
ar
X

iv
:1

01
0.

26
22

v1
  [

qu
an

t-
ph

] 
 1

3 
O

ct
 2

01
0

Zeno Paradox for Bohmian Trajectories: The

Unfolding of the Metatron

Maurice A. de Gosson

Universität Wien, NuHAG

Fakultät für Mathematik

A-1090 Wien

Basil Hiley

TPRU, Birkbeck

University of London

London, WC1E 7HX

October 14, 2010

Abstract

We study an analogue of the quantum Zeno paradox for the Bohm
trajectory of a sharply located particle (or a system of particles). We
show that a continuously observed Bohm trajectory is the classical
trajectory predicted by Hamiltonian mechanics.

1 Introduction

Einstein writes to Bohm in 1954,

I am glad that you are deeply immersed seeking an objective de-
scription of the phenomena and that you feel the task is much
more difficult as you felt hitherto. You should not be depressed
by the enormity of the problem. If God had created the world his
primary worry was certainly not to make its understanding easy
for us. I feel it strongly since fifty years.[10]

When David Bohm completed his book, “Quantum Theory” [3], which
was an attempt to present a clear account of Bohr’s actual position, he
became dissatisfied with the overall approach [5]. The reason for this dis-
satisfaction was the fact that the theory had no place in it for an adequate
notion of an independent actuality, that is of an actual movement or activity
by which one physical state could pass over into another.

In a meeting with Einstein, ostensibly to discuss the content of his book,
the conversation eventually turned to the possibility of whether a determin-
istic extension of quantum mechanics could be found. Later while exploring

1

http://arxiv.org/abs/1010.2622v1


the WKB approximation, Bohm realised that this approximation was giv-
ing an essentially deterministic approach. Surely truncating a series cannot
turn a probabilistic theory into a deterministic theory. Thus by retaining
all the terms in the series, Bohm found that one could, indeed, obtain a
deterministic description of quantum phenomena. To carry this through,
he had to assume that a quantum particle actually had a well defined but
unknown position and momentum and followed a well-defined trajectory.

In Bohm’s approach, the Schrödinger equation can be cast into a form
that brings out its close relationship to the classical Hamilton-Jacobi theory,
the only difference being an additional term which can be regarded as a new
quality of energy, called the ‘quantum potential energy’. It is the properties
of this energy that enables us to account for all quantum phenomena such
as, for example, the two-slit interference effect where the trajectories are
shown to undergo a non-classical behaviour [32].

In this paper we will show that if we continuously observe a Bohm tra-
jectory, it becomes a classical trajectory. Thus, in a sense, continuous ob-
servation “dequantizes” quantum trajectories. This property is, of course,
essentially a consequence of the quantum Zeno effect, which has been shown
to inhibit the decay of unstable quantum systems when under continuous
observation (see [7, 11, 17, 18]).

The idea lying behind the Bohm approach (Bohm and Hiley [7], Hiley
[21], Hiley and collaborators [24, 25], Holland [26]) is the following: let
Ψ = Ψ(r, t) be a wavefunction solution of Schrödinger’s equation

i~
∂Ψ

∂t
=

[

− ~
2

2m
∇2

r
+ V (r)

]

Ψ.

Writing Ψ in polar form eiS/~
√
ρ Schrödinger’s equation is equivalent to the

coupled systems of partial differential equations:

∂S

∂t
+

(∇rS)
2

2m
+ V (r) +QΨ(r, t) = 0 (1)

where

QΨ = − ~
2

2m

∇2
r

√

|Ψ|
√

|Ψ|
. (2)

is Bohm’s quantum potential (equation (1) is thus mathematically a Hamilton-
Jacobi equation), and

∂ρ

∂t
+∇r

(

ρ
∇rS

m

)

= 0 (3)
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which is an equation of continuity. The trajectory of the particle is deter-
mined by the equation

mṙΨ = ∇rS(r
Ψ, t) , rΨ(t0) = r0 (4)

where r0 is the initial position.
Since the quantum potential depends only on the wave function, and the

latter is ultimately a property of the metaplectic representation [13, 14, 16],
we proposed in [15] to call the entity whose motion is governed by the
equation (4) a metatron. We chose this name because the ‘particle’, rather
than being a classical object, is essentially an excitation induced by the
metaplectic representation of the underlying Hamiltonian evolution.

The question we will answer in this paper is the following:

What do we see if we perform a continuous observation of
the metatron’s trajectory ?

If the observed trajectory is smooth, we will see the classical trajectory
determined by the Hamiltonian function

H(r,p) =
p2

2m
+ V (r).

Does this mean that Bohmian trajectories are therefore not “real”, that
they are “surrealistic”? No, they are not surreal simply because we are
making a distinction between what is, and what is observed by a physical
measurement. For example, in the two-slit experiment referred to above,
we find that if we observe the motion of the ‘particle’ as it passes through
one of the slits we will see no wave-like behaviour, but a classical trajectory
showing on interference effects.

We are often asked if Bohm believed that there was an actual classical
point-like particle following these quantum trajectories. For Bohm there was
no solid ‘particle’ but instead, at the fundamental level, there was a basic
process or activity so that the “track” left in, say, a bubble chamber could
be explained by an enfolding–unfolding of this process [6]. Thus rather than
seeing the track as the continuous movement of a material particle, it can be
regarded as the continuity of a “quasi-local, semi-stable autonomous form”
evolving within the unfolding process [21]. As we will see, this is exactly
what happens when we observe continuously the unfolding process, and we
can regard the visible track as arising from the evolution of the metatron.
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2 Bohmian Trajectories Are Hamiltonian

We will show that in the particular case of a metatron initially localized at a
point, the Bohm trajectory is Hamiltonian (the general case is slightly more
subtle; we refer to the papers by Holland [27, 28] for a thorough discussion
of the interpretation of Bohmian trajectories from the Hamiltonian point of
view).

We will consider systems of N material particles with the same mass
m, and work in generalized coordinates x = (q1, ..., qn) and p = (p1, ..., pn),
n = 3N . Suppose that this system is sharply localized at a point x0 =
(q1,0, ..., qn,0) at time t0. The classical Hamiltonian function is

H(x, p) =
p2

2m
+ V (x) (5)

hence the organising field of this system is the solution of the Schrödinger
equation

i~
∂Ψ

∂t
=

[

− ~
2

2m
∇2

x + V (x)

]

Ψ , Ψ(x, t0) = δ(x− x0) (6)

where ∇x is the n-dimensional gradient in the variables q1, ..., qn. The func-
tion Ψ is thus just the propagator G(x, x0; t, t0) of the Schrödinger equation.
We write G in polar form

G(x, x0; t, t0) =
√

ρ(x, x0; t, t0)e
i

~
S(x,x0;t,t0).

The equation of motion (4) is in this case

mẋΨ = ∇xS(x
Ψ, x0; t, t0) , xΨ(t0) = x0. (7)

2.1 Short-time estimates

We are going to give a short-time estimate for the function S. The interest of
this estimate is two-fold: it will not only allow us to give a precise statement
of the Zeno effect for Bohmian trajectories, but it will also allow us to prove
in detail the Hamiltonian character of these trajectories.

We will assume that the potential V is at least twice continuously dif-
ferentiable in the variables q1, ..., qn.

In [15], Chapter 7, we established the following short-time formulas for
t− t0 → 0 (a similar formula has been obtained in [29, 30, 34, 35]):

S(x, x0; t, t0) =

n
∑

j=1

m(qj − q0,j)
2

2(t− t0)
− Ṽ (x, x0)(t− t0) +O((t− t0)

2) (8)
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where Ṽ (x, x′) is the average value of the potential on the line segment
[x′, x]:

Ṽ (x, x0) =

∫ 1

0
V (λx+ (1− λ)x0)dλ. (9)

We observe that the quantum potential is absent from formula (8); we
would actually have obtained the same approximation if we had replaced S
with the solution to the classical Hamilton–Jacobi equation

∂Scl

∂t
+

(∇xS)
2

2m
+ V (x) = 0

while S is a solution of the quantum Hamilton–Jacobi equation

∂S

∂t
+

(∇xS)
2

2m
+ V (x) +QΨ(x, t) = 0. (10)

How can this be? The reason is that if we replace the propagator G(x, x0; t, t0)
by its “classical” approximation

Gcl(x, x0; t, t0) =
√

ρcl(x, x0; t, t0)e
i

~
Scl(x,x0;t,t0)

where ρcl is the Van Vleck density (i.e. the determinant of the matrix of
second derivatives of Scl) then we have

G(x, x0; t, t0)−Gcl(x, x0; t, t0) = O((t− t0)
2)

(cf. Lemma 241 in [15]) from which follows that

− ~
2

2m

∇2
xG

G
−

(

− ~
2

2m

) ∇2
xGcl

Gcl
= O((t− t0)

2);

the difference between the two terms O((t− t0)
2) in is thus absorbed by the

term (8). [We take the opportunity to remark that when the potential V (x)
is quadratic in the position variables q1, ..., qn then Gcl = G; we will come
back to this relation later in section 3.1].

Moreover, formula (8) can be twice continuously differentiated with re-
spect to the variables qj and q0,j. It follows that the second derivatives of S
are given by

∂2S

∂qj∂q0,k
=

m

t− t0
δjk +O(t− t0)

and hence the Hessian matrix Sx,x0
(i.e. the matrix of mixed second deriva-

tives) satisfies

detSx,x0
=

(

m

t− t0

)n

+O(t− t0). (11)
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Formula (8) is the key to the following important asymptotic version of
Bohm’s equation (7):

ẋΨ =
xΨ − x0
t− t0

− 1

2m
∇xV (x0)(t− t0) +O((t− t0)

2)). (12)

Let us prove this formula. Using the expansion (8), formula (7) becomes

ẋΨ =
xΨ − x0
t− t0

− 1

m
∇xṼ (xΨ, x0)(t− t0) +O((t− t0)

2). (13)

Let us show that

∇xṼ (xΨ, x0)(x
Ψ, x0) =

1

2
∇xV (x0) +O(t− t0); (14)

this will complete the proof of formula (12). We first note that (13) implies
in particular that

ẋΨ =
xΨ − x0
t− t0

+O(t− t0)

and thus xΨ is given by

xΨ(t) = x0 +
p0
m

(t− t0) +O((t− t0)
2) (15)

where p0 is an arbitrary constant vector. In particular we have O(xΨ−x0) =
O(t− t0) and hence

∇xṼ (xΨ, x0) = ∇xṼ (x0, x0) +O(xΨ − x0)

= ∇xṼ (x0, x0) +O(t− t0)

from which it follows that

∇xṼ (xΨ, x0)(x
Ψ, x0) =

∫ 1

0
λ∇xV (λx0 + (1− λ)x0)dλ+O(t− t0)

=
1

2
∇xV (x0) +O(t− t0)

which is precisely the estimate (14).
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2.2 The Hamiltonian character of Bohmian trajectories

Let p0 = (p1,0, ..., pn,0) be an arbitrary momentum vector, and set

p0 = −∇x0
S(x, x0; t, t0). (16)

In view of formula (11), the Hessian of S in the variables x and x0 is in-
vertible for small values of t, hence the implicit function theorem implies
that (16) determines a function x = x(t) (depending on x0 and t0 viewed as
parameters), defined by

p0 = −∇x0
S(x(t), x0; t, t0). (17)

Setting
p(t) = ∇xS(x(t), x0; t, t0) (18)

we claim that the functions x(t) and p(t) thus defined are solutions of the
Hamilton equations

ẋ = ∇pH
Ψ(x, p, t) , ṗ = −∇xH

Ψ(x, p, t) (19)

and that we have x(t0) = x0, p(t0) = p0. We are actually going to use
classical Hamilton–Jacobi theory (see [2, 12, 15, 16] or any introductory
text on analytical mechanics). For notational simplicity we assume that
n = 1. The function S satisfies the equation

∂S

∂t
+

1

2m

(

∂S

∂x

)2

+ V (x)− ~
2

2m

1√
ρ

∂2√ρ

∂x2
= 0; (20)

introducing the quantum potential

QΨ = − ~
2

2m

1√
ρ

∂2√ρ

∂x2
(21)

we set HΨ = H + QΨ so that (20) is just the quantum Hamilton–Jacobi
equation

∂S

∂t
+HΨ

(

x,
∂S

∂x
, t

)

= 0. (22)

Differentiating the latter with respect to p = ∂S/∂x yields, using the chain
rule,

∂2S

∂x0∂t
+

∂HΨ

∂p

∂2S

∂x0∂x
= 0 (23)
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and differentiating the equation (17) with respect to time yields

∂2S

∂x0∂t
+

∂2S

∂x∂x0
ẋ = 0. (24)

Subtracting (24) from (23) we get

∂2S

∂x∂x0

(

∂HΨ

∂p
− ẋ

)

= 0

which produces the first Hamilton equation (19) since it is assumed that we
have ∂2S/∂x∂x0 6= 0. Let us next show that the second Hamilton equation
(19) is satisfied as well. For this we differentiate the quantum Hamilton–
Jacobi equation (22) with respect to x, which yields

∂2S

∂x∂t
+

∂HΨ

∂x
+

∂HΨ

∂p

∂2S

∂x2
= 0. (25)

Differentiating the equality (18) with respect to t we get

∂2S

∂t∂x
= −ṗ(t)− ∂2S

∂x2
ẋ (26)

and hence the equation (25) can be rewritten

−ṗ(t)− ∂2S

∂x2
ẋ+

∂HΨ

∂x
+

∂HΨ

∂p

∂2S

∂x2
= 0.

Taking into account the relation ẋ = ∂HΨ/∂p established above we have

−ṗ(t)− ∂HΨ

∂x
= 0

which is precisely the second Hamilton equation (19). There remains to
show that we have x(t0) = x0 and p(t0) = p0. Recall that x(t) is defined by
the implicit equation

p0 = −∇x0
S(x(t), x0; t, t0)

(equation (17)); in view of the short-time estimate (8) this means that we
have

p0 =
m(x(t)− x0)

t− t0
+O(t− t0)

and hence we must have limt→t0 x(t) = x(t0) = x0. This also implies that
p0 = mẋ(t0) = p(t0).

In conclusion we have thus shown that:
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Bohm’s equation of motion (7) is equivalent to Hamilton’s equa-
tions (19).

To complete our discussion, we make two important observations:

• Even when the Hamiltonian function H does not depend explicitly on
time, the function HΨ = H +QΨ is usually time-dependent (because
the quantum potential generally is), so the flow (fΨ

t ) it determines
does not inherit the usual group property ftft′ = ft+t′ of the flow
determined by the classical Hamiltonian H. One has instead to use
the “time-dependent flow” (fΨ

t,t′), which has a groupoid property in

the sense that fΨ
t,t′f

Ψ
t′,t′′ = fΨ

t,t′′ .

• The time-dependent flow (fΨ
t,t′) consists of canonical transformations;

that is, the Jacobian matrix of fΨ
t,t′ calculated at any point (x, p) where

it is defined by a symplectic matrix. This is an immediate consequence
of the fact discussed above, namely, that the flow determined by any
Hamiltonian function has this property.

We have seen that the Bohmian trajectory for a particle initially sharply
localized at a point x0 is Hamiltonian, and in fact governed by the Hamilton
equations (19):

ẋ = ∇pH
Ψ(x, p, t) , ṗ = −∇xH

Ψ(x, p, t). (27)

The discussion of short-time solutions of Bohm’s equation of motion allows
us to give approximations to the solution. First, the solutions of the equation
ẋ = ∇pH

Ψ(x, p, t) are given by the simple relation

xΨ(t) = x0 +
p0
m

(t− t0) +O((t− t0)
2)

as was already noticed in (15). Then we proved that the momentum pΨ(t) =
mẋΨ(t) is given by equation (12):

mẋΨ(t) =
m(xΨ(t)− x0)

t− t0
− 1

2
∇xV (x0)(t− t0) +O((t− t0)

2). (28)

However we cannot solve this equation by inserting the value of xΨ(t) above
since this would lead to an estimate modulo O(t−t0) not O((t−t0)

2). What
we do is the following: differentiating both sides of the equation (28) with
respect to t we get

ẍΨ(t) =
xΨ(t)− x0
(t− t0)2

+
ẋΨ(t)

t− t0
− 1

2m
∇xV (x0) +O(t− t0)

9



that is, replacing ẋΨ(t) by the value given by (28),

ṗΨ(t) = mẍΨ(t) = −∇xV (x0) +O(t− t0).

Solving this equation we get

pΨ(t) = p0 −∇xV (x0)(t− t0) +O((t− t0)
2).

Summarizing, the solutions of the Hamilton equations (27) forHΨ = H+QΨ

are given by

xΨ(t) = x0 +
p0
m

(t− t0) +O((t− t0)
2)

pΨ(t) = p0 −∇xV (x0)(t− t0) +O((t− t0)
2).

The observant reader will have noticed that (up to the error term O((t −
t0)

2)) there is no trace of the quantum potential QΨ in these short-time
formulas. Had we replaced the function HΨ with the classical Hamiltonian
H we would actually have obtained exactly the same solutions, up to the
O((t− t0)

2) term.

3 Bohmian Zeno Effect

3.1 The case of quadratic potentials

Here is an easy case; it is in fact so easy that it is slightly misleading:
the Bohmian trajectories are here classical trajectories from the beginning,
because the quantum potential vanishes.

Let us assume that the potential V (x) is a quadratic form in the position
variables, that is

V (x) =
1

2
Mx · x

where M is a symmetric matrix. Using the theory of the metaplectic repre-
sentation [13, 14, 15, 16] it is well-known that the propagator G is given by
the formula

G(x, x0; t, t0) =
(

1
2πi~

)n/2
im(t,t0)

√

|ρ(t, t0)|e
i

~
W (x,x0;t,t0) (29)

where W (x, x0; t, t0) is Hamilton’s two-point characteristic function (see e.g.
[2, 12]): it is a quadratic form

W =
1

2
Px · x− Lx · x0 +

1

2
Bx0 · x0

10



where P = P (t, t0) and B = B(t, t0) are symmetric matrices and L = L(t, t0)
is invertible; viewed as function of x it satisfies the Hamilton–Jacobi equation

∂W

∂t
+

(∇xW )2

2m
+

1

2
Mx · x.

Moreover, m(t, t0) is an integer (“Maslov index”) and ρ(t, t0) is the determi-
nant of L = L(t, t0) (the Van Vleck density). Since m(t, t0) and ρ(t, t0) do
not depend on x, it follows that the quantum potential QΨ determined by the
propagator (29) is zero. Since we have HΨ = H +QΨ, we see immediately
that the quantum motion is perfectly classical in this case: the quantum
equations of motion (19) reduce to the ordinary Hamilton equations

ẋ =
p

m
, ṗ = −Mx (30)

which can be easily integrated: in particular the flow (ft) they determine is a
true flow (because H = HΨ is time-independent) and consists of symplectic
matrices ([2, 15, 16, 12]). In fact,

ft = etX , X =

(

0n×n
1
mIn×n

−M 0n×n

)

.

Thus, in the case of quadratic potentials the Bohmian trajectories associated
with the propagator are the usual Hamilton trajectories associated with the
classical Hamiltonian function of the problem.

Suppose now that we observe “continuously” the time evolution of the
metatron –which is so far “quantum”– and try to find out what is recorded
by our observation process. Practically this is done by performing repeated
position measurements at very short time intervals ∆t. We assume that
the recorded trajectory is, in the limit ∆t → 0, continuous and moreover
smooth; by this we mean that we can assign at every point a velocity vector
(we are thus excluding Brownian motion-type behavior). Let us choose a
time interval [0, t] (typically t = 1 s) and subdivide it in a sequence of N
intervals

[0,∆t] [∆t, 2∆t] [2∆t, 3∆t] · · · [(N − 1)∆t,N∆t]

with ∆t = t/N ; the integer N is assumed to be very large (for instance
N = 1018). Assume that a measurement at time t0 = 0 localizes the particle
at a point x0 it will be detected at a point x1 after time ∆t; its momentum
is p1 and we have (x1, p1) = f∆t(x0, p0). We now repeat the procedure,
replacing x0 by x1; since the observed trajectory is assumed to be smooth
the initial momentum will be p1 and after time ∆t a new measurement is

11



performed, and we find the particle at x2 with momentum p2 such that
(x2, p2) = f∆t(x1, p1) = f∆tf∆t(x0, p0). Repeating the same process until
time t = N∆t we find a series of points in space which the particle takes
as positions one after another1 that (xN , pN ) = (f∆t)

N (x0, p0). But in view
of the group property ftft′ = ft+t′ of the flow we have (f∆t)

N = fN∆t = ft
and hence (xN , pN ) = ft(x0, p0). The observed Bohmian trajectory is thus
the classical trajectory predicted by Hamilton’s equations.

3.2 The general case

In generalizing the discussion above to arbitrary potentials, V (x), there
are two difficulties. The first is that we do not have exact equations for
the Bohmian trajectory, but only short-time approximations. The second
is that the Hamilton equations for xΨ and pΨ no longer determine a flow
having a group property because the Hamiltonian HΨ is time-dependent.
Nevertheless the material we have developed so far is actually sufficient to
show that the observed trajectory is the classical one.

The key will be the theory of Lie–Trotter algorithms which is a powerful
method for constructing exact solutions from short-time estimates. The
method goes back to early work of Trotter [37] elaborating on Sophus Lie’s

proof of the exponential matrix formula eA+B = limN→∞

(

eA/NeB/N
)N

; see
Chorin et al. [9] for a detailed and rigorous study; we have summarized the
main ideas in the Appendix B of [15]); also see Nelson [31]. (We mention that
there exists an operator variant of this procedure, called the Trotter–Kato
formula.

Let us begin by introducing some notation. We have seen that the datum
of the propagator G0 = G(x, x0; t, t0) determines a quantum potential QΨ

and thus Hamilton equations (19) associated with HΨ = H +QΨ. We now
choose t0 = 0 and denote the corresponding quantum potential by Q0 and
set H0 = H +Q0. After time ∆t we make a position measurement and find
that the particle is located at x1. The future evolution of the particle is now
governed by the new propagator G1 = G(x, x1; t, t0), leading to a new quan-
tum potential Q1 and to a new Hamiltonian H1; repeating this until time t
we thus have a sequence of points x0, x1, ..., xN = x and a corresponding se-
quence of Hamiltonian functionsH0,H1, ...,HN determined by the quantum
potentials Q0, Q1, ..., QN . We denote by (f0

t,t0), (f
1
t,t1),...,(f

N−1
t,tN−1

) the time

dependent flows determined by the Hamiltonian functions H0,H1, ...,HN ;

1In conformity with W. Heisenberg’s statement: “By path we understand a series of
points in space which the electron takes as ‘positions’ one after another” [19]
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we have set here t1 = t0 +∆t, t2 = t1 +∆t and so on.
Repeating the observation procedure explained in the case of quadratic

potentials, we get in this case a sequence of successive equalities

(x1, p1) = f0
t1,t0(x0, p0)

(x2, p2) = f1
t2,t1(x1, p1)

· · · · · · · · ··
(x, p) = fN−1

t,tN−1
(xN−1, pN−1)

which implies that the final point x = xN observed at time t is expressed in
terms of the initial point x0 by the formula

(x, p) = fN−1
t,tN−1

· · · f1
t2,t1f

0
t1,t0(x0, p0).

Denote now by (g0t,t0), (g
1
t,t1),...,(g

N−1
t,tN−1

) the approximate flows determined
by the equations

(x1, p1) = (x0 +
p0
m

∆t, p0 −∇xV (x0)∆t)

(x2, p2) = (x1 +
p1
m

∆t, p1 −∇xV (x1)∆t)

· · · · · · · · · ·
(x, p) = (xN−1 +

pN−1

m
∆t, pN−1 −∇xV (xN−1)∆t).

Invoking the Lie–Trotter formula, the sequence of estimates

f0
tk ,tk−1

(xk−1, pk−1)− g0tk ,tk−1
(xk−1, pk−1) = O(∆t2)

implies that we have

lim
N→∞

gN−1
t,tN−1

· · · g1t2,t1g
0
t1,0(x0, p0) = lim

N→∞

fN−1
t,tN−1

· · · f1
t2,t1f

0
t1,0(x0, p0)

The argument goes as follows (for a detailed proof see [15]): since we have
gktk ,tk−1

= fk
tk,tk−1

+O(∆t2) the product is approximated by

gN−1
t,tN−1

· · · g1t2,t1g
0
t1,t0 = fN−1

t,tN−1
· · · f1

t2,t1f
0
t1,t0 +NO(∆t2)

and since ∆t = t/N we have NO(∆t2) = O(∆t) which goes to zero when
N → ∞.

Now, recall our remark that the quantum potential is absent from the
approximate flows gktk,tk−1

; using again the Lie–Trotter formula together with
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short-time approximations to the Hamiltonian flow (ft) determined by the
classical Hamiltonian H, we get

lim
N→∞

gN−1
t,tN−1

· · · g1t2,t1g
0
t1,0(x0, p0) = ft

and hence
lim

N→∞

fN−1
t,tN−1

· · · f1
t2,t1f

0
t1,0(x0, p0) = ft

which shows that the observed trajectory is the classical one.

4 Conclusion.

We have shown that if a quantum particle is watched continuously, it will
follow a classical trajectory. In terms of the Bohm model, what this implies
is that the quantum potential is forced to remain zero so that no quantum
effects can occur. This result supports the conclusions reached for the tran-
sition in an Auger-like particle discussed in Bohm and Hiley [7]. There it
was shown that the perturbed wave function, which is proportional to t for
times less that 1/∆E, (∆E is the energy released in the transition) will
never become large and therefore cannot make a significant contribution to
the quantum potential. For this reason no transition will take place.

From these results we see that in the Bohm approach, it is the magnitude
of the quantum potential energy that distinguishes the quantum behaviour
from the classical. Indeed this conclusion is quite obvious if we examine
equation (1) since when Q is negligible compared with the kinetic energy,
the equation is simply the classical Hamilton-Jacobi equation. Hiley and
Aziz Mufti [20] give an interesting demonstration of how the quantum po-
tential can become negligible over time. They give a simplified cosmological
example of how, in an inflationary scenario, quantum behaviour can become
classical at later stages of the inflation.

This last example provides us with a very different way of arriving at
the classical limit than the prevailing view based on decoherence. In our
view the main difficulty in using decoherence is that it merely destroys
the off-diagonal elements of the density matrix but it does not give rise
to the classical equations of motion. It continues to describe classical ob-
jects by wave functions, a criticism that has already been made by Primas
[33]. Furthermore it does not show how the Schrödinger equation becomes
Hamilton’s equations of motion. Our method shows that it is the relation
between the symplectic and metaplectic representations that shows how the
classical is related to the quantum. It is when the global properties of the
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covering group become unimportant that the classical world emerges. As
has been pointed out by Hiley [22] [23], the Bohm approach is much closer
to the Moyal approach using a deformation Poisson algebra. In the Moyal
approach the classical limit emerges in a very simple way, namely, in those
situations where the deformation parameter can be considered to be small.
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