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SIMULATION   OF COMPLEX PNEUMATIC SYSTEMS M. 

Bogdevi�ius 

1. Introduction 

Modern pneumatic systems consist of various 

functional elements such as compressors, engines, 

valves, cylinders, filters, pipelines etc. The processes 

occurring in these systems quickly vary, i.e. speed and 

pressure quickly vary in time. The speed of a sound in 

a pneumatic system is much less in comparison with 

the speed of a sound in a hydraulic system, therefore 

the dynamic processes in pneumatic system occur 

much slowly. The account of physical processes in 

pneumatic systems depending on the properties of the 

system has the significant applied importance. 

The movement of gas in a pneumatic pipeline is 

accepted as one dimension and unsteady i.e. all local 

speeds are considered equal to average speed and 

depend on time. The pressure also is considered 

identical in all points of cross section and depends on 

longitudinal coordinate of a pipeline and on time. Such 

movement of gas is characterized by the occurrence of 

a wave of increased and lowered pressure which is 

distributed from the place of change of pressure and 

the deformation of walls of the pipeline. 

The differential equations of the movement of gas 

in pipelines are solved by the finite difference method 

and more precisely - by a characteristics method [1, 2, 

3]. 

The theory of characteristics is of paramount 

importance in the treatment of gas dynamics equa-

tions. 

It is helpful in the solution of problems and in the 

physical interpretation of associated phenomena. 

Let us consider the following set of quasi-linear 

partial differential equations. The term quasi-linear 

refers to the fact that the equations are linear in the 

derivates of the dependent variables, but in general are    

nonlinear. 

2. Theoretical results 

The system of continuity, momentum equations 

and    perfect gas equation of state is [4, 5]: 

where P- gas density; p - pressure; v- velocity; S = 

S(x)- cross section area of a pipeline; �  -shear stresses 

on the inner surface of a pipeline; ax- acceleration 

along x axis; c- wave speed in medium (gas); Y  - 

ration of specific heat; 

distributed    tribu- 

 
tary mass through 

surface of a 
pipeline; 

ner surface of a pipeline; R - gas constant; j-

temperature. 

When the speed of the movement of gas is larger 

than the speed of a sound (v « c)the member pv2 in the 

equation of a momentum can not be taken into 

account. 

The system of the equations of dynamics of gas in 

the variable mass charge Q = � v and pressure �   looks 

like: 
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- perimeter of in- 

where 



when 

when 

Re �  2300; 

Re > 2300; 

the decision ( � , Q ). For this problem we have: 

However, for existence of not unique solution of 

the system of the equations (6) the fulfillment of one 

condition (8) is not enough. Sufficient condition is the 

reference in a zero of the extended determinant. This 

condition refers to as by a condition of compatibility. 

In our case the equation looks like: 

 

Re - Reynolds number, 

v- kinematics viscosity 
of gas (air) [5]: 

�
 - roughness of a wall of a pipeline; d - diameter 

of a pipeline. 

System of equations (4) and (5) in the matrix form 

is: 

By substituting two meanings of the characteristics 

from expression (8) we shall receive system of two 

equations: 

Whole length of a pneumatic pipeline is divided 

into elements of length � x. Unknown variable -mass 

charge and pressure of gas at the moment of time t + �  

are determined by values of these parameters at the 

moment of time   t  (Fig 1). 

Pressure and speed in a point D at the moment of 

time t + x are determined from system of nonlinear 

algebraic equations of the following kind: 
 

Equating the determinant to zero, that is 

we shall receive the equation which allows to deter- 

determining characteristic directions. 
If this  equation  has  two  various  real  

roots 

the initial system of the differ- 

ential equations refers to as 

hyperbolic. The inclination tangent to the 

characteristic depends not only 

on independent coordinates ( x, t ), but also from 

Fig 1. The circuit of determination of parameters of a 
point D by a method of characteristics 
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The system of nonlinear algebraic equations (12) 

and (13) is solved by the Newton method in the matrix 

form have the following kind: 

 

when Re� 2300; when Re 

> 2300; (15) 

By solving the 

system of the equations   

(14), we determine a new value of variable: 

 
We shall consider a few numbers of units of a branching 

of model of pneumatic system representing practically 

interest of technical applications. Unit of a branching of 

pipelines  (Fig 2): 

General unit of pneumatic system is considered in 

which input n1 and output n2 are in pipelines. In the 

unit inflow of gas min and outflow of gas mout are 

available. The system of the equations of the 

movement of gas in general unit �  accepts the fol-

lowing kind: 

 

Fig 2. The circuit of unit of a branching of pipelines 
with inflow and selection of gas 
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For the unit of connection of pipelines the de-

pendence of material balance is fair: 

where   mi - inflow of gas;   mout - selection of 

gas; S i,  S j - area of cross sections of pipelines. 

The pressure in general unit is determined by 

the next expression: 

 

 

The  equation  (22)  is  solved  by the  Newton 

method: 

On an input in a pipeline the pressure is given 

On an input in a pipeline the pressure of gas 

P(t, x = 0) = p1  is given. 

The equation for the determination of charge on an 

input in a pipeline (node 1) is (22). 

The equation (22) is solved by the Newton 

method: 

On an output from a pipeline charge is given Equation 

for the determination of the pressure on an output from 

a pipeline (node   �  ) has the following kind: 

 

The system of nonlinear algebraic equations (17)-

(19) is solved by the Newton method: 

On an input in a pipeline the charge is given On an  

input in a pipeline the charge of gas q(t,x = 0) = Q 1  is 

given. 

The equations for the determination of pressure 

on an input in a pipeline (node 1) have the following 

kind: 

 

The given equation is solved by the Newton 

method: 
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where 
where 



where 

Dependence  between  pressure     pl   and  mass 

charge   Ql  is: 

 

 
The expiration of gas from a cavity of constant 

volume   (Fig 3) 

 

System of nonlinear algebraic equations (34)-(36) 

is solved by the Newton method: 

Fig 3.  The circuit of expiration of gas from a cavity of 
constant volume 

The change of pressure of constant volume (V = 

const) of a cavity is determined from the following 

equation: 

 
where 

During gas in a cavity of constant volume   (Fig 4) 

 
 

The differential equation (30) is solved by a trap-

ezoid method: 

Applying a trapezoid method    to the equation (30) 

we shall receive the following equation: 

In node 1 local losses of pressure are taken into 

account. The dependence between pressure    pv and 

pressure   pl  is determined from the following rela-

tion: 

Fig 4.  The circuit of during gas in a cavity of constant 

volume The  change  of pressure  of constant volume 

(V = const ) of a cavity is determined from the 

following equation: 

where   � k  - ration of charge in the   �  node. 

The differential equation (38) is also solved by a 

trapezoid method. Applying a trapezoid method to the 

equation (38) we shall receive the following equation: 

In node A- local losses of pressure are taken into 

account. The dependence between pressure pk. and 

pressure pv is determined from the following relation: 
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where 



Dependence between pressure � k and mass charge 

Qk  is: 
The change of pressure of constant volume (V = 

const) of a cavity is determined from the following 

equation: 

 

System of nonlinear algebraic equations (39)-(41) 

is solved by the Newton method: 

where: 

During gas and the expiration  of gas from  a 

cavity of constant volume   (Fig 5) 

 
Fig 5. The circuit of during gas and the expiration of 

gas from a cavity of constant volume 

Dependence between pressure pk and mass charge 

Qk   is: 

where   n1 - number of input pipeline to cavity. 

In nodes    k   local losses of pressure are taken into 

account. The dependence between pressures   pk and 

pressure   pv are determined from the following 

relations: 

where    n2   - number of output pipeline  from the 

cavity. 

The differential equation (45) is solved by a trap-

ezoid method. Applying a trapezoid method to the 

equation (45) we shall receive the following equation: 

In nodes k +1 local losses of pressure are taken 

into account. The dependence between pressures pv 

and pressure Pk+1 are determined from the following 

relations: 

Dependence between pressure Pk+1   and mass 

charge   Qk+1   is: 

System of nonlinear algebraic equations (44)-(48) 

is solved by the Newton method: 
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where 

Node of a pipeline arc connected to cavities of the 

cylinder  (Fig 6) 

where   � k- factor of the charge in node; Sk - cross 

section area of node   �  ; 

 

 
Fig 6. The circuit of n working cavity of the cylinder 

with a pipeline 

The equation for determination of the charge of gas 

in node   k   pipeline looks like: 

Vc1 - volume of gas in a working cavity of the 

cylinder, 

VC10 - initial volume of gas in a working cavity of 

the cylinder;Sc1 - area of the piston; q- displacement of 

the piston. 

The differential equation (52) is also solved by a 

trapezoid method. Applying a trapezoid method to the 

equation (52) we shall receive the following equation: 
 

In node �  local losses of pressure are taken into 

account. The dependence between pressure pk and 

pressure pc is determined from the following relation: 

According to the first law of thermodynamics the 

whole thermal energy moved with gas is spent for the 

change of internal energy and for the work of 

expansion of gas in a cavity of the cylinder. The 

dependence of pressure in a working cavity of the 

cylinder looks like: 

 

where   Gk - mass charge of gas, determined on the 

formula Scn-Vcnan and Vencel [4]: 

 

The dependence of pressure in the second cavity of 

the cylinder looks like: 
when 

Vc2 - volume ot gas in the second cavity of the 

cylinder, 

Vc20 , SC2 - initial volume of gas and area of the 

cylinder in the second cavity. 

The differential equation (57) is also solved by a 

trapezoid method. Applying a trapezoid method to the 

equation (57) we shall receive the following equation: 

26 

  

 
 

when 

 

 

 
 

 

 

 

 

 

where 



In node k+1 local losses of pressure are taken into 

account. The dependence between pressure pc2 and 

pressure Pk+1 is determined from the following 

relation: 

The equation of a movement of the piston has the 

following kind: 

 

System of nonlinear algebraic equations (50)-(69) 

is solved by the Newton method: 

3. Conclusions 

 

 
where   F  - general force, working on the piston, 

 
Fext(t)- external force;    Fh- damping force, 

 
kp,   kd- coefficients    of a condition of rest and 

movement [6], 

The differential equation (62) is also solved by a 

trapezoid method. Applying a trapezoid method to the 

equation (62) we shall receive the following equation: 

The movement of gas in pneumatic systems is 

described by the differential equations with a partial 

derivative which allows to investigate wave processes 

in these systems. The occurring wave processes de-

pend on physical properties of gas, mechanical pa-

rameters of pneumatic system, external influence. The 

theory of mathematical modelling of dynamic pro-

cesses in pneumatic systems is offered. It will allow 

more precisely to describe physical processes in 

pipelines connected by cavities and cylinders. At small 

and variable speeds of the movement of the piston in 

the pneumatic cylinder it is necessary to take into 

account the force of friction. Depending on external 

forces and the force of friction the movement of the 

piston can be with stops, that is a discrete movement. 

The common external force working on the piston 

depends on dynamic parameters of a pneumatic 

system, therefore it is necessary to investigate dynamic 

processes of separate units together with a common 

pneumatic system. The developed mathematical 

models of separate parts of pneumatic systems will add 

to the created library of mathematical models of 

pneumatic, hydraulic and mechanical systems. 
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SUD�TING� PNEUMATINI� SISTEM� 
MODELIAVIMAS 

M. Bogdevi�ius 

Sant r auk a 

Pateikiama sudI tingJ  pneumatini J  sistemJ  matematinio 
modeliavimo teorija. PneumatinI  sistema sudaryta iš 
vamzdyno, pastovi J  tK ri J  talpykl J , pneumatini J  cilindrJ . 
Žinomos kraštinI s sL lygos - sl I gio ar masI s debito kitimas 
laike. Duj J  judI jimas vamzdyne aprašomas dife-
rencialinI mis lygtimis su dalinI mis išvestinI mis. Tai leidžia 
modeliuoti sl I gio bangJ  kitimL  vamzdynuose, M vertinant 
duj J  spK dumL , trinties nuostolius tarp vamzdyno sienel I s ir 
duj J , vietinius sl I gio nuostolius dI l skirtingJ  vamzdyno 
geometrini J  parametrJ . Sudaryti duj J  judI jimo matematiniai 
modeliai pneumatinI je sistemoje: vamzdynas ir pastovaus 
tK rio talpykla, vamzdyno bendras mazgas, M  kurj gali M tekI ti 
ar ištekI ti tam tikras duj J  masI s kiekis, vamzdynas ir 
pneumatinis cilindras. Pneumatiniame cilindre taip 
stK moklio ir cilindro veikia trinties j I ga, kurios skaitinI  
reikšmI  kinta priklausomai nuo stK moklio judI jimo grei N io. 
Sudarytas stK moklio judI jimo matematinis modelis, kuriuo 
M vertinama rimties trinties j I ga. Tai leidžia nagrinI ti 
stK moklio judI jimL  nedideliais grei N iais ir jo judI jimL  su 
sustojimais. Tai labai svarbu precizinI se pneumatinI se 
sistemose, kai reikia tiksliai nustatyti stK moklio padI tM  
M vertinant dinaminius procesus pneumatinI je sistemoje. Duj J  
judI jimo lygtys sprendžiamos baigtini J  skirtumJ  metodu, t. 
y. charakteristikJ  metodu. Šis metodas leidžia gauti 
netiesini J  algebrini J  lygN i J  sistemL , kuri sprendžiama 
Niutono metodu. Pateikta pneumatini J  sistemJ  modeliavimo 
teorija leidžia dideliu tikslumu nagrinI ti fizikinius procesus, 
vykstanN ius šiose sistemose. 
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