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Fractional topological phase for entangled qudits

L. E. Oxman and A. Z. Khoury
Instituto de F́ısica, Universidade Federal Fluminense, 24210-346 Niterói - RJ, Brasil.

We investigate the topological structure of entangled qudits under unitary local operations. Dif-
ferent sectors are identified in the evolution, and their geometrical and topological aspects are
analyzed. The geometric phase is explicitly calculated in terms of the concurrence. As a main
result, we predict a fractional topological phase for cyclic evolutions in the multiply connected space
of maximally entangled states.

PACS numbers: PACS: 03.65.Vf, 03.67.Mn, 07.60.Ly, 42.50.Dv

In a seminal work, M. Berry [1] showed the impor-
tant role played by geometric phases in quantum the-
ory. Since then, the interest for geometric phases was
renewed by potential applications to quantum computa-
tion. The experimental demonstration of a conditional
phase gate was provided both in Nuclear Magnetic Reso-
nance (NMR) [2] and trapped ions [3]. Optical geometric
phases have already been discussed both for polarization
[4] and vortex mode transformations [5, 6]. The role of
entanglement in the phase evolution of qubits was inves-
tigated in refs.[7, 8]. Recently, P. Milman and R. Mosseri
[9, 10] investigated the geometric phase and the topolog-
ical structure associated with cyclic evolutions of arbi-
trary two-qubit pure states. This structure has been ex-
perimentally evidenced in the context of spin-orbit mode
transformations of a laser beam [11] and in NMR [12].
Although the topological nature of the phase acquired by
maximally entangled states is well settled, the distinction
between geometrical and topological phases has not been
established clearly for partially entangled states. In this
work we present a group theoretical approach which al-
lows for a clear distinction between the two aspects. As a
bonus, this approach is easily extended to higher dimen-
sions, bringing an interesting prediction of a fractional
topological phase.

Let |ψ〉 =
∑d

i,j=1 αij |ij〉 be the most general two-
qudit pure state. We shall represent this state by the
d × d matrix α whose elements are the coefficients αij .
With this notation the norm of the state vector becomes
〈ψ|ψ〉 = Tr(α†α) = 1 and the scalar product between
two states is 〈φ|ψ〉 = Tr(β†α), where β is the d × d
matrix containing the coefficients of state |φ〉 in the cho-
sen basis. We are interested in the phase evolution of
the state |ψ〉 under local unitary operations. So let us
take two unitary matrices UA and UB belonging to U(d)
and representing the operations performed in each sub-
system separately. Under these unitary operations the
state matrix will evolve as α(t) = UA α(0)U

⊺

B , where
Uj(t) = eiφj(t)Ūj(t) (j = A,B) and Ūj ∈ SU(d). One
can identify the following invariants under local unitary
evolutions: Tr[ρ p

j ], p = 1, . . . , d, where ρj is the reduced
density matrix with respect to qudit j (ρA = α⊺α∗ and
ρB = αα†). In fact, the invariants are j-independent.

The first one (p = 1) is simply the norm of the state
vector. One can readily relate the second invariant to
the I-concurrence of a two-qudit pure quantum state [13]
C =

√

2(1− Tr[ρ2]), so that its invariance expresses the
well known fact that entanglement is not affected by local
unitary operations. The p = d invariant can be rewritten
in terms of the former and D = | det[α]|. In particular,
for qubits we have C = 2D.
In the case of a cyclic evolution, ŪA(τ)α(0)Ū

⊺

B(τ) =
ei∆φα(0) . By taking the determinant of both sides we
get: ei d∆φ = 1 as long as D 6= 0. This implies that the
possible acquired phases due to the SU(d) part of a cyclic
evolution are ∆φ = 2πn/d, with n = 0, 1, 2, ..., d − 1.
For qubits (d = 2) one recovers the well known result
∆φ = 0, π. However, for d > 2 one obtains fractional
phase values in steps of 2π/d . Now, we are interested
in discussing in what sense this fractional phase can be
considered as topological. For this aim, we will analyze
the topology of the space of two-qudit states and how
the total phase is built. In this regard, we would like to
underline that according to ref. [14], the geometric phase
acquired by a time evolving quantum state α(t) is always
defined as

φg = arg 〈ψ(0)|ψ(t)〉 + i

∫

dt 〈ψ(t)|ψ̇(t)〉 , (1)

that corresponds to the total phase minus the dynamical
phase. Therefore, a topological phase, that is, an object
that only depends on a given class of paths, can only find
room as a part of the geometric phase, an object that is
invariant under reparametrizations and gauge transfor-
mations. Gauge invariance corresponds to the fact that
the phase factors φj(t) do not contribute to φg, which
is completely determined by Ūj(t), the sector where the
fractional values occur.
In order to characterize the space of states, we note

that any invertible matrix admits a polar decomposition
α = QS, where Q = d

√
D eM is a positive definite Her-

mitian matrix, M is a traceless Hermitian matrix, and
S = eiφ S̄, S̄ ∈ SU(d). Since det[eM ] = eTr[M ] = 1, one
easily finds det(α) = D ei d φ. We can identify the time
evolution as occurring in different sectors

α(t) =
d
√
D eiφ(t) eM(t) S̄(t) , (2)
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where we have denoted, φ(t) = φ(0) + φA(t) + φB(t),
M(t) = ŪA(t)M(0)ŪA(t)

†, and S̄(t) = ŪA(t)S̄(0)Ū
⊺

B(t).
Therefore, we identify the evolution in three sectors of
the matrix structure: an explicit phase evolution φ(t),
an evolution closed in the space of traceless Hermitian
matrices M(t), and the evolution S̄(t) closed in SU(d).
Now we are able to discuss the topological aspects

of the entangled state evolution in terms of these sec-
tors. The space of positive definite Hermitian matrices
Q has trivial topology. This is a noncompact manifold
isomorphous to Rd2−1, as it can be parametrized in the
form Q = eβa Ta , where βa are real numbers and Ta
(a = 1, 2, ..., d2 − 1) is a basis in the space of Hermi-
tian traceless matrices. These Ta’s are the generators of
SU(d), so that S̄ = ei ωa Ta , with ωa real. They can be
normalized in the form tr (T aT b) = 1

2δ
ab and obey the

Lie algebra
[

T a, T b
]

= ifabcT c, where fabc are the struc-
ture constants of SU(d). The first homotopy group of
SU(d) is also trivial, however, the physical equivalence
of α matrices differing by a global phase corresponds to
considering the identification in SU(d), ei2πn/d S̄ ≡ S̄.
This can be naturally implemented by associating the
SU(d) sector of the matrix α with a corresponding sector
for the quantum states, represented by transformations
R(S̄) in the adjoint representation S̄T aS̄−1 = n̂a · ~T ,
n̂a = R(S̄)êa. In this manner, the matrices ei2πn/d S̄ are
mapped to the same point R(S̄). In other words, a part
of the evolution can be parametrized as R(t) ∈ Adj(d), or
equivalently, in terms of a time dependent frame n̂a(t).
Note that for qubits the adjoint representation corre-
sponds to SO(3), the manifold used in ref. [9, 10] to
describe maximally entangled states. An evolution S̄(t)
starting at S̄(0) and ending at ei2π/dS̄(0) defines an open
path in SU(d) and a topologically nontrivial closed path
R(t) ∈ Adj(d). If this cyclic evolution were composed d
times, we would get a trivial path in Adj(d), so that the
number of nonequivalent classes is given by d.
The total phase can be written as

φtot = arg {Tr[α†(0)α(t)]} = φA + φB

+arg {Tr[α†(0)ŪA(t)α(0)Ū
⊺

B(t)]} , (3)

while the dynamical phase is,

φdyn = −i
∫ t

0

dt′ Tr[α†(t′)α̇(t′)] = φA + φB

−i
∫ t

0

dt′ Tr[ρB(0) Ū
†
A
˙̄UA + ρ⊺A(0)

˙̄U⊺

BŪ
∗
B] , (4)

where ρA = (S†Q2S)∗, ρB = Q2. For cyclic evolutions we
have Ūj(τ) = ei2πnj/d Ūj(0). Then, the total generated
phase is φtot = φA + φB + 2πn/d, n = nA + nB, where
the values n 6= 0, d, 2d, . . . , correspond to topologically
nontrivial paths. As already discussed, the total phase is
always written as a dynamical plus a geometric part. In
order to consider a fractional phase as topological, it must
be built only as a part of the geometric phase, receiving

no relevant contribution from the dynamical part. This
means that at any time t, 0 ≤ t ≤ τ , we must have,

∫ t

0

dt′ Tr[ρB(0) Ū
†
A
˙̄UA + ρ⊺A(0)

˙̄U⊺

BŪ
∗
B] = 0 . (5)

This is satisfied by the maximally entangled states, for
every possible local evolution Ūj . In this regard, the
invariant quantities in the evolution can be written as
Tr[(Q2)p]. In terms of the concurrence we can write

Q2 = (1/d) I +
√

C2
m − C2 q̂ · ~T , (6)

where Cm =
√

2(d− 1)/d. The C = 0 value corresponds
to separable states. For maximally entangled states
C = Cm, giving Q2 = (1/d)I, and ρA = ρB = (1/d)I.

In addition, for any Ūj ∈ SU(d), the matrices Ū †
j
˙̄Uj are

combinations of the generators Ta. Therefore, using this
information, the trace in the integrand of eq. (5) van-
ishes.

Now, let us consider an evolution on the first qudit
A. In this case, 〈ψ(0)|ψ(t)〉 = Tr[Q2(0) ŪA(t)], while the
dynamical phase is,

φdyn = φA − i

∫ t

0

dt′ Tr[Q2(0) Ū †
A(t

′) ˙̄UA(t
′)] . (7)

These phases do not depend on S̄(0) so that for simplicity
we can consider S̄(0) = I, that is, ŪA(t) = S̄(t). For
qubits Ta = σa/2 (a = 1, 2, 3), where σa are the Pauli
matrices. We shall assume that the basis is chosen so
that q̂(0) = ê3, that is, Q2 = I/2 +

√
1− C2 σ3/2. The

unitary sector of the state evolution can be put in terms
of Euler angles, in the form ŪA(t) = Um(t)V3(t), where

Um = e−iϕT3eiθT2eiϕT3 , V3 = eiχT3 . (8)

Note that for cyclic evolutions, Um(0) = Um(τ), while
V3(0) = ±V3(τ). In addition, Um can be expanded in
terms of I, T1 and T2, as the term proportional to T3 is
obtained from Tr[T3 e

−iϕT3eiθT2eiϕT3 ] = Tr[T3 e
iθT2 ] =

0. Here, we have used that the latter exponential is a
combination of I and T2. Using a similar expansion for
eiϕT3 , we arrive to the conclusion that the terms in Um

proportional to T1, T2 do not contribute to 〈ψ(0)|ψ(t)〉.
With the ingredients above we can work out the ex-

pression for the time evolving overlap

〈ψ(0)|ψ(t)〉 = eiφA cos
θ

2

[

cos
χ

2
+ i

√

1− C2 sin
χ

2

]

.

(9)
In terms of Q2, Um, and V3, the dynamical phase is

φdyn = φA − i

∫ t

0

dt′
1

2
Tr[(I +

√

1− C2 σ3)

× (U †
mU̇m + V †

3 V̇3)] . (10)
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FIG. 1. Time evolution of the quantum state overlap for a
pair of qubits with different concurrences.

Using V̇3 = i (χ̇/2)σ3 V3 and defining the unit vectors m̂a

so that Um σa U
†
m = m̂a · ~σ, we get

φg = arctan
[

√

1− C2 tan(χ/2)
]

−
√

1− C2 (χ/2)

+
√

1− C2 (Φ/2), (11)

with Φ ≡
∫ t

0 dt
′ m̂1 · ˙̂m2 . In the last term, the frame m̂a

depends on θ ∈ [0, π) and ϕ ∈ [0, 2π] defining a point
on S2, the surface of a sphere with unit radius. Then,
m̂a(θ, ϕ) is a mapping S2 → m̂a, and the evolution on
this sector is given by a curve, defined by θ(t), ϕ(t), con-
tained on S2. In this regard, for a cyclic evolution, one
easily shows that Φ = Ω, where Ω is the solid angle sub-
tended by the closed path [15, 16]. This term can be
associated to the usual Berry phase for a single qubit.
For a general evolution, we see that for product states

(C = 0), the first two terms in eq. (11) cancel each other
while the last term coincides with the one given by the
usual picture of the Bloch sphere evolution of a single
qubit. On the other hand, for maximally entangled states
(C = 1), the last two terms vanish while the first term
can assume only two discrete values 0 or π. In fig.1 this
evolution is represented as paths in the complex plane,
where the overlap 〈ψ(0)|ψ(t)〉 is plotted for different val-
ues of the concurrence. This path degenerates to a circle
for product states and to a straight line on the real axis
as the concurrence approaches its maximum value C = 1.
It gives a graphical picture of the phase jump between 0
and π discussed in ref. [10]. This jump occurs when the
evolving state crosses the subspace orthogonal to the ini-
tial one. Note that the solid lines in fig.1 correspond to
closed paths since points P and P ′ represent physically
equivalent quantum states. Dashed lines correspond to
additional closed paths.
Now, let us study a simple nontrivial path that gener-

alizes the V3-sector for qubits (cf. eq. (8)) to the case of

qudits. Consider an evolution of the form ŪA(t) = VN (t),

VN (t) = eiχ(t)E , χ(0) = 0 , (12)

where E is a diagonal traceless matrix with components,

Eαα =

{

(1/d), α = 1, . . . , d− 1
(1/d)− 1, α = d .

(13)

This matrix can be written in terms of theN ’th generator
of SU(d), N = d2 − 1: E = CmTN . When χ(τ) = 2π, it
is simple to see that VN (τ) = ei2π/d I. In the case where
q̂(0) = êN , we have,

Q2(0) = (1/d) I +
√

1− (C/Cm)2E . (14)

By expanding the exponential in eq. (12) and using
eq.(14) we get,

〈ψ(0)|ψ(t)〉 = A eiχ/d + B ei(1−d)χ/d , (15)

with A = d−1
d + 1

2

√

C2
m − C2 and B = 1 − A. Using

V †
N V̇N = i χ̇E in the dynamical phase, we arrive at

φg = arctan

[

A sin χ
d + B sin (1−d)χ

d

A cos χ
d + B cos (1−d)χ

d

]

−
√

C2
m − C2

χ

2
.

In the above example, for maximally entangled states,
when d ≥ 3 the total phase changes continuously from 0
to 2π/d, and the evolving state never becomes orthogonal
to the initial state. This is in contrast to what happens
in the d = 2 case. The minimum value for |〈ψ(0)|ψ(t)〉|2
is (A − B)2 = (d−2

d )2, attained when χ = π. For d = 3,
the minimum overlap is (1/3)2.
It is interesting to look for topologically nontrivial evo-

lutions for qudits with similar properties to those dis-
played by qubits. In the d = 3 case, this can be realized
as follows. Let us consider the path ŪA(χ(t)), contin-
uously evolving from ŪA(0) = I to ŪA(2π) = ei2π/3I,
defined by a diagonal unitary matrix with nontrivial ele-
ments eiφα such that φ1 = 2χ/3 + [2(π − ζ)/3]Θ(χ− π),
φ2 = −2χ/3, and φ3 = −(φ1+φ2); Θ(χ) is the Heaviside
function. For maximally entangled states, we have

〈ψ(0)|ψ(t)〉 =
{ 1

3 [1 + 2 cos(2χ3 )] , χ ∈ [0, π]
1
3 [1 + 2 cos(2(χ+π)

3 )] ei
2π
3 , χ ∈ [π, 2π] .

Then, we see that the total phase vanishes in the first
part of the evolution, while it takes the fractional value
2π/3 in the second part. In addition, at χ = π, when the
phase changes discontinuously, the state |ψ(t)〉 becomes
orthogonal to the initial state.
Both qutrit evolutions are represented in fig.2a, where

the overlap 〈ψ(0)|ψ(t)〉 is plotted in the complex plane
for maximal concurrence. The first cyclic evolution from
P to P ′ is represented by the solid black line clearly show-
ing that the overlap between the initial and the evolving
quantum states never vanishes. On the other hand, the
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FIG. 2. (a) Complex plane representation of the quantum
state overlap for a pair of qutrits with maximal concurrence.
Two different time evolutions are considered. (b) The corre-
sponding stepwise evolution of the geometric phase.

second evolution (red online) shows a path crossing the
origin of the complex plane, where the evolving quantum
state becomes orthogonal to the initial one. The dashed
lines correspond to additional closed paths defining three
vertices which evidence the fractional phase values. In
fig.2b, we plot the associated geometric phase evolution,
showing a stepwise behavior with two jumps between the
fractional values 0, 2π/3, and 4π/3. For the first evolu-
tion (black) smooth jumps occur, while for the second
evolution (red online) they are discontinuous.
As a conclusion, in this letter we studied unitary local

operations on a pair of qudits, showing that fractional
phases naturally appear when cyclic evolutions are con-
sidered. These fractional values are related to different
homotopy classes of closed paths in the two-qudit Hilbert
space. The geometric phase has been calculated in terms
of the I-concurrence introduced in ref.[13]. In the case
of maximally entangled states, the fractional values orig-
inate solely from the geometric part of the phase evolu-
tion, since the dynamical part vanishes at all times.
The fractional phase of maximally entangled states is

built in a stepwise evolution, where the phase jumps be-
tween discrete values in steps of 2π/d. For qubits this
jump is strictly discontinuous, while for qutrits, it may be
discontinuous or not, depending on the particular evolu-
tion considered. Due to its stepwise evolution, we expect
the fractional phase acquired by maximally entangled qu-
dits to be particularly robust against the influence of the
environment. In order to produce a relevant change, any
external noise would have to cause a large fluctuation,
driving the two-qudit system through a phase step. Since
the phase jump for qubits is strictly discontinuous, its ro-
bustness should be even more pronounced. These results
can be important to proposals of quantum gates based
on topological phases.
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