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Any 2⊗ n subspace is locally distinguishable
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A subspace of a multipartite Hilbert space is called locally indistinguishable if any orthogonal basis
of this subspace cannot be perfectly distinguished by local operations and classical communication.
Previously it was shown that any m ⊗ n bipartite system such that m > 2 and n > 2 has a
locally indistinguishable subspace. However, it has been an open problem since 2005 whether there
is a locally indistinguishable bipartite subspace with a qubit subsystem. We settle this problem
by showing that any 2 ⊗ n bipartite subspace is locally distinguishable in the sense it contains a
basis perfectly distinguishable by LOCC. As an interesting application, we show that any quantum
channel with two Kraus operations has optimal environment-assisted classical capacity.

PACS numbers: 03.67.-a, 3.65.Ud

1. Introduction:–LOCC distinguishability of finite set
of orthogonal multipartite states is a fundamental task
in quantum information theory, it has attracted much at-
tention and has been extensively studied as it has impor-
tant implications in classical data hiding [1] and channel
capacity [2–4].

Orthogonal states can always be exactly distinguished
if there are no restrictions on the measurements one can
perform. However, the discrimination of multipartite
states is difficult when only local operations and clas-
sical communication (LOCC) is allowed. Many results
on LOCC discrimination seem rather counterintuitive.
For instance, Bennett et al discovered that there exist
3 ⊗ 3 orthonormal pure product bases that are indistin-
guishable by LOCC [6]. Furthermore, it was shown that
the members of an unextendible product basis(UPB) are
not perfectly distinguishable by LOCC [7]. On the other
hand, it has been proven that any two orthogonal multi-
partite quantum states, no matter entangled or not, can
be perfectly distinguished by LOCC [8]. Some powerful
methods for checking distinguishability were introduced
in [9, 10].

In 2005 Watrous demonstrated that there exist a class
of m⊗m subspaces having no orthonormal bases locally
distinguishable if m > 2 [4]. Such subspaces are named
locally indistinguishable subspaces; otherwise, they are
said to be locally distinguishable. Watrous also proved
that there is no 2⊗ 2 locally indistinguishable subspace,
by directly employing the results from [11]. Winter’s re-
sult [5] implies that the existence of bipartite subspace
Q such that Q⊗k is locally indistinguishable for any k.
Duan et al generalized Watrous’s result to the most gen-
eral m ⊗ n systems for m 6= n and the multipartite set-
ting, and found locally indistinguishable subspaces with
smaller dimensions [12, 13]. Most notably, it was shown
that any subspace spanned by three-qubit UPB is lo-

cally indistinguishable, and there exists a 3-dimensional
three-qubit locally distinguishable subspace. An inter-
esting question remains to be answered is whether there
is any 2⊗ n locally indistinguishable subspace.

The main contribution of this Letter is to answer the
above question negatively. We show that that any 2⊗ n

subspace is locally distinguishable. Combining with the
previous results [4, 12, 13], we conclude that there is no
locally indistinguishable m ⊗ n subspace if and only if
one of m or n should be 2. Our key techniques can be
used to study the distinguishability of three-dimensional
bipartite subspace which contains a product state. We
show that any such subspace has a basis that can be
distinguished under local projective measurements and
one-way classical communication (LPCC).

Since the connection between distinguishability of sub-
space and capacity of channel, classical corrected capac-
ity of a quantum channel is considered. The classical
corrected capacity of channel introduced by Hayden and
King is defined as the best classical capacity can be ob-
tained when the receiver of the channel is capable to
select an optimal measurement on the channel’s output
by using classical information obtained from a measure-
ment on the environment [3]. This environment-assisted
model was first introduced by Gregoratti and Werner in
[2], where they are interested in correcting the errors in-
curred from sending quantum information. According to
the well known result by Walgate et al [8], Hayden and
King were able to show that the classical corrected ca-
pacity of any quantum channel is at least one bit [3].
In particular, the existence of locally indistinguishable
subspaces implies the existence of quantum channel with
suboptimal classical corrected capacity, that is, the cor-
rected capacity is less than log

2
d with d the dimension

of the input state space. In contrast, our result signi-
fies that the classical corrected capacity of any quantum
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channel with only two Kraus operators is always optimal.
2. Main result:–Suppose there is a 2⊗n quantum sys-

tem shared by Alice and Bob such that Alice is the owner
of the qubit. We will show that any 2 ⊗ n subspace has
an orthogonal basis which can be perfectly distinguished
by some protocol where Alice goes first [11].
We will make use of the following Lemma from [11],

which gives a complete characterization of the local dis-
crimination of orthogonal 2 ⊗ n states when Alice goes
first.

Lemma 1. If Alice goes first, a set of k 2⊗n orthogonal
states {|ψi〉 : 1 ≤ i ≤ k} is locally distinguishable if and
only if there is an orthonormal basis {|0〉, |1〉}A such that:

|ψi〉 = |0〉|ηi
0
〉+ |1〉|ηi

1
〉 (1)

where 〈ηi
0
|ηj

0
〉 = 〈ηi

1
|ηj

1
〉 = 0 for all i 6= j.

Now we are ready to present our main result as follows.

Theorem 1. For any 2 ⊗ n subspace Q, there exists
orthogonal basis {|φi〉|1 ≤ i ≤ d} which can be perfectly
distinguished by some Alice goes first LOCC protocol,
where d is the dimension of Q.

Proof:—We only need to show that Q has orthogonal
basis {|ψi〉|1 ≤ i ≤ d} with the form of Eq.(1).
Choose arbitrary basis of the qubit’s system, called

{|0〉, |1〉}.
Let {|ϕi〉|1 ≤ i ≤ d} an orthonormal basis of Q with

|ϕi〉 = |0〉|ζi
0
〉 + |1〉|ζi

1
〉, then an n-by-d matrix A can be

defined as A = (|ζ1
0
〉, |ζ2

0
〉 · ··, |ζd

0
〉). From singular value

decomposition, there exists a factorization of the form
A =WΛV , whereW ∈ U(n), V ∈ U(d) and the matrix Λ
is n-by-d diagonal matrix with nonnegative real numbers
on the diagonal, it’s worth to notice that AV † is a n-by-d
matrix with orthogonal columns.
For any unitary U = (uij)d×d, we can get another or-

thonormal basis of {|φi〉|1 ≤ i ≤ d} such that

|φi〉 =

d∑

j=1

uji|ϕj〉 = |0〉|ηi
0
〉+ |1〉|ηi

1
〉.

where |ηi
0
〉 =

∑d

j=1
uji|ζ

j
0
〉 and |ηi

1
〉 =

∑d

j=1
uji|ζ

j
1
〉.The

essential piece is that the matrix A becomes AU =
(|ηi

0
〉, |ηi

0
〉 · ··, |ηd

0
〉) under this transformation U .

Now let U = V † be the unitary transformation, then
AU = AV † =WΛ is a matrix with orthogonal columns,
which means that after the transformation U , the basis
|φi〉 = |0〉|ηi

0
〉+ |1〉|ηi

1
〉 satisfy that 〈ηi

0
|ηj

0
〉 = 0 for all i 6=

j, note that the Orthogonality to |φi〉 implies 〈ηi
0
|ηj

0
〉 +

〈ηi
1
|ηj

1
〉 = 0, so 〈ηi

1
|ηj

1
〉 = 0, thus Eq.(1) is satisfied, which

completes the proof of our theorem. �

According to the proof, one can find that Alice even
has the freedom to preselect arbitrary orthonormal basis
to be her projective measurement basis, which is to say

that for any {|0〉, |1〉}, there exists a basis of Q satisfying
Eq.(1).
Combining our result with the existence of lo-

cally(separability) indistinguishable subspace for m ⊗ n

whenm,n > 2 [4, 12, 13], we have the following corollary:

Corollary 1. There exists m⊗n subspace indistinguish-
able by LOCC (or LPCC, Separable operations) if and
only if m,n > 2.

Also, we can employ the techniques deriving the above
theorem to show that

Corollary 2. Any three-dimensional bipartite subspace
Q that contains a product state is one-way LPCC distin-
guishable.

Proof:—Without loss of generality, assume that
|0〉|0〉 ∈ Q, let {|ϕi〉|1 ≤ i ≤ 3} be an orthonormal basis
of Q with |ϕ1〉 = |0〉|0〉. Let P = span{|ϕ2〉, |ϕ3〉}, simi-
lar as the proof of Theorem 1, one can find orthonormal
basis |φ2〉, |φ3〉 of P , such that

|φ2〉 = |0〉|η2
0
〉+

∑

i6=0

|i〉|αi〉,

|φ3〉 = |0〉|η3
0
〉+

∑

i6=0

|i〉|βi〉,

with 〈η2
0
|η3

0
〉 = 0. Then {|φi〉|1 ≤ i ≤ 3} are the basis of

Q.
According to [8], one can always find a orthogonal basis

{|0〉′, |1〉′, · · ·, |m〉′} of Cm with |0〉 = |0〉′, in which the
two orthogonal states can be represented

|φ2〉 = |0〉′|η2
0
〉+

∑

i6=0

|i〉′|αi〉
′,

|φ3〉 = |0〉′|η3
0
〉+

∑

i6=0

|i〉′|α⊥
i 〉

′,

where |α′
i〉 are not normalized, and |α′⊥

i 〉 is orthogonal to
|α′

i〉.
In order to distinguish them, one can perform the pro-

jective measurement {P0, P1, · · ·, Pm} upon the first part
where Pi = |i′〉〈i′|. If the outcome is P0, then the left
three mutual orthogonal states are on one part, this leads
to perfect discrimination. If the our come is Pi with i > 0,
the left two states are pure orthogonal, they are LPCC
distinguishable. Q is one-way LPCC distinguishable. �

This protocol also works when the other part goes first.
3. Classical corrected capacity of rank two channel:–

Any quantum channel Φ can be regarded as arising from
a unitary interaction U of the principle system H and
an environment system E . Without loss of generality, we
can let

Φ(ρ) = trenv [U(ρ⊗ |ε〉〈ε|)U †].

Because U is unitary, it will map the orthogonal input
state to orthogonal state in H ⊗ E . However after the
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trace over of the environment system, the output of the
system may be no longer orthogonal. Thus they cannot
be distinguished perfectly, which decreases the classical
capacity of the channel.
It is possible to enhance channel capacity using mea-

surements on the environment in addition to measure-
ments on the principal system [2, 3].
For any rank two channel, the dimension of the envi-

ronment can be assumed as 2, thus the whole space H⊗E
is a n⊗ 2 space, before tracing over the the environment,
the output space Q = U(H⊗|ε〉) is a d-dimensional sub-
space of H⊗ E , where d is the dimension of H. Accord-
ing to Theorem 1, it is distinguishable by some environ-
ment goes first LPCC protocol, which means that for
any orthonormal basis {|0〉, |1〉}, there is an orthonor-
mal basis {|φi〉|1 ≤ i ≤ d} of Q can be represented as
Eq.(1), and thus can be distinguished by some environ-
ment goes first LPCC protocol. One can easily verify
that the basis {|φi〉|1 ≤ i ≤ d} corresponds to an input
basis {|ψi〉|1 ≤ i ≤ d} of H with |φi〉 = U(|ψi〉⊗ |ε〉). We
have therefore proved the following corollary.

Corollary 3. Any quantum channel with two Kraus op-

erators has optimal environment-assisted classical capac-

ity.

4. Conclusion:–We have proven that there is no 2⊗ n

locally indistinguishable subspace. The local distin-
guishability of such subspace implies that all rank two
channel’s environment-assisted classical capacity is opti-
mal.
There are several interesting, unanswered questions re-

lating to the distinguishability of subspaces having. For
instance, if there exists three-dimensional indistinguish-
able multipartite subspace? The tripartite qubit indis-
tinguishable example has been given in [13], what left
is the bipartite case. We have shown that for all three-
dimensional subspaces with a product state, the answer
is negative 2. Numerical evidence was presented to show
that any three-dimensional subspace of C3 ⊗ Cn has an
orthonormal basis which can be reliably distinguished us-

ing one-way LOCC in [14]. Recall our proof of Theo-
rem 1, Alice can perform arbitrary projective measure-
ment, which indicated that the freedom to preselect an
orthonormal basis of one part is not used for this case.
Is this freedom helpful for subspace discrimination, par-
ticularly, is any three-dimensional subspace of C3 ⊗ C3

LPCC distinguishable?
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