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Abstract

We give a construction for a self-test for any connected graph state.
In other words, for each connected graph state we give a set of non-
local correlations that can only be achieved (quantumly) by that par-
ticular graph state and certain local measurements. The number of
correlations considered is small, being linear in the number of vertices
in the graph. We also prove robustness for the test.

1 Introduction

Self-testing is a process where a skeptical classical user attempts to verify the
operation of a collection of quantum devices without trusting any of them a
priori. Importantly, we wish to make as few assumptions as possible about
the operation of the devices and in particular we do not bound the dimen-
sion of the state space for each device. However we do make the necessary
assumption that the quantum devices are not allowed to communicate with
each other. Despite these severe restrictions on our knowledge it is possible
to devise self-tests for a number of different situations.

Self-testing was first introduced by Mayers and Yao [MY04] who described
a self-test for a maximally entangled pair of qubits (EPR pair) along with a
small set of local measurements. Meanwhile, self-testing of gates was intro-
duced by van Dam et al. [vMMS00] in the scenario of known Hilbert space
dimensions. These two results were extended to testing of circuits over a real
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Hilbert space by Magniez et al [MMMO06]. Most recently, McKague and
Mosca [MM10] reproved the Mayers-Yao result and extended it to allow for
testing of a larger set of measurements including measurements over the full
complex Hilbert space.

In this paper we use proof techniques developed in [MM10] to define self-
tests for the graph state for any connected graph. This family of self-tests
is efficient in the number of measurement settings, requiring only two or
three measurement settings on each vertex, depending on the graph. As well
the total number of correlations tested is small, only one per vertex plus an
additional 3 at most. We also prove that the self-tests are robust.

1.1 Graph states and notation

A graph G is composed of two sets: a set V of vertices, and a set E ⊂ V ×V
of edges. For our purposes we suppose that (v, v) /∈ E and (v, u) ∈ E
whenever (u, v) ∈ E. Two vertices u, v are said to be adjacent if (u, v) ∈ E.
A cycle is a sequence of vertices in which each vertex occurs at most once,
each vertex in the sequence is adjacent to the next vertex in the sequence,
and the last vertex is adjacent to the first. A subgraph G′ of G is a graph
(E ′, V ′) with E ′ ⊆ E, V ′ ⊆ V . An induced subgraph is a subgraph in which
E ′ = {(u, v) ∈ E|u, v ∈ V ′}, so the subgraph contains all edges between
vertices of V ′ in the original graph. The neighbours Nv of a vertex v are the
vertices to which v is connected with an edge, i.e. Nv = {u ∈ V |(u, v) ∈ E}.
A bipartite graph is a graph in which the set of vertices may be partitioned
into two sets S and T , each of which has no edges within it. So the induced
subgraphs on S and T have no edges. An important property of bipartite
graphs is that they are exactly the graphs which contain no cycles with an
odd number of vertices. A graph is connected if for each pair of vertices u, v
there is a sequence of adjacent vertices beginning with u and ending in v.
For more detail regarding graph theory see Diestel [Die10].

A graph state consists of a set of qubits indexed by the set of vertices V ,
each prepared in the state |+〉v = 1√

2
(|0〉v + |1〉v), followed by (CTRL−Z)uv

operations between pairs of qubits where the corresponding vertices u, v in
the graph are adjacent. If the graph is not connected then the graph state
will be a product state of graph states on the separate components. Hence
connected graphs form the interesting cases.

Graph states are also characterized by their stabilizer group. Let the
operators Xv and Zv be the Pauli operators X and Z applied to qubit v,
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tensor product with I on all other qubits. If P is a Pauli and S ⊆ V then

P S =
∏

v∈S
Pv. (1)

The stabilizer group for a graph state on the graph G = (V,E) is generated
by

Sv =
{

XvZ
Nv |v ∈ V

}

. (2)

That is, for each vertex v there is a stabilizer operator with X operating
on v and Z operating on each of v’s neighbours. Note that there are n
such operators, they pairwise commute and are independent. Hence there is
exactly one state with this stabilizer group. That is to say, the graph state
|ψ〉 is the unique state for which Sv |ψ〉 = |ψ〉 for each v ∈ V .

As one additional piece of notation, we will frequently need to deal with
products of stabilizers on a subset of vertices. For this case we define

ZN(S) =
∏

v∈S
ZNv (3)

where the factor Zv appears if v has an odd number of neighbours in S.

1.2 Self-testing definitions

Consider the following black-box scenario: we are given a set of devices, each
with a knob labeled with a number of settings, a pair of lights labeled ±1,
and a button. After we select a setting and push the button one of the
lights turns on. We are told that the devices jointly share a state which is
measured, according to the knob setting, in a specified basis. Our goal is
to determine if the black-boxes are operating according to their specification
using only the external controls of the boxes. Additionally we may isolate
the boxes to ensure that they do not communicate.

We begin with a reference experiment consisting of an n-partite system in
the state |ψ〉 together with local measurement observablesMj,m on subsystem
j with measurement setting m ∈ {0, 1, . . . , kj}. The measurement setting
m = 0 corresponds to no measurement, which we may represent with the
identity. The reference experiment represents the specification for how the
black-boxes supposedly operate. In particular, we assume that the state and
observables are known.
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In addition, we have a physical experiment consisting of an n-partite phys-
ical system in the state1 |ψ′〉 together with local measurement observables
M ′

j,m on subsystem j, with m ∈ {0, 1, . . . , kj}. Again we may take M ′
j,0 = I

indicating that we do not measure the subsystem. We place no bound on
the dimension of the Hilbert space of each subsystem, but assume that it
is finite. The physical experiment represents how the black-boxes actually
operate.

If a physical and reference experiment have the same number of subsys-
tems and the same number of measurements on each subsystem, then we
say that they are compatible. Note that we will always deal with the case of
two-outcome measurements, so that all observables have eigenvalues ±1. In
principle, though, the definitions can be extended to other types of measure-
ments.

To be more specific about our task, we introduce two notions, simulation
and equivalence.

Definition 1. Let a physical experiment and a compatible reference exper-
iment be given as above. We say that the physical experiment simulates
the reference experiment if for each measurement setting m = (m1, . . . , mn),
mj ∈ {0, . . . , kj} we have

〈ψ′|
n
⊗

j=1

M ′
j,mj

|ψ′〉 = 〈ψ|
n
⊗

j=1

Mj,mj
|ψ〉 . (4)

Here it will be sufficient to consider only a subset of possible measurement
settings. In this case we include the measurement settings of interest in our
description of the reference experiment.

Definition 2. Let a physical experiment and a compatible reference experi-
ment be given as above. We say that the physical experiment is equivalent
to the reference experiment if there exists a local isometry

Φ = Φ1 ⊗ · · · ⊗ Φn (5)

and a state |junk〉 such that, for each j, and m ∈ {1, . . . , kj}
Φ(|ψ′〉) = |junk〉 ⊗ |ψ〉 (6)

Φ(M ′
j,m |ψ′〉) = |junk〉 ⊗Mj,m |ψ〉 (7)

1We consider only pure states, but since the Hilbert space of the physical system has
unbounded dimension we may easily add a purification to mixed states.
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where |junk〉 is in the same Hilbert space as |ψ′〉.

When describing any physical system we must first fix a reference frame,
and decide which components to describe and which to leave out. Thus we
may take a description and apply local changes of basis, or add ancillas and
arrive at another, perfectly acceptable, description of the system. These
two operations are invisible from the perspective of classical interactions
with devices so we can never rule them out. This motivates our definition
of equivalence, which takes such ambiguities in quantum descriptions into
account.

Throughout the remainder of this paper we will used primed (|ψ′〉, X ′,
S ′
v etc.) to denote physical measurements and states and unprimed for ref-

erence measurements and states. Note that S ′
v = X ′

v ⊗ Z ′N(v) and other
derived physical measurements are defined in terms of the local physical
measurements. Also, although we use the letters X and Z for the physical
measurements, these need not be Pauli matrices, and we assume nothing
about their structure other than what we mention explicitly.

1.3 Main results

A self-testing theorem specifies a particular reference experiment and states
that if a physical experiment simulates the reference experiment, then it is
equivalent to it. That is to say, for a particular experiment simulation implies
equivalence. Our main result is to show that this is the case for the following
two reference experiments.

Definition 3 (Reference experiment 1: connected graph with an odd induced
cycle). Let G = (V,E) be a connected graph containing an odd induced cycle
C = (V ′, E ′). Let |ψ〉 be the corresponding graph state with stabilizers Sv,
v ∈ V . The reference experiment consists of the state |ψ〉, the stabilizer
measurements Sv and the measurement XV ′

ZN(V ′).

It is easy to show that a graph which contains any odd cycle contains
an induced cycle. Thus reference experiment 1 is applicable to all connected
non-bipartite graphs.

Definition 4 (Reference experiment 2: connected graph). Let G = (V,E)
be a connected graph with at least two vertices. Let |ψ〉 be the corresponding
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graph state with stabilizers Sv, v ∈ V . Choose a fixed edge (u, v) ∈ E and
define

Du =
1√
2
(Xu + Zu) (8)

The reference experiment consists of the state |ψ〉, the stabilizer measure-
ments Sv and the measurements

Z ′
uZ

′Nu (9)

DuZ
Nu (10)

DuXvZ
Nv\{u} (11)

In appendix A we show that the D measurements are required since for
a bipartite graph all measurements using X and Z alone can be simulated
using a classical hidden variable model.

Theorem 1. If a physical experiment is compatible with reference experiment
1 (2), and simulates it, then the physical experiment is equivalent to reference
experiment 1(2).

2 Proof of main result

The proof consists of three sections. First we determine the expected values
for the measurements in the reference experiment. Next we show that if the
physical experiment simulates the reference experiment then the X ′ and Z ′

operators anti-commute. Finally we construct the local isometry and use the
anti-commuting property of the X ′ and Z ′ operators to show equivalence.

2.1 Probability distribution from graph states

We first derive the probability distributions that arise from a graph state
with trusted measurements. This establishes the conditions that a physical
experiment must meet in order to simulate the reference experiment.

Clearly, the stabilizer measurements all satisfy

〈ψ|Sv |ψ〉 = 1. (12)

For reference experiment 1, we need one additional measurement.
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Lemma 1. Let G = (V,E) be a graph and let |ψ〉 be the corresponding graph
state. Let V ′ ⊆ V and let G′ = (V ′, E ′) be the induced subgraph on V ′. If
each v ∈ V ′ has even degree then

(−1)|E
′|XV ′

ZN(V ′) |ψ〉 = |ψ〉 (13)

Proof. Consider the product
(

∏

v∈V ′

Sv

)

|ψ〉 (14)

First note that there will be an Xv factor for each v ∈ V ′. As well, there will
be a Zu factor for each v ∈ V ′ adjacent to u. Canceling pairs we see that
there will be an overall Zu factor exactly when there are an odd number of
neighbours of u in V ′. Hence the Z factor will be ZN(V ′). We only need to
determine the sign. Note that the Zu, u /∈ V ′ factor all commute so we need
not consider them any more.

The order of multiplication in equation (14) does not matter since the
stabilizers all commute. For convenience, then, we may write the product
as the product of the rows of a matrix with each column corresponding to a
v ∈ V ′ and each row a stabilizer. We choose the order of the rows so that
the Xs appear along the diagonal2. For a 5-cycle, for instance, we have

X Z I I Z
Z X Z I I
I Z X Z I
I I Z X Z
Z I I Z X

. (15)

The factor on each vertex equals the product of the entries in the correspond-
ing column. In each column there is one X and one Z for each neighbour.
The factor will be either ±XZ or ±X , depending on whether there is an
odd or even number of Zs. The sign depends on the number of Zs above
the X , since we must use the fact that XZ = −ZX once for each such Z.
Combining the signs from all vertices, there is a −1 factor for each Z above
the diagonal, and hence one for each edge in G′. The overall sign, then, is
(−1)|E

′|.

2The matrix may be constructed by taking the adjacency matrix of G′, which has a 1
in the u, v position when (u, v) ∈ E′, replacing the diagonal with Xs, the 0s with Is and
the 1s with Z.
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For reference experiment 1 we consider an odd cycle, and hence we obtain

〈ψ|XV ′

ZN(V )′ |ψ〉 = −1. (16)

Reference experiment 2 has three measurements other than the stabilizer.
First we have ZuZ

Nu . This is just Su with Xu replaced by Zu. Since X and
Z anti-commute we have

〈ψ|ZuZ
Nu |ψ〉 = 0. (17)

From this, and linearity, we obtain

〈ψ|DuZ
Nu |ψ〉 = 1√

2
. (18)

Finally, the operator DuXvZ
Nv\{u} is a linear combination of Sv and Sv with

Zu replaced with Xu. As above, then, we find

〈ψ|DuXvZ
Nv\{u} |ψ〉 = 1√

2
. (19)

2.2 Statistics imply anti-commuting observables

We now suppose that the physical experiment simulates either reference ex-
periment 1 or 2 and show that this implies that the X ′ and Z ′ measurements
on each vertex anti-commute (on the support of |ψ〉).

First, note that 〈ψ′|S ′
v |ψ′〉 = 1 implies S ′

v |ψ′〉 = |ψ′〉, and similarly for
other measurements. This allows us to immediately drop probabilities and
deal with states directly.

As a first step towards our goal, we prove a type of induction lemma
which says that if theX ′ and Z ′ observables anti-commute on vertex, then the
same is true for an adjacent vertex. Thus we need only show anti-commuting
observables on one vertex, and apply the lemma repeatedly along paths to
all other vertices (since G is connected.)

Lemma 2. Given a graph G with (u, v) ∈ E. If observables X ′
v, Z

′
v, X

′
u, Z

′
u,

and {Z ′
w|w ∈ Nu ∪Nv} and state |ψ′〉 satisfy

S ′
u |ψ′〉 = S ′

v |ψ′〉 = |ψ′〉 (20)

(X ′Z ′)v |ψ′〉 = −(Z ′X ′)v |ψ′〉 (21)

then
(X ′Z ′)u |ψ′〉 = −(Z ′X ′)u |ψ′〉 (22)
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Proof. From the fact that (u, v) ∈ E we obtain

(Z ′X ′)u |ψ′〉 = (Z ′X ′)uS
′
uS

′
vS

′
uS

′
v |ψ′〉 (23)

= (Z ′X ′)uX
′
uZ

′
vX

′
vZ

′
uX

′
uZ

′
vX

′
vZ

′
u |ψ′〉 (24)

= (X ′Z ′)u(Z
′X ′)v(Z

′X ′)v |ψ′〉 (25)

= −(X ′Z ′)u(Z
′X ′)v(X

′Z ′)v |ψ′〉 (26)

= −(X ′Z ′)u |ψ′〉 (27)

(28)

For reference experiment 1 we show that the observables X ′ and Z ′ anti-
commute for each vertex in the induced odd cycle.

Lemma 3. Let G = (E, V ) be a connected graph and let C = (E ′, V ′) be
an induced odd cycle of G and let u ∈ V ′. If observables X ′

u, Z
′
u for u ∈ V ′,

{Z ′
w|w has a neighbour in C} and state |ψ′〉 satisfy

S ′
u |ψ′〉 = |ψ′〉 (29)

−X
′V ′

Z ′N(V ′) |ψ′〉 = |ψ′〉 (30)

Then (X ′Z ′)u |ψ〉 = −(Z ′X ′)u |ψ〉 for each u ∈ V ′.

Proof. Number the vertices in the cycle 1 through k so 1 is adjacent to 2,
etc.. Without loss of generality we may assume that u is vertex 1. We next
consider the following state:

−X ′V ′

Z ′N(V ′)

k−1

2
∏

j=1

S ′
2j

k−1

2
∏

j=1

S ′
2j−1 |ψ′〉 = |ψ′〉 (31)

Note that the factor Z ′N(V ′) is cancelled by Z operations arising from the
products of the S ′

v. We may write the product as the product of the rows of
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the following matrix, where column j corresponds to vertex j in the cycle:

−X ′ X ′ X ′ X ′ X ′ . . . X ′ X ′ X ′

Z ′ X ′ Z ′ I I . . . I I I
I I Z ′ X ′ Z ′ . . . I I I

...
I I I I I . . . Z ′ X ′ Z ′

X ′ Z ′ I I I . . . I I Z ′

I Z ′ X ′ Z ′ I . . . I I I
I I I Z ′ X ′ . . . I I I

...
Z ′ I I I I . . . I Z ′ X ′

(32)

In each column there are two X ′ operators and two Z ′ operators. Also,
their arrangement is such that, for every column except the first, the two X ′

operators are next to one another, so they cancel directly, and similarly for
the Z ′ operators. Hence

− (X ′Z ′)u(X
′Z ′)u |ψ′〉 = |ψ′〉 (33)

The desired result follows immediately.

For reference experiment 2, we have one additional measurement on a
particular vertex u. We use this extra measurement to establish that the X ′

and Z ′ measurements on u anti-commute.

Lemma 4. Let G = (V,E) be a connected graph with (u, v) ∈ E. If observ-
ables D′

u, X
′
v, Z

′
v, X

′
u, Z

′
u, {Z ′

w|w ∈ Nu ∪Nv} and state |ψ′〉 satisfy

S ′
u |ψ′〉 = S ′

v |ψ′〉 = |ψ′〉 (34)

〈ψ′|Z ′
uZ

′Nu |ψ′〉 = 0 (35)

〈ψ′|D′
uZ

′Nu |ψ′〉 =
1√
2

(36)

〈ψ′|D′
uXvZ

′Nv\u |ψ′〉 =
1√
2

(37)

(38)

then −(X ′Z ′)u |ψ′〉 = (Z ′X ′)u |ψ′〉
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Proof. Since 〈ψ′|X ′
uZ

′Nu |ψ〉 = 1 we have X ′
u |ψ′〉 = Z ′Nu |ψ〉. Similarly,

Z ′
u |ψ′〉 = X ′

vZ
′Nv\u |ψ′〉. Along with 〈ψ′|Z ′

uZ
′Nu |ψ′〉 = 0 we find that

X ′
u |ψ′〉 is orthogonal to Z ′

u |ψ′〉. We also obtain 〈ψ′|D′
uZ

′
u |ψ′〉 = 1√

2
and

〈ψ′|D′
uX

′
u |ψ′〉 = 1√

2
. Since D′

u |ψ′〉 has norm 1, we find

D′
u |ψ′〉 = 1√

2
X ′

u |ψ′〉+ Z ′
u

1√
2
|ψ′〉 (39)

Further, since (D′
u)

2 = I = (Z ′
u)

2 = (X ′
u)

2, and

|ψ′〉 = (D′
u)

2 |ψ′〉 (40)

=
1√
2
D′

u

(

Z ′Nu +XvZ
′Nv\u) |ψ′〉 (41)

=
1

2

(

Z ′Nu +XvZ
′Nv\u) (X ′

u + Z ′
u) |ψ′〉 (42)

=
1

2
(2I + (X ′Z ′)u + (Z ′X ′)u) |ψ′〉 (43)

(44)

In order for this to be true, we must have

(X ′Z ′)u |ψ′〉 = −(Z ′X ′)u |ψ′〉 . (45)

We conclude with a technical lemma that allows us to exchange X ′
v op-

erations for Z ′
v operations.

Lemma 5. Let G = (V,E) be a connected graph and let X ′
v, Z

′
v for v ∈ V

and |ψ′〉 (and Du for some u ∈ V ) be a physical experiment that simulates
reference test 1 (or 2). Let G′ = (V ′, E ′) be an induced subgraph of G. Then

(−1)|E
′|X ′V ′ |ψ′〉 = Z ′N(V ′) |ψ′〉 (46)

Proof. We use the previous lemmas to conclude that X ′
vZ

′
v |ψ′〉 = −Z ′

vX
′
v |ψ′〉

for each v. Then we repeat the argument used in the proof of lemma 1.
Essentially, we look at the product

∏

v

S ′
v |ψ′〉 . (47)
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Writing this product out as a the product of rows of a symmetric matrix with
X ′s along the diagonal, we see that in order to get all the X ′s together we
must use the anti-commuting relation once for each Z ′ above the diagonal.
Since there is one Z ′ above the diagonal for each edge, we obtain the factor
(−1)|E

′|.

2.3 Constructing the isometry

The local isometry Φ that we use to show equivalence between the physical
experiment and the reference experiment is the tensor product of isometries
Φv for various v ∈ V , is in the circuit shown in figure 1.

|0〉 H • H •

|input〉v Z ′
v X ′

v

Figure 1: Circuit for Φv

The circuit is based on the argument used by Mayers and Yao in their
original EPR test. It may be seen as a type of SWAP gate, decomposed
into three CNOT gates. Here the first CNOT gate is omitted since the
ancilla is always initialized in the state |0〉. The Hadamards and Controlled
Z operation replace a CNOT targeted on the ancilla. With these points in
mind, we see that when Z ′

v and X ′
v are indeed qubit Pauli operators the

circuit defines a SWAP operation.
We will now calculate the result of Φ applied to |ψ′〉.

Φ(|ψ′〉) = 1

2n

∑

x

⊗

v∈V
X ′xv

v (I + (−1)xvZ ′
v) |ψ′〉 |x〉 (48)

with x = (xv)v∈V ∈ {0, 1}|V |. Applying the anti-commutation relation, this
simplifies to

Φ(|ψ′〉) = 1

2n

∑

x

⊗

v∈V
(I + Z ′

v)X
′xv

v |ψ′〉 |x〉 . (49)

Using lemma 5 and the fact that (I + Z ′
v)Z

′
v = I + Z ′

v we finally find

Φ(|ψ′〉) =
(

1√
2n

⊗

v∈V
(I + Z ′

v |ψ′〉)
)(

1√
2n

∑

x

(−1)e(x) |x〉
)

(50)
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where e(x) is the number of edges in the induced subgraph on the set Vx =
{v ∈ V |xv = 1}.

Set |φ〉 = 1√
2n

∑

x(−1)e(x) |x〉. Consider Sv |x〉 for some x. This will be

± |x⊕ 1v〉 where 1v is the binary vector with 1 in position v and 0 everywhere
else. The sign may be computed as follows: for each Zu component of Sv, if
xu = 1 a −1 factor will be introduced. This happens when (u, v) ∈ E and
u is in Vx. We may see this as either removing or adding the vertex v and
adding a −1 factor for each edge between v and another vertex in Vx. Thus
Sv(−1)e(x) |x〉 = (−1)e(x⊕1v) |x⊕ 1v〉. In other words, this exactly produces
the correct sign on each |x〉 so that Sv |φ〉 = |φ〉 and in fact |φ〉 = |ψ〉.

Now consider Φ(X ′
v |ψ′〉) for some v. After anti-commuting the X ′ oper-

ations we have

Φ(X ′
u |ψ′〉) = 1

2n

∑

x

⊗

v∈V
(I + Z ′

v)X
′xv

v X
′

u |ψ′〉 |x〉 . (51)

In this equation, we may simply replace X ′xv
v X

′

u with X ′xv⊕1u
v , where 1u is

the vector with 0s everywhere, except position u. After applying lemma 5
we arrive at

Φ(X ′
u |ψ′〉) =

(

1

2n

⊗

v∈V
(I + Z ′

v) |ψ′〉
)

∑

x

(−1)e(x⊕1u) |x〉 . (52)

A change of variable, x 7→ x ⊕ 1u, and the fact that Xu |x〉 = |x⊕ 1u〉 gives
the final result,

Φ(X ′
v |ψ′〉) =

(

1√
2n

⊗

v∈V
(I + Z ′

v) |ψ′〉
)

Xv |ψ〉 . (53)

A similar analysis shows that

Φ(Z ′
v |ψ′〉) =

(

1√
2n

⊗

v∈V
(I + Z ′

v) |ψ′〉
)

Zv |ψ〉 . (54)

Recall from the proof of lemma 4 that D′
v |ψ′〉 may be written as D′

v |ψ′〉 =
1√
2
(X ′

v + Z ′
v) |ψ′〉. By linearity, then

Φ(D′
v |ψ′〉) =

(

1√
2n

⊗

v∈V
(I + Z ′

v) |ψ′〉
)

Dv |ψ〉 . (55)

This concludes the proof of theorem 1.
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3 Robustness

In this section we will show that the main theorems are both robust.

3.1 Definitions and main theorem

First, we modify the definitions of simulation and equivalence to allow for
small deviations from the reference experiment

Definition 5. Let a physical experiment and a compatible reference exper-
iment be given as above. We say that the physical experiment ǫ-simulates
the reference experiment if for each measurement setting m = (m1, . . . , mn),
mj ∈ {0, . . . , kj} we have

∣

∣

∣

∣

∣

〈ψ′|
n
⊗

j=1

M ′
j,mj

|ψ′〉 − 〈ψ|
n
⊗

j=1

Mj,mj
|ψ〉
∣

∣

∣

∣

∣

≤ ǫ. (56)

Definition 6. Let a physical experiment and a compatible reference experi-
ment be given as above. We say that the physical experiment is δ-equivalent
to the reference experiment if there exists a local isometry

Φ = Φ1 ⊗ · · · ⊗ Φn (57)

and a state |junk〉 such that, for each j, and m ∈ {1, . . . , kj}

||Φ(|ψ′〉)− |junk〉 ⊗ |ψ〉||1 ≤ δ (58)
∣

∣

∣

∣Φ(M ′
j,m |ψ′〉)− |junk〉 ⊗Mj,m |ψ〉

∣

∣

∣

∣

1
≤ δ (59)

where δ = 15n2+5n
2

√
ǫ (δ =?) and |junk〉 is in the same Hilbert space as |ψ′〉.

Theorem 2. Let a graph G be given with |V | = n. If a compatible physical
experiment ǫ-simulates reference experiment 1 (2) then it is δ-equivalent to

it with δ = n
2
(5n2 + 11n+ 4)

√
ǫ (δ = (2n3 + 4n2 + n)

√
ǫ+ 13(1

2
n2 + n)ǫ

1

4 )

3.2 Proof for reference experiment 1

First we note that if 〈ψ|M |ψ〉 ≥ 1− ǫ then

|||ψ〉 −M |ψ〉||1 ≤
√
2ǫ. (60)
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Next, suppose that we have |||ψ〉 −M |ψ〉||1 ≤ α and |||ψ〉 −N |ψ〉||1 ≤ β.
Using the triangle inequality and the fact that ||M ||∞ = 1 we have

|||ψ〉 −MN |ψ〉||1 ≤ α + β. (61)

The remainder of the proof will use these estimations repeatedly, along with
the triangle inequality. We need only count the number of times this happens,
which is the same as the number of operators multiplied together.

First, for lemma 3 let c be the size of the induced cycle. We multiply
c+1 operators together. Thus we conclude that for a vertex u in the induced
cycle

||(X ′Z ′)u |ψ′〉+ (Z ′X ′)u |ψ′〉||1 ≤ 2(c+ 1)
√
ǫ. (62)

Next, for lemma 2 we multiply four operators, then invoke the anti-commuting
property on one of the vertices. This gives

||(X ′Z ′)u |ψ′〉+ (Z ′X ′)u |ψ′〉||1 ≤ 8
√
ǫ+ β (63)

where β is ||(X ′Z ′)v |ψ′〉+ (Z ′X ′)v |ψ′〉||1, v being neighbouring vertex. We
may apply lemma 2 along paths from vertices in the induced cycle in G. Let
l be the length (number of edges) of the longest path. Then for any vertex
u we find, at worst,

||(X ′Z ′)u |ψ′〉+ (Z ′X ′)u |ψ′〉||1 ≤ 2(4l + c+ 1)
√
ǫ. (64)

Lastly, for lemma 5, we multiply |V ′| operators, and apply the anti-
commuting relation |E ′| times. Thus

∣

∣

∣

∣

∣

∣
(−1)|E

′|X ′V ′ |ψ′〉 − Z ′N(V ′) |ψ′〉
∣

∣

∣

∣

∣

∣

1
≤ 2 (|V ′|+ (4l + c+ 1)|E ′|)√ǫ. (65)

We are now ready to analyze the proof of the main theorem for reference
experiment 1. To arrive at equation 49 we apply the anti-commutation rela-
tion. This happens once for each 1 appearing in x, for each possible x, for a
total of n2n−1 times. We may find this by pairing values x and x⊕ 111 . . . 1.
There are 2n−1 such pairs and each pair contains n 1s all together. Multiply-
ing by the normalization factor 1

2n
we find

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Φ(|ψ′〉)− 1

2n

∑

x

⊗

v∈V
(I + Z ′

v)X
′xv

v |ψ′〉 |x〉
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ n(4l + c + 1)
√
ǫ. (66)
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For equation 50 we use lemma 5, once for each possible value of x. Again,
the estimate depends on the number of 1s in x, summed over all possible xs.
As well, it depends on the number of edges in the induced subgraph. An
edge (u, v) will be counted only when xu = xv = 1. This occurs for 1/4 of all
xs. Summed over all possible xs and edges, then, the number of times edges
are counted is 2n−2|E|. Again, we multiply by the normalization factor 1

2n
.

This gives our final estimate:
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Φ(|ψ′〉)−
(

1

2n

⊗

v∈V
(I + Z ′

v) |ψ′〉
)

∑

x

(−1)e(x) |x〉
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

(67)

≤ (n(4l + c+ 1) + (n + (4l + c+ 1)|E|/2))
√
ǫ (68)

=

(

(4l + c + 1)(n+
|E|
2

) + n

)√
ǫ (69)

where e(x) is the number of edges in the induced subgraph on the set Vx =
{v ∈ V |xv = 1}.

Note that when calculating Φ (X ′
u |ψ′〉) etc. we did not use any more

estimations, we simply rearrange when lemma 5 is applied. Thus the same
robustness applies.

As a last estimation, we note that l and c cannot be larger than n, and
|E| ≤ n2. We may thus set δ = n

2
(5n2 + 11n+ 4)

√
ǫ.

Note that we may make much better estimates if some properties of the
graph are known. For example, if every vertex lies in a triangle and the
max degree is 6, as in the case of a lattice of triangles, we may instead set
δ = 17n

√
ǫ.

3.3 Proof for reference experiment 2

Much of the same analysis may be used for experiment 2. Indeed, since
the only difference in the proofs for the non-robust results is how the anti-
commuting property is proved, we may simply replace the estimation for
lemma 3 with that of lemma 4.

We begin, then, with ǫ-simulation and prove a robust version of lemma 4.

First we wish to estimate α =
∣

∣

∣

∣

∣

∣
D′

u |ψ〉 − X′
u+Z′

u√
2

|ψ〉
∣

∣

∣

∣

∣

∣

1
. Using techniques

from the previous section, we have
∣

∣

∣

∣X ′
u |ψ′〉 − Z ′Nu |ψ〉

∣

∣

∣

∣

1
≤ 2

√
ǫ (70)

∣

∣

∣

∣Z ′
u |ψ′〉 −X ′

vZ
′Nv\u |ψ′〉

∣

∣

∣

∣

1
≤ 2

√
ǫ. (71)
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These along with the triangle inequality give an upper bound for α of

2
√
2ǫ+

∣

∣

∣

∣

∣

∣

∣

∣

D′
u |ψ〉 −

Z ′Nu +X ′
vZ

′Nv\u
√
2

|ψ〉
∣

∣

∣

∣

∣

∣

∣

∣

1

(72)

Expanding the second term, we get

√

1 +

∣

∣

∣

∣

∣

∣

∣

∣

Z ′Nu +X ′
vZ

′Nv\u
√
2

|ψ′〉
∣

∣

∣

∣

∣

∣

∣

∣

2

1

−
√
2 (〈ψ′|D′

uZ
′Nu |ψ′〉+ 〈ψ′|D′

uX
′
vZ

′Nv\u |ψ′〉).
(73)

Since
∣

∣

∣

∣Z ′
u |ψ′〉 −X ′

vZ
′Nv\u |ψ′〉

∣

∣

∣

∣

1
≤ 2

√
ǫ and

∣

∣

∣

∣Z ′Nu |ψ′〉
∣

∣

∣

∣

1
= 1 we find

∣

∣〈ψ′|Z ′NuZ ′
u |ψ′〉 − 〈ψ′|Z ′NuX ′

vZ
′Nv\u |ψ′〉

∣

∣ ≤ 2
√
ǫ. (74)

By hypothesis,
∣

∣〈ψ′|Z ′NuZ ′
u |ψ′〉

∣

∣ ≤ ǫ, so
∣

∣〈ψ′|Z ′NuX ′
vZ

′Nv\u |ψ′〉
∣

∣ ≤ 2
√
ǫ+ ǫ.

Meanwhile β2 =
∣

∣

∣

∣

∣

∣

Z′Nu+X′
vZ

′Nv\u
√
2

|ψ′〉
∣

∣

∣

∣

∣

∣

2

1
= 1 + Re 〈ψ′|Z ′NuX ′

vZ
′Nv\u |ψ′〉,

so |1− β2| ≤ 2
√
ǫ+ ǫ.

Finally, by hypothesis
∣

∣〈ψ′|D′
uZ

′Nu |ψ′〉+ 〈ψ′|D′
uX

′
vZ

′Nv\u |ψ′〉 −
√
2
∣

∣ ≤
2ǫ. Combining these facts we find α ≤ 2

√
2ǫ+

√

2
√
ǫ+ (1 + 2

√
2)ǫ.

Now we wish to estimate
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(D′
u)

2 |ψ′〉 − (X ′
u + Z ′

u)
2

2
|ψ′〉
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

(75)

By the fact ||D′
u||∞ = 1 we have

∣

∣

∣

∣

∣

∣
(D′

u)
2 |ψ′〉 −D′

u
X′

u+Z′
u√

2
|ψ′〉
∣

∣

∣

∣

∣

∣

1
≤ α. Simi-

larly, since ||X ′
u + Z ′

u||∞ ≤ 2 we find
∣

∣

∣

∣

∣

∣
D′

u
X′

uZ
′
u√

2
|ψ′〉 − (X′

u+Z′
u)

2

2
|ψ′〉
∣

∣

∣

∣

∣

∣

1
≤

√
2α.

Using these facts, the triangle inequality, and (D′
u)

2 = I, we obtain

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

|ψ′〉 − (X ′
u + Z ′

u)
2

2
|ψ′〉
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

= ||X ′
uZ

′
u |ψ′〉+ Z ′

uX
′
u |ψ′〉||1

≤ 2(1 +
√
2)

(

2
√
2ǫ+

√

2
√
ǫ+ (1 + 2

√
2)ǫ

)

≤ 26ǫ
1

4 (76)

with the last inequality valid for ǫ ≤ 1.
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Using this estimate, and working through the estimations as in the pre-
vious section, we find that we may set

δ = (2l(2n+ |E|) + n)
√
ǫ+ 13(n+

1

2
|E|)ǫ 1

4 . (77)

For a simpler expression, we may use l ≤ n and |E| ≤ n2, obtaining

δ = (2n3 + 4n2 + n)
√
ǫ+ 13(

1

2
n2 + n)ǫ

1

4 . (78)

Again, we may find a better estimate with more information about the
graph. For cluster states, which have a square lattice graph, we have |E| ≤
4n. We may also perform Du measurements on all vertices and set l = 0. In
this case we may set δ = n

√
ǫ+ 39nǫ

1

4 .

4 Discussion

4.1 Estimating expected values

The main results concern expected values, rather than experimental out-
comes. So in order to make use of these results in any practical imple-
mentation we must estimate the expected values using data collected from
experimental outcomes. The obvious approach of sampling the devices many
times and applying a Chernoff bound is problematic. In particular, we do not
wish to assume that separate uses of a device are independent and identically
distributed since these assumptions would be untestable and likely false in
many practical experiments.

One approach to this problem is that used by Pironio et al. in [PAM+10].
There the authors construct a martingale, which is a sequence of random
variables with certain properties. In particular, the random variables need
not be independent. This allows them to use Azuma’s inequality, which
gives good bounds for martingales on how far away a sample may lie from
the expected value without relying on independence assumptions. A similar
approach is viable here and a preliminary analysis suggests that good bounds
are achievable.

4.2 Graph state computation

Graph states are particularly interesting for their role in measurement based
quantum computation (MBQC, [RB01]). In this paradigm a graph state is

18



measured, vertex by vertex, in particular bases. Each measurement may be
interpreted as performing a unitary on a logical qubit. The composition of
these unitaries performs a logical circuit on the logical qubits.

A natural question to ask is whether a self-tested graph state could be
used for MBQC to allow for self-tested computation. Unfortunately MBQC
depends on measurements in the X-Y plane and the measurements tested
here are all in the X-Z plane. However, the techniques used in [MM10] could
easily be adapted to allow testing of X-Y plane measurements which would
then allow self-tested MBQC. In fact, in the exact case the techniques used
in [MM10] can be used with minimal changes. A preliminary analysis of
robustness suggests that the errors scale similarly to that of lemma 4 here.
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A Classical hidden variable model for bipar-

tite graph states with X and Z measure-

ments

Let G be a bipartite graph and |ψ〉 the corresponding graph state. We give
a local hidden variable model that is consistent will all measurements which
are tensor products of X and Z on this state.

We construct a local hidden variable model by randomly choosing a value
±1 for Z ′

v for each v in the graph. We then set X ′
v to be

X ′
v =

∏

u∈Nv

Z ′
u. (79)

Now we show that this is consistent with all possible tensor productX and
Z measurements on |ψ〉. LetM = XSZT , S∩T = ∅ be such a measurement.
First, suppose that ±M can be written as a product of stabilizers of |ψ〉.
Using lemma 1 we have

M = XSZN(S) = (−1)|E(S)|
∏

x∈S
Sv. (80)

Note that, by assumption, M has only X and Z factors, so each v ∈ S must
have an even number of neighbours in S. Then the induced subgraph on S
is Eulerian and we can partition the edges of the subgraph into cycles with
no common edges (see Diestel [Die10] for a proof). Suppose that |E(S)| is
odd. Then there must be at least one odd cycle in this partition and then S
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has an odd cycle and so does G. Since G is bipartite this must not be the
case and in fact |E(S)| is even. Hence M =

∏

x∈S Sv and 〈ψ|M |ψ〉 = 1. By
construction M ′ = X ′SZ ′N(S) =

∏

v∈S X
′
vZ

′Nv = 1 and the expected value of
M ′ matches that of M .

Now suppose that M is not a product of stabilizers of |ψ〉. Then M
must anti-commute with at least one stabilizer and hence 〈ψ|M |ψ〉 = 0.
Meanwhile, by construction

M ′ = X ′SZ ′T = Z ′N(S)Z ′T.. (81)

If N(S) = T then M is in fact a product of stabilizers. This is not the case,
so there is at least one Z ′

v in the above equation which is not cancelled. Since
all the Z ′

vs are chosen randomly, the product of the Z ′
vs not cancelled will

also be uniformly random. Thus the expected value of M ′ is 0.
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