése pneumatinése
sistemose, ka reikia tikdia nustatyti stamoklio padétj
ivertinant dinaminius procesus pneumatingje sistemoje. Dujy
judéjimo lygtys sprendziamos baigtiniy skirtumy metodu, t.
y. charakteristiky metodu. Sis metodas leidZia gauti
netiesiniy agebriniy lygéiu sistema, kuri sprendziama
Niutono metodu. Pateikta pneumatiniy sistemy modeliavimo
teorija leidzZia dideliu tikslumu nagrinéti fizikinius procesus,
vykstangius Siose sistemose.
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