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Abstract

By using photon pairs created in parametric down conversion, we report on an experiment, which

demonstrates that measurement can recover the quantum entanglement of two qubit system in a

pure dephasing environment. The concurrence of the final state with and without measurement

are compared and analyzed. Furthermore, we verify that recovered states can still violate Bell’s

inequality, that is, to say, such recovered states exhibit nonlocality. In the context of quantum

entanglement, sudden death and rebirth provide clear evidence, which verifies that entanglement

dynamics of the system is sensitive not only to its environment, but also on its initial state.
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Quantum entanglement, as a unique feature without a classical counterpart of many-body

system, has been instrumental in studying fundamental aspects of quantum physics [1] as well

as being central in practical applications in the areas of quantum computation and quantum

cryptography [2–5]. Today, sources of entangled states can be prepared in various kinds

of physical systems [6]. Entanglement, even within multi-particle and multi-dimensional

systems [7, 8], can be implemented, although, these are flimsy and are subject to unavoidable

degradation, which is caused by interactions with their environments [9, 10]. To have any

practical value in quantum computation and communication, long distance nonlocality and

extended coherence storage and rebirth [11] of entangled states have become important

focal points of research around the world. The key issue behind solving these problems is

in determining the dynamical behavior of entanglement within the system’s environment,

something, which to date, has not been well understood. Commendably, a factorization

law, which describes the entanglement dynamics under a one-side noisy channel has recently

been proposed [12] and has subsequently been verified in two independent experiments

[13]. Moreover, it has been discovered that entanglement evolution is not only related to

environmental factors but is also sensitive to its initial state [14, 15].

Quantum measurement, that feature, which distinguishes the quantum from the classi-

cal regimes [17], is often interpreted within the orthogonal projection model given by Von

Neumann [18], but has been reexpressed in the past 30 years or so, more and more within

the framework of quantum decoherence theory [19] (for reviews see [9, 17]). In that setting,

a complete quantum measurement is divided into two stages: The first stage corresponds to

the entanglement of the information-carrying qubit of the measured quantum system with

the record bit of the measurement apparatus; the second stage corresponds to the deco-

herence of the detector-system combination, which occurs in an uncontrollable environment

[17]. The latter will covert the density matrix that describes the combination into diagonal

form, which physically represents the spreadings of the quantum information contained in

the combined system into the uncontrollable environment and essentially turns the quan-

tum measurement into a classical one. Because of the uncontrollability and unavoidability of

environment-induced decoherence that features prominently in this second stage, it is impos-

sible to recover quantum information once the quantum measurement has been completed.

For example, if a conventional experiment to measure the polarization of a single photon has

completed, to retrieve that qubit of quantum information is as difficult as extracting it from
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the single photon detector and the observer’s brain. Fortunately, quantum measurement

need not be so catastrophic and can be implemented step by step, even partially [20]. It

has been pointed out that, within the first stage of quantum measurement, recovery can be

brought about by the coherence of a single qubit that has dissipated into a non-Markovian

environment [21].

On the basis of this work by Xu et al Xu we experimentally prove that subsequent

quantum measurement, which erases [16] the path information introduced in the previous

measurement can recover the entanglement that has been degraded in a non-Markovian envi-

ronment and that even rebirth of entanglement after entanglement sudden death (ESD) [11]

can be effected. In this paper, we describe how we can change the entanglement evolution by

using some specified operations on the state before or during the interaction, more precisely,

two sequential measurements can recover the entanglement and, further more, preserve it.

The experimental setup is shown schematically in Figure 1. Two 0.5mm thick beta-

barium-borate (BBO) crystals, cut at 29.18◦ for type-I phase matching and aligned so their

optical axes are perpendicular to each other, are pumped by using focused ultraviolet (UV)

pulses polarized at 45◦, which are frequency doubled from a Ti:sapphire laser with the cen-

ter wavelength mode locked at 800 nm (with 130 fs pulse width and a 76MHz repetition

rate). Degenerate polarization-entangled photon pairs at 800 nm are generated by sponta-

neous parametric down conversion (SPDC) at a 3◦ angle with the pump beam [22]. By

compensating the time difference between H- and V -polarized components with birefrin-

gent elements (LiNbO3 and YVO4), one of the maximal polarization-entangled states, the

well-known Bell state [30], can be produced with high fidelity. This initial state can be

mathematically written as

|φ〉 = 1√
2
(|HH〉+ |V V 〉), (1)

where H and V represent the horizontal and vertical polarizations, respectively, while the

two elements in the Dirac ket label the photons states, the left in path a and the right in

path b.

Decoherence due to the environment is simulated by controllable birefringent elements,

which can couple the photon’s frequency with its polarization [23, 24]. In our experiment,

we use quartz plates Q1 with thickness L1 and Q2 with thickness L2, to simulate this

decoherence aspect. The optical axes of the plates are both horizontally set.
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FIG. 1: (color online) Scheme of the experimental setup. DE, decoherence evolution denoted by

a dashed pane; Measurement apparatus (M) is denoted by two gray boxes. PBS, polarizing beam

splitter; L1 and L2, lens; PA, polarization analyzer; SPAD, single photon detector; BD1 and BD2,

beam displacing prism; The solid pane E is inserted in path a to prepare the partially entangled

state. The parameter of these elements are provided in the text.

At the beginning, we consider the evolution of the state given by equation (1) in such an

environment, which assume, for simplicity, that the photon’s frequency distribution is a δ

function. The final state of the two photons after the photon in mode b passes through Q1

and Q2 takes the following form

|φ1〉 =
1√
2
(|HH〉+ eiαωb |V V 〉), (2)

where the parameter α is proportional to L(= L1 + L2) and ωb represents the frequency

of the photon in path b. In our experiment, α = L∆n/c where c is the velocity of light

in vacuo and ∆n = no − ne represents the difference between refractive indices of ordinary

(no) and extraordinary (ne) light. Therefore, a deterministic relative phase is introduced
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between |HH〉 and |V V 〉 for a single frequency, which differs for different frequencies. Ac-

cording to the decoherence mode [23, 24], the environment is actually composed of a photon’s

frequencies that are coupled to the information carriers (viz. polarization of photons) by

means of birefringent elements. For photons with a frequency distribution f(ω), the overall

state should equal the integral over the frequency distribution, which forms a less correlated

state, which essentially destroys the coherence of the qubits [23]. Therefore, the final state

in Eq. (2) should be replaced by the following reduced density operator [24]

ρ̂1 =
1

2
(|HH〉〈HH|+ |V V 〉〈V V |+ k∗

b |HH〉〈V V |+ kb|V V 〉〈HH|), (3)

where the photon’s frequency distribution in path b is normalized as
∫

f(ωb)dωb = 1 and

the nondiagonal coefficient kb =
∫

f(ωb)e
iαωbdωb represents the decoherence parameter.

Actually, for a decoherence environment composed of photon’s frequency, the decoherence

parameter kb is related to the frequency distribution function. In our experiment, this is

taken to be a Gaussian function, that is, f(ωb) =
2√
πσ

exp(−4(ωb−ω0)2

σ2 ), which is determined

by the interference filters (IF) placed in front of the single photon detectors. The parameter

ω0 is the central frequency, and σ is the bandwidth. By working out the integral, we obtain

kb = exp(−α2σ2/16 + iαω0).

For a quantitative analysis of the entanglement evolution in the experiment, a parameter,

which represents the degree of entanglement, should be introduced. The concurrence [26],

which is widely used in studying two qubit states, is defined as

C(ρ̂) = max{0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4}, (4)

where ρ̂ is the density matrix of a two-qubit state in the canonical basis

{|HH〉, |HV 〉, |VH〉, |V V 〉}; λi(i = 0, . . . , 4) are the eigenvalues in decreasing order of

the Hermitian matrix ρ̂(σ̂y ⊗ σ̂y)ρ̂
∗(σ̂y ⊗ σ̂y) with ρ̂∗, which corresponds to the com-

plex conjugate of ρ̂. According to Eq. (3), for an initial Bell state input, we obtain

C(ρ̂1) = |kb| = exp(−α2σ2/8). Thus, concurrence degrades exponentially and approaches

zero as Q1 and Q2 become thicker, which means the final state, after sufficient interaction

time, evolves into the maximally mixed state without any remaining entanglement [solid

line in Fig. 2(A)]. However, for some other frequency distribution, some unusual phenomena

will arise, for example, entanglement collapse and revival [25].

Then, we consider the case with a measurement apparatus (M), which comprises two

beam displacing prisms (BD1 and BD2) with horizontally-set optical axes, half-wave plate 1
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(HWP1) with optical axes set at 22.5◦, which implements the Hadamard operation, HWP2

with optical axes set at -22.5◦, which implements |H〉 → |+〉, |V 〉 → −|−〉 (where,|+〉 =

(|H〉+ |V 〉)/
√
2, |−〉 = (|H〉 − |V 〉)/

√
2), and HWP3 with perpendicularly set optical axes

to implement the bit-flip operation. BD1 measures photon’s polarization in H/V basis and

introduces the path information as a probe bit. Before this measurement is completed, the

second decoherence environment is inserted, and then, the path information is erased by

BD2, which realizes a postselection of the recovered state. The output state after passing

through Q1, BD1, HWP1 and Q2, can be written as

(
1

2
|H〉(|H〉+ eiα2ωb |V 〉))I + (

1

2
eiα1ωb|V 〉(|H〉 − eiα2ωb |V 〉))II (5)

where α1 = L1∆n/c and α2 = L2∆n/c, subscripts I and II denote the upper and lower paths

between the two BDs, respectively. By subsequently erasing path information introduced

in the previous measuring operation by HWP2, BD2 and HWP3, we obtain the final state

represented as

|φ2〉 =
1

2
(1 + eiα2ωB)(|HH〉+ eiα1ωB |V V 〉). (6)

Similar to the above treatment, the reduced density matrix of this final state is written as

ρ̂2 =
1

2
(|HH〉〈HH|+ |V V 〉〈V V |+ k′∗

b |HH〉〈V V |+ k′
b|V V 〉〈HH|), (7)

where

k′
b =

exp(iα1ω0)

2[1 + cos(α2ω0) exp(−α2
2σ

2/16)]
{exp[−(α1 + α2)

2σ2 + iα2ω0]

+ exp[−(α1 − α2)
2σ2 − iα2ω0] + 2 exp[−α2

1σ
2/16)]}.

According to Eq. (4), the concurrence is C(ρ̂2) = |k′
b|. From the complicated form of k′

b, here,

the entanglement evolution is not as simple as that in the previous case, and it sensitive

to the phase. Numerical analysis shows there will be entanglement recovery with increases

in L2, as L1 remains fixed. The concurrence oscillates if L2 is sufficiently thin, while the

amplitude narrows to zero if L2 is thick enough. Because the maximal recovery point lies

within the envelope composed of the integral L2 and the zero point of the phase is extremely

hard to determine, here, we only consider the integral length of the quartz plates [solid line in

Fig. 2(B) and Fig. 2(C)]. Although this is sufficient for studying entanglement recovery, under

this consideration, the probability of success decreases exponentially from 1 to 0.5. More
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significantly, the entanglement of the final state will remain unchanged with L2 increasing

when L2 is large enough, and no matter how thick L1 is, that is, to say, no matter how

less entanglement remains, the entanglement between two particles can be recovered to a

maximal expectation value 0.5 at L2 = L1.

In fact, the dynamics of entanglement in bipartite quantum systems not only is sensitive to

their environment, but also is sensitive to their initial state [14, 15]. In Ref [25], entanglement

collapse and revival occur when the input biphoton is prepared in the form of a Werner state

[28] with a spectrum discretized within a Gaussian envelope. There will be no entanglement

revival if the spectrum takes the Gaussian form in that experiment. However, a revival of

the same initial state with a Gaussian spectrum can occur by inserting M in this experiment.

This is explained as follows.

Applying a Hadamard operation on the photon state in mode a of the maximal entangled

state |φ〉 and by allowing it to pass though a dephasing environment at H/V bases, we get

the state

|φ3〉 =
1

2
(|HH〉+ |HV 〉+ eiαaωa|V H〉 − eiαaωa |V V 〉). (8)

By integrating |φ3〉〈φ3| over all frequencies of the photon in mode a, the partially entangled

input state can be mathematically expressed in the following density matrix

ρ̂0 =
1

4















1 1 k∗
a −k∗

a

1 1 k∗
a −k∗

a

ka ka 1 −1

−ka −ka −1 1















, (9)

where ka =
∫

g(ωa) exp(iαaωa)dωa is the decoherence parameter in path a. The photon in

mode b then passes through the decoherence environment with a measuring apparatus; the

final state in the single frequency case can be written as

|φ′
3〉 =

1 + eiα2ωb

4
[|HH〉+ eiα1ωb |HV 〉+ eiαaωa |V H〉 − ei(αaωa+α1ωb)|V V 〉]. (10)

The band width of the interference filters used in our experiment is so narrow that we

can integrate |φ′
3〉〈φ′

3| over the frequencies of the photon in mode a and b separately [29].

Therefore, if the photon frequencies are considered to have Gaussian distribution profiles,
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the density matrix of the final state is written as

ρ̂3 =
1

4















1 k′∗
b k∗

a −k∗
ak

′∗
b

k′
b 1 k∗

ak
′
b −k∗

a

ka kak
′∗
b 1 −k′∗

b

−kak
′
b −ka −k′

b 1















. (11)

According to Eq. (4), we obtain a concurrence of C(ρ̂3) = max{0, (ka+k′
b+kak

′
b−1)/2}. For

nonnegative (ka+k′
b+kak

′
b−1)/2 with different k′

b, entanglement, sudden death and re-birth

will occur if the decoherence time in Q1 and Q2 are changed [solid line in Fig. 2(D) with

just integral lengths of quartz plates]. No matter how thick Q1 is, entanglement between

the two particles is found to indicate a full rebirth to an identical maximal value at L2 = L1.

That is, to say, full recovery with analogous levels can be achieved regardless of the time

duration taken for the ESD.

The experimental results are shown in Fig. 2. The characteristics of the IFs used before

the single photon detectors are of bandwidth 3 nm and coatings at 800 nm. We can treat

∆n = 0.01 for small frequency distributions. The maximally entangled state is prepared

with a concurrence of 0.962± 0.029. In Fig. 2(a), the concurrence degrades exponentially and

gradually tends to zero, which obeys the half-life law. Because there is no phase sensitivity,

experimental results (dots) agreed well with theory within the error range. In Fig. 2(b), M

is inserted at the point L1 = 195λ0 where the concurrence is 0.262± 0.024. The maximally

recovered concurrence in the experiment is 0.609± 0.026 at L2 = 195λ0, and the concurrence

is unchanged within the error range when L2 exceeds 683λ0. In Fig. 2(c), the point at which

M is inserted is L2 = 390λ0 where the concurrence tends to zero, that is, to say, there

are few entanglement at this point. Incidentally, the maximally recovered entanglement

measured in the experiment is 0.518± 0.025 at about L2 = 780λ0, which agrees well with

theoretical predictions. In Fig. 2(d), the partially entangled input state with concurrence

0.704± 0.019 is prepared by inserting an HWP with optical axes set at 22.5◦ and quartz

plates of thickness 98λ0 with horizontally-set optical axes in mode a. We insert M at

L1 = 390λ0 at which ESD has occurred, and there is no entanglement; entanglement rebirth

occurs at about L2 = 585λ0 and then the entanglement collapses at about L2 = 975λ0

again. The concurrence is corrected to zero according to Eq. (4) when its measured value is

negative. Entanglement can be reborn at a maximal value 0.276± 0.013 in the experiment.
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FIG. 2: Major results (dots) for entanglement dynamics in the experiment. The solid lines are

theoretical predictions of concurrence. Two error types are considered: the shot noise error in the

measured coincidence counts and the uncertainty in the settings of the angles of the wave plates used

to perform the tomography [27]. (a) represents the entanglement evolution of a maximal entangled

state in a pure dephasing environment without M; (b) and (c) with M inserted at L1 = 195 and

L1 = 390, respectively; (d) represents the entanglement evolution of the partially entangled state

in a dephasing environment with M inserted at L1 = 390. λ0 = 800 nm.

Nonlocality, as a particular characteristic of quantum mechanics, has changed the view-

point and methods in understanding nature at its fundamental level. Since it can be studied

by the well known Bell inequality [30], a quantum state with nonlocal correlations could be

a very useful feature to exploit in future quantum technologies [31]. In our experiment, the

maximally recovered entangled state in Fig. 2(b) and Fig. 2(c) can be proven to be nonlocal

by the more convenient Clauser-Horne-Shimony-Holt (CHSH) inequality [32], S ≤ 2 for any

local realistic theory, where

S = E(θ1, θ2) + E(θ1, θ
′
2) + E(θ′1, θ2)− E(θ′1, θ

′
2) (12)
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with

E(θ1, θ2) =
C(θ1, θ2) + C(θ⊥1 , θ

⊥
2 )− C(θ1, θ

⊥
2 )− C(θ⊥1 , θ2)

C(θ1, θ2) + C(θ⊥1 , θ
⊥
2 ) + C(θ1, θ⊥2 ) + C(θ⊥1 , θ2)

.

Here, θi(θ
′
i), i = 1, 2 represent the linear polarization setting in path a and path b separately

and θ⊥i = θi+90◦, i = 1, 2. By calculating the maximal value of S from the measured density

matrix of the maximally recovered state, we get (θ1 = −15◦, θ′1 = 21◦, θ2 = 86◦, θ′2 = −52◦)

in Fig. 2(B) and (θ1 = −82◦, θ′1 = 66◦, θ2 = −4◦, θ′2 = 28◦) in Fig. 2(C). Accordingly, the

measured values of S are 2.336± 0.003 and 2.210± 0.003, which violate the local realism

limit 2 by over 104 and 64 standard deviations, respectively.

The extraordinary phenomenon of entanglement recovery induced by a measurement,

can be understood in the quantum framework of a partial measurement and reversal [20].

BD1 measures the photon’s polarization in H/V basis. Partial measurement in H/V basis

in the upper path and a reversal operation with the same strength [33] in the lower path

is implemented by BD2. The photons in the two dark ports of BD2 are abandoned, this

can be considered as a non-response of the detector to the coincidence detection. Because

partial measurement and reversal with the same intensity can restore the initial entanglement

[20] and the phase difference introduced by L2 only changes the strength, we believe that

entanglement is preserved with the increasing L2 while the recovery is an optical spin-echo

effect introduced by HWP1.

To summarize, we have report on an experiment, which shows that entanglement can

be recovered by a process of measurement followed by quantum eraser in a non-Markovian

environment. Simultaneously, the maximally recovered states can be verified to violate the

CHSH inequality with high standard deviations, which confirms theirs quantum character.

This result can be used to eliminate the influence of dephasing. Another encouraging as-

pect is that, even if the state has been thoroughly disentangled, that is, to say, ESD has

occurred, the entanglement can still be revived from non-Markovian environments regard-

less of decoherence time durations. This can be used to implement controllable recovery of

entanglement. Entanglement dynamics considering other coding and decoding protocol can

be studied in future work.
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