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Boundary conditions for many-electron systems∗

Péter V. Tóth†

(Dated: October 14, 2010)

It is shown that natural boundary conditions for non-relativistic wave functions are of periodic or
of homogeneous Robin type. Using theory of singular differential equations and asymptotic central
symmetry of Hamiltonian the many-electron wave function is expanded in series both in the vicinity
of Coulomb singularities and at infinity. Hydrogenic angular dependence of three leading terms
of expansion about Coulomb singularities is found. Exact first and second order cusp conditions
are obtained demonstrating redundancy of spherical average in Kato’s cusp condition. A confluent
hypergeometric series defining arbitrarily high order cusp conditions for the spherically averaged
Hamiltonian is presented. Homogeneous Robin boundary conditions are obtained for aperiodic
many-electron systems from the expansions. Use of our explicit boundary conditions improves both
speed and accuracy of numerical calculations.

PACS numbers: 3.65.Ge, 31.10.+z, 71.10.-w, 2.30.Jr, 2.30.Mv, 2.30.Gp.

I. INTRODUCTION

Boundary conditions play important role in eigenvalue
problems of mathematical physics even if they are im-
posed implicitly. Explicit use of boundary conditions is
crucial in numerical calculations. Before beginning our
investigation let us summarize some basic properties of
eigenvalue problems. Boundary conditions for eigenvalue
equations are obeyed only by eigenfunctions. Differential
equations arising from variational principles are always
self-adjoint. Eigenfunctions of self-adjoint differential op-
erators satisfy homogeneous boundary conditions. In or-
der to obtain physically acceptable eigenfunctions some
regularity conditions should be imposed as well.
Role of regularity and boundary conditions in existence

of quantum mechanical eigenvalue problems was first rec-
ognized by E. Schrödinger [1] and J. von Neumann [2].
These conditions are not always specified explicitly since
they can be enforced by substantially weaker conditions
imposed on the variational problem [2]. In the first for-
mulation of H atom, the requirement of vanishing vari-
ance of current flux was used as a constraint which was
changed to the weaker normalization condition by an ad-
dendum [3]. Latter form is more conventional mathe-
matically since it is compatible with Sturm-Liouville the-
ory of eigenvalue equations, where

∫

|ψ|2 dv represents
the denominator of Rayleigh quotient. Von Neumann
has concluded that normalization condition for the wave
function and requirement of self-adjointness of the Hamil-
tonian is equivalent to imposing both boundary and reg-
ularity conditions on the wave function [2].
In fact, these conditions are too weak to enforce unique

regular solutions of Schrödinger equation. Normalization
condition does not exclude irregular particular solution
ψ ∝ r−ℓ−1 for s states of the Coulomb problem [4] hence
it is excluded by hand both in Schrödinger’s paper [1] and
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in the textbooks. Requirement of self-adjointness does
not lead to a unique eigenvalue problem since a theorem
[5, 6] of Sturm-Liouville theory of differential equations
states that any of following two types of boundary condi-
tions are consistent with self-adjointness of the Liouville
operator:

1. periodic boundary conditions

ψ(a)− ψ(b) = 0, (1a)

ψ′(a)− ψ′(b) = 0, (1b)

2. homogeneous Robin boundary conditions

α1ψ
′(a) + β1ψ(a) = 0, (2a)

α2ψ
′(b) + β2ψ(b) = 0, (2b)

where α’s and β’s are real constants, a and b denote
endpoints of the interval. The theorem can be generalized
to partial Sturm-Liouville equations by taking function
values and normal derivatives over hypersurfaces of the
domain.
Equations (1) are known as Born - von Kármán [7] or

Bloch [8] boundary conditions of the solid state physics.
In view of above and Bloch’s theorem we can state that
eigenfunctions of aperiodic systems satisfy homogeneous

Robin boundary conditions. Homogeneous Dirichlet and
Neumann boundary conditions for model problems of
textbooks are special cases of Eqs. (2). Boundary condi-
tions (2) can be divided by arbitrary constants so coef-

ficients αi/
√

α2
i + β2

i ≡ sin γi and βi/
√

α2
i + β2

i ≡ cos γi
define angles γ1 and γ2 representing the boundaries.
Random coefficients for amorphous materials, in the
Wannier [9] representation, may be interpreted as ran-
dom walk of these ”phase points” around the unit circle
which leads to a band structure similarly to the periodic
boundary conditions.
As an example of Eqs. (2) let us recover hidden bound-

ary conditions for a non-relativistic H-like ion with nu-
clear charge Z using known properties of hydrogenic
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bound-state wave functions. Normalization condition
guarantees a part of boundary conditions, namely, van-
ishing at infinity [2]. Asymptotic exponential decay of
wave function ψ = ψ(r) is described by limit of logarith-
mic derivative

lim
r→∞

1

ψ

∂ψ

∂r
= −

√
−2E, (3)

where and throughout this paper atomic units (~ = e =
me = 4πε0 = 1) are used. Normalization condition
results in a mild singularity (a hyperconical cusp) of
the wave function [2]: whereas it is continuous every-
where, its directional derivatives are bounded but dis-
continuous at the Coulomb singularity. Since eigenfunc-
tions of the central field problem are separable as ψ =
Rnℓ(r)Yℓm(ϑ, ϕ), their directional logarithmic derivatives
are of the form

e · ∇ψ
ψ

=
e · er
Rnℓ

dRnℓ

dr
+

e · eϑ
Yℓm r

∂Yℓm
∂ϑ

+
e · eϕ

Yℓm r sinϑ

∂Yℓm
∂ϕ

,

where e stands for unit vector of the selected direction,
{er, eϑ, eϕ} is the basis of the spherical polar coordinate
system. In radial directions defined by e · er = ±1 and
e · eϑ = e · eϕ = 0, above expression reduces to

e · ∇ψ
ψ

=
±1

Rnℓ

dRnℓ

dr
=

±1

ψ

∂ψ

∂r
.

Since radial wave function Rnℓ = rℓunℓ(r) of the central
field problem has a root of multiplicity ℓ at the origin
the l’Hospital rule should be applied ℓ times in order to
obtain a definite limit

lim
r→0

1

Rnℓ

dRnℓ

dr
= lim

r→0

R
(ℓ+1)
nℓ

R
(ℓ)
nℓ

= (ℓ + 1)
u′nℓ(0)

unℓ(0)
= −Z,

where differentiation rules (A1a), (A1b) and explicit
forms of the hydrogenic wave functions are used. The
discontinuity of the radial logarithmic derivative at the
nucleus is then characterized by

lim
r→±0

1

ψ

∂ψ

∂r
= lim

r→±0

∂ℓ+1
r ψ

∂ℓrψ
= ∓Z, (4)

where

r → +0 ≡ (r → 0, ϑ, ϕ),

r → −0 ≡ (r → 0, π − ϑ, π + ϕ).

Pair of Eqs. (3) and (4) obviously represent homoge-
neous Robin boundary conditions of the form (2). Similar
boundary conditions will be obtained for many-electron
wave functions in Sec. III as a result of asymptotic cen-
tral symmetry of many-electron Hamiltonian both in the
vicinity of nuclei and at large distances.
Three decades after historic papers [1] and [2], T. Kato

[10] has derived his famous cusp condition for many-
electron wave functions Ψ = Ψ(r|r2, . . . , rN ) of which
special case for the electron-nucleus coalescence is

∂Ψ

∂r

∣

∣

∣

∣

r=0

= −ZΨ(r = 0), (5)

where Z denotes nuclear charge of atom located at the
origin and overline symbol stands for spherical average.
Validity of Eq. (5) is limited to the s states, however,
it can be generalized to arbitrary values of ℓ similarly
to our Eq. (4). Despite the similarity of Eqs. (4) and
(5), the latter one cannot be used as an exact boundary
condition due to the spherical average. It will be shown
in Sec. III that the spherical average is redundant in

Kato’s cusp condition (5) which was already indicated
for some specific few-electron systems by Roothaan and
Weiss [11] and by Kolos and Roothaan [12].
Since jump of logarithmic derivative at the nucleus

is 2Z both in one-electron and in many-electron cases,
the discontinuity is caused by common terms of the two
Hamiltonians, namely, by singular Coulomb potential
and by singular kinetic energy of opposite sign as if no
other particles were present except the coalescent ones.
An electron-electron potential taking part in cancella-
tion of nuclear Coulomb singularity would require a more
singular wave function than square-integrable functions
hence cusp condition shows an evidence for the normal-
ization condition.
The outline of the paper is as follows. In Sec. II, many-

electron wave function will be expanded about singular
points in terms of regular and irregular solid spherical
harmonics using theory of singular differential equations.
It will be shown that three leading terms of expansion
about Coulomb singularities exhibit hydrogenic angular
dependence. In Sec. III, homogeneous Robin boundary
conditions and exact 1st and 2nd order cusp conditions
will be derived. In Sec. IV, physical and numerical con-
sequences of our results will be summarized.
Term asymptotic equality is used in this paper in the

sense of limx→x0 [f(x)/g(x)] = 1. A boldface argument
of ordo symbol O (rn) indicates anisotropy of omitted
terms of expansions throughout this paper.

II. BEHAVIOR OF WAVE FUNCTION AT
SINGULAR POINTS

Let us consider non-relativistic Hamiltonian describ-
ing N particles interacting with each other by Coulomb
potentials

Ĥ = −1

2

N
∑

i=1

∆i

mi

+

N−1
∑

i=1

N
∑

j=i+1

qiqj
rij

, (6)

where mi and qi denote mass and charge of the ith par-
ticle, respectively (mi = 1 and qi = −1 for electrons and
mi = 1836Aν, qi = Zν , ν = 1, 2, . . . < N for nuclei).
Electrons and nuclei will be distinguished only in the fi-
nal results. Spin coordinates are omitted for simplicity.
Many-particle wave functions Ψ = Ψ (r1, r2, . . . , rN ) sat-
isfy stationary-state Schrödinger equation

ĤΨ = EΨ (7)
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which is singular both at coalescence points r = ri and
as r → ∞. The singularities and other leading terms of
the Hamiltonian are isotropic in both limiting cases. In
the vicinity of coalescence points, the singular potential
contribution of coalescent particles O

(

r−1
)

and bounded
leading term of potential due to remaining non-coalescent
particles O

(

r0
)

are isotropic. At infinity, only Coulombic

monopole term O
(

r−1
)

is isotropic, whereas multipole

terms O
(

r
−2

)

are anisotropic.
Particular solutions of a linear ordinary differential

equation in the vicinity of an isolated singular point
x0 = 0 are of product form y = f(x)g(x), where f(x)
ensures correct behavior of y at the singularity [13] and
g(x) is a single-valued analytic function (or has at most a
logarithmic singularity) which is nonzero at the singular
point. For isotropic singularities of a partial differential
equation, the solution has the form y = f(r)g(r) with
r ∈ R

n and r = ‖r‖, where f(r) is responsible for correct
behavior of y about the singular point and g(r) (reflect-
ing anisotropy [14] of the coefficient functions) is nonzero
at the singular point. It will be shown in this section
that due to isotropy of singularities of Hamiltonian (6),
the wave function about singular points has the following
limiting forms

Ψ −→
r→ri

rℓiui(r), ui(0) 6= 0, i = 1, 2, . . . , N,

Ψ −→
r→∞

eαrrβv(r), lim
r→∞

v(r) 6= 0, α < 0.

In many-body systems, in contrast to the central-field
problem, only energy E is conserved throughout the con-
figuration space, square L2 and projection Lz of angular
momentum are conserved only at singular points

[Ĥ, L̂2] −→
r→ri

0, [Ĥ, L̂z] −→
r→ri

0, (8a)

[Ĥ, L̂2] −→
r→∞

0, [Ĥ, L̂z] −→
r→∞

0, (8b)

where Hamiltonian (6) is rotationally invariant. In the
vicinity of singular points quantum numbers ℓ and m
have definite values. Eigenfunctions of many-electron
Hamiltonian approach eigenfunctions of angular momen-
tum when approaching singular points of Hamiltonian
leading to asymptotic hydrogenic angular dependence of
wave function

Ψ −→
r→ri

Ri(r)Yℓimi
(ϑ, ϕ), (9a)

Ψ −→
r→∞

R∞(r)Y00, (9b)

where power and exponential functions reflecting singu-
larities are included in the radial functions. In other
words, molecular symmetries manifest only at molecu-
lar distances, where many-body Hamiltonian does not
commute with angular momentum.

A. Asymptotic behavior at infinity

Let us consider an electron, say particle 1, separated
from the rest of the system (m1 = 1, q1 = −1 and

r1 > r2, . . . , rN ). Let us introduce reduced mass M ′

and center of mass R
′ of the whole system, center of

mass R
′′ of particles except the electron located at r1

and their separation r:

1

M ′ ≡
N
∑

i=1

1

mi

, R′ ≡
∑N

i=1miri
∑N

i=1mi

, R′′ ≡
∑N

i=2miri
∑N

i=2mi

,

r ≡ r1 −R
′′ ≡ (r, ϑ, ϕ) ≡ (r, ω).

Using Laplace expansion for r > ri

1

|r− ri|
=

∞
∑

λ=0

λ
∑

µ=−λ

4π

2λ+ 1

rλi
rλ+1

Y ∗
λµ(ω)Yλµ(ωi)

the potential energy can be expressed at large distances
as

U(r) =
∑

λ,µ

4πq1
2λ+ 1

Y ∗
λµ(ω)

rλ+1

N
∑

i=2

qir
λ
i Yλµ(ωi)

=
q1
r

N
∑

i=2

qi +O
(

r
−2

)

= −Q+ 1

r
+O

(

r
−2

)

,

where Q ≡ ∑N
i=1 qi by noting that Q = 0 for neutral

systems.
Due to asymptotic isotropy (8b) of Hamiltonian the

many-particle Schrödinger equation is asymptotically
separable (9b) in terms of spherical polar coordinates
as r → ∞. Asymptotic radial wave function R =
R (r|r2, . . . , rN ) satisfies differential equation [15]

[

− ∆r

2M ′ −
Q+ 1

r
− E +O

(

r
−2

)

]

R −→
r→∞

0, (10)

which is not an eigenvalue equation and E is eigenvalue
of Eq. (7). The equation has an isolated essential singu-
larity at infinity since transformation of variable z ≡ 1/r
leads to 2nd order differential equation

z4R′′(z) + 2M ′ [E + (Q+ 1)z +O
(

z
2
)]

R(z)−→
z→0

0

with an isolated 4th order pole at the origin. The pole
being independent of potential is a consequence of the
Laplacian. Radial equation (10) is of Hamburger type
[6, 16]

d2R

dr2
+
(

a0 +
a1
r

+
a2
r2

+ . . .
) dR

dr

+

(

b0 +
b1
r

+
b2
r2

+ . . .

)

R = 0

with

a1 = 2, a0 = a2 = a3 = . . . = 0,

b0 = 2M ′E, b1 = 2M ′(Q + 1),

b2 and higher order coefficients are anisotropic. Due to
essential singularity of the equation the solution vanishes
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transcendentally as r → ∞. Seeking the solution in the
form

R = eαru(r), lim
r→∞

u(r) 6= 0

we obtain

d2u

dr2
+ 2

(

α+
1

r

)

du

dr

+

[

α2 + b0 +
2α+ b1

r
+O

(

r
−2

)

]

u −→
r→∞

0.

By equating leading term of coefficient of u(r) to zero we
obtain indicial equation of which roots are

α = ±
√

−b0,

where only minus sign leads to a bounded solution. Non-
essential singularity of the latter differential equation can
be removed by substitution

u = rβv(r), lim
r→∞

v(r) 6= 0

yielding

d2v

dr2
+ 2

(

α+
β + 1

r

)

dv

dr

+

[

2α(β + 1) + b1
r

+O
(

r
−2

)

]

v −→
r→∞

0.

By equating leading term of coefficient of v(r) to zero we
obtain indicial equation with only root

β = − b1
2α

− 1 =
b1

2
√
−b0

− 1.

In case of a central-symmetric problem the solution of
latter differential equation would be of the form

v = v0 + v1r
−1 + v2r

−2 + . . . , (v0 6= 0)

but since b2 is anisotropic we restrict our solution to v0.
The radial wave function at large distances is then [17]

R −→
r→∞

e−
√
−2M ′E rr

M′(Q+1)√
−2M′E

−1 [
v0 +O

(

r
−1

)]

. (11)

Since above function completely characterizes singularity
of Hamiltonian at infinity the many-electron wave func-
tion can be expanded in terms of irregular solid spherical
harmonics as

Ψ = e−
√
−2M ′E rr

M′(Q+1)√
−2M′E

∑

λ,µ

vλµ
(

r−1
)

rλ+1
Yλµ(ϑ, ϕ), (12)

where v00 =
√
4π v0 = constant. Molecular or crystalline

symmetries are reflected by relations between coefficient
functions vλµ

(

r−1
)

≡ vλµ
(

r−1|r2, . . . rN
)

for λ > 0.

B. Local behavior at Coulomb singularities

Let us focus now our attention on coalescence of any
two particles, say 1 and 2, while keeping remaining par-
ticles separated from them (r1, r2 < r3, . . . , rN ). It is
convenient to introduce reduced mass M , center of mass
R and separation r of these two particles:

M ≡ m1m2

m1 +m2
, R ≡ m1r1 +m2r2

m1 +m2
,

r ≡ r1 − r2 ≡ (r, ϑ, ϕ) ≡ (r, ω).

Many-body Hamiltonian (6) can be partitioned as

Ĥ = − ∆

2M
+
q1q2
r

+ Ŵ + Ĝ, (13)

where

Ŵ ≡
N
∑

i=3

(

q1
r1i

+
q2
r2i

)

qi,

Ĝ ≡ − ∆R

2(m1 +m2)
−

N
∑

i=3

∆i

2mi

+
N−1
∑

i=3

N
∑

j=i+1

qiqj
rij

.

Use of Laplace expansion for r < r′

1

|r− r′| =
∞
∑

λ=0

λ
∑

µ=−λ

4π

2λ+ 1

rλ

r′λ+1
Y ∗
λµ(ω)Yλµ(ω

′)

yields

W =
∑

λ,µ

4πwλµ

2λ+ 1

[

q1r
λ
1Y

∗
λµ(ω1) + q2r

λ
2Y

∗
λµ(ω2)

]

,

wλµ ≡ wλµ (r3, . . . , rN ) ≡
N
∑

i=3

qi

rλ+1
i

Yλµ(ωi).

Expressing r1 and r2 with r and R, putting origin of the
coordinate system to center of mass R, using inversion
property

Yλµ(π − ϑ, π + ϕ) = (−1)λ Yλµ(ϑ, ϕ)

and addition theorem

4π

2λ+ 1

λ
∑

µ=−λ

Yλµ(ϑi, ϕi)Y
∗
λµ(ϑ, ϕ) = Pλ(cos γi),

cos γi ≡ cosϑ cosϑi + sinϑ sinϑi cos(ϕ− ϕi)

we obtain

W =
∞
∑

λ=0

[

q1

mλ
1

+ (−1)λ
q2

mλ
2

]

(Mr)λ
N
∑

i=3

qi

rλ+1
i

Pλ(cos γi)

=W0(r3, . . . , rN ) +W1(r/r, r3, . . . , rN ) r + . . . (14)

for potential energy contribution of non-coalescent par-
ticles. For identical coalescent particles, all odd powers

of radius vanish due to the inversion symmetry. This
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property has a profound consequence in the behavior of
electron-electron potentials which will be discussed in
Sec. IV. Leading term of above expansion is constant
whereas higher order terms reflecting molecular or crys-
talline structure are anisotropic. Since average of Legen-
dre polynomials with λ > 0 vanish the spherical average
of W equals to leading constant term of its expansion:

W −→
r→0

(q1 + q2)
N
∑

i=3

qi
ri

≡W0. (15)

Since term Ŵ of Hamiltonian (13) acts on separation

r of particles 1 and 2 and term Ĝ acts on their center of
mass R the many-particle Schrödinger equation is sep-
arable resulting in an effective one-body problem. The
wave equation for Ψ = Ψ (r|r3, . . . , rN ) has the form

[

− ∆

2M
+
q1q2
r

+W0 − E +O (r)

]

Ψ−→
r→0

0

in the vicinity of coalescence points, which is simply a
homogeneous differential equation, where E is eigenvalue
of Eq. (7). Due to local isotropy (8a) of Hamiltonian (13)
the equation is locally separable in terms of spherical
polar coordinates and the wave function exhibits local
hydrogenic angular dependence of the form (9a) about
the origin.
The corresponding radial wave equation

− 1

2Mr2

[

d

dr

(

r2
d

dr

)

− ℓ(ℓ+ 1)

]

R

+
[q1q2
r

+W0 − E +O (r)
]

R−→
r→0

0

has an isolated singular point at r = 0. Frobenius normal
form of this equation is

r2R′′ + rP (r)R′ +Q(r)R = 0,

where

P ≡ 2,

Q ≡ −ℓ(ℓ+ 1)− 2Mq1q2r + 2M(W0 − E)r2 +O
(

r
3
)

.

The singular point is removable since P (r) and Q(r) are
single-valued analytic functions. Fuchs’ theorem [6, 18]
states that in the vicinity of removable singularities, the
fundamental system of solutions is

R1 = rλ1u(r),

R2 = rλ2 [v(r) + αu(r) ln r] ,

where Rλ1 ≥ Rλ2, u(r), v(r) are single-valued analytic
functions, u(0) 6= 0, v(0) 6= 0 and α is a constant [19].
The theorem distinguishes three cases for existence of log-
arithmic term depending on difference λ1 − λ2. In order
to determine exponents λ1 and λ2 we seek the solution in
the form rλu(r). The substitution gives indicial equation

[λ(λ − 1) + 2λ− ℓ(ℓ+ 1)]u(r) +O (r)−→
r→0

0

of which roots are λ1 = ℓ and λ2 = −ℓ − 1. Since dif-
ference λ1 − λ2 = 2ℓ + 1 is a non-zero integer there is
no general rule for existence of logarithmic term hence
value of α should be determined individually by substi-
tuting R2 into the differential equation leading to

α−→
r→0

−r2Mq1q2v(r) + 2ℓv′(r) +O (r)

(2ℓ+ 1)u(r) +O (r)
−→
r→0

0,

i.e. the logarithmic term of the second solution vanishes
at the origin hence the fundamental solutions are simply
R1 = rℓu(r) and R2 = r−ℓ−1v(r). Since R2 is unbounded
at r = 0 the physical solution is

R−→
r→0

rℓu(r). (16)

Substituting this expression into the radial equation we
obtain differential equation

u′′ +
2ℓ+ 2

r
u′ − 2M

[q1q2
r

+W0 − E +O (r)
]

u−→
r→0

0

(17)
of which solution should be analytic according to Fuchs’
theorem hence it can be expanded in power series

u(r) = u(0) + u′(0)r +
u′′(0)

2!
r2 + . . . , u(0) 6= 0. (18)

Inserting it into the differential equation we obtain alge-
braic equation

−2 [Mq1q2u(0)− (ℓ+ 1)u′(0)] r−1

+ [2M(E −W0)u(0)− 2Mq1q2u
′(0) + (2ℓ+ 3)u′′(0)] r0

+O (r)−→
r→0

0

which can be satisfied only if

a ≡ u′(0)

u(0)
=
Mq1q2
ℓ + 1

, (19a)

b ≡ 1

2

u′′(0)

u(0)
=

(ℓ+ 1)a2 +M (W0 − E)

2ℓ+ 3
, (19b)

where cusp condition (19a) removes singularity O
(

r−1
)

of the equation and relation (19b) represents a constraint

on curvature of the wave function at the origin [20]. We
have to note that b = b (r3, . . . , rN ) depends on configu-
ration of the non-coalescent particles.
Since singularity of many-particle Hamiltonian (13) is

isotropic at r = 0 its eigenfunctions have the form

Ψ = rℓu (r|r3, . . . , rN ) = rℓ
∑

λ,µ

rλuλµ(r)Yλµ(ϑ, ϕ)

in the vicinity of coalescence points which can be con-
sidered as the spatial generalization of Frobenius series,
where uλµ(r) ≡ uλµ(r|r3, . . . , rN ). In view of local com-
mutativity (8a) of angular momentum with Hamiltonian
both ℓ and m have definite values at the origin. Since
many-particle wave function is antisymmetric under in-
terchange of any two electrons, ℓ takes only even values
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for singlet spin states S = 0 and odd values for triplet
spin states S = 1 of coalescent electrons. Since leading
terms ℓ(ℓ+ 1)/2Mr2, q1q2/r and W0 of Hamiltonian are
isotropic, three leading terms of wave function exhibit
hydrogenic angular dependence [21]

Ψ−→
r→0

rℓuℓ(0)
(

1 + ar + br2
)

Yℓm(ϑ, ϕ) + . . . .

Therefore the many-electron wave function in the vicinity
of Coulomb singularities is of the form

Ψ = rℓuℓ(r|r3, . . . , rN )Yℓm(ϑ, ϕ)

+ rℓ+3v(r|r3, . . . , rN ), (20)

where

uℓ = uℓ (0)
(

1 + ar + br2 + cr3 + . . .
)

,

v =
∞
∑

λ=ℓ+1

λ
∑

µ=−λ

rλ−ℓ−1vλµ(r|r3, . . . , rN )Yλµ (ϑ, ϕ) .

Term O
(

r
ℓ
)

of expression (20) is an eigenfunction of the

spherically averaged Hamiltonian, term O
(

r
ℓ+3

)

reflects
anisotropy of molecular or crystalline potential [22] [23].
In view of Eq. (15) the limiting form of spherically

averaged Hamiltonian is equivalent to that of a Coulomb
potential embedded in a uniform background

Ĥ −→
r→0

− ∆

2M
+
q1q2
r

+W0 (21)

hence Eq. (17) can be rewritten as

ru′′ + (2ℓ+ 2)u′ −
(

2α+ β2r
)

u = 0,

where α ≡ Mq1q2 and β2 ≡ 2M (W0 − E). Seeking the
solution in the form u = e−βrw(r) and then by making
change of variable x ≡ 2βr we obtain following confluent
hypergeometric equation

xw′′ + (2ℓ+ 2− x)w′ − (ℓ+ 1 + α/β)w = 0

which is of Kummer type [24]

xw′′ + (b− x)w′ − aw = 0

with a = ℓ+1+α/β and b = 2ℓ+2. Regular solution of
this equation is the following Kummer function [25]

w = 1F1 (a; b;x) ≡
∞
∑

k=0

(a)k
(b)k

xk

k!
,

where (a)k denotes the Pochhammer symbol defined by
(a)k ≡ Γ (a+ k) /Γ (a). Therefore radial wave function
of the spherically averaged Hamiltonian is

Rℓ −→
r→0

rℓuℓ(0)e
−βr

1F1 (ℓ+ 1 + α/β; 2ℓ+ 2; 2βr) (22)

in the vicinity of Coulomb singularities (for comparison
with an accurate Hartree-Fock-Roothaan atomic wave
function see Figs. 1 and 2, for a recurrence relation see

Appendix B). This analytic function fully characterizes
cusps of spherically symmetric or spherically averaged
systems since arbitrarily high order cusp relations can be
derived from it [26]. For anisotropic systems, only 1st and
2nd order cusp conditions (19) are exact which can also
be obtained from Taylor coefficients of Eq. (22). This
bound-state local solution becomes unphysical at larger
distances satisfying q1q2/r+W0 ≥ 0, where charge of par-
ticles within sphere of radius r should also be included.
Function (22) is not square-integrable but knowledge of
its higher order derivatives at r = 0 is useful in numerical
calculation of uℓ(r) used in expansion (20).
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FIG. 1. Wave function of Kummer type (22) compared with
Hartree-Fock-Roothaan wave function computed by Koga,
Kanayama, Watanabe and Thakkar [27] for ground state of
the He atom. Radius r = Z/W0 of bound-state region of
spherically averaged Hamiltonian (21) is marked on the r axis.
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with that of computed by Koga et al. [27] for ground state
of the He atom. Our near-nucleus approximation is accurate
up to surprisingly large distances. Effective Bohr radius r0 of
the orbital is marked on the r axis.
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III. CUSP AND BOUNDARY CONDITIONS

Using expansions (12) and (20) of many-electron wave
function about singular points of Hamiltonian (6) we are
able to recover explicit forms of boundary conditions for
the many-electron Schrödinger equation. Due to local
isotropy (8) of Hamiltonian at singular points we can
follow the same procedure as we did in Sec. I for the
H atom. One of our resulted boundary conditions may
be considered as an exact cusp condition without spher-
ical average which contradicts Kato’s result. Using our
Kummer function solution (22) for the spherically aver-
aged Hamiltonian we can define arbitrarily high order
cusp conditions in the framework of central field approx-
imation.

A. Boundary conditions

In view of expansion (12) of many-electron wave func-
tion at large distances, its logarithmic derivative with
respect to r is

1

Ψ

∂Ψ

∂r
−→
r→∞

−
√
−2M ′E +

[

M ′(Q + 1)√
−2M ′E

− 1

]

1

r
+O

(

r
−2

)

which defines our first boundary condition:

lim
r→∞

1

Ψ

∂Ψ

∂r
= −

√
−2M ′E. (23)

The directional logarithmic derivative of many-
electron wave function in arbitrary direction e can be
expressed in terms of spherical polar coordinates as

e · ∇Ψ

Ψ
=

e · er
Ψ

∂Ψ

∂r
+

e · eϑ
Ψ r

∂Ψ

∂ϑ
+

e · eϕ
Ψ r sinϑ

∂Ψ

∂ϕ
,

where {er, eϑ, eϕ} is the basis of spherical polar coordi-
nate system. In radial directions, defined by e · er = ±1
and e · eϑ = e · eϕ = 0, above expression reduces to

e · ∇Ψ

Ψ
=

e · ∇rΨ

Ψ
=

±1

Ψ

∂Ψ

∂r
.

Since many-electron wave function Ψ = rℓu(r) has a root
of multiplicity ℓ at Coulomb singularities the l’Hospital
rule should be applied ℓ times in order to obtain a definite
limit

1

Ψ

∂Ψ

∂r
−→
r→0

∂ℓ+1
r Ψ

∂ℓrΨ
−→
r→0

ℓ+ 1

u(r)

∂u(r)

∂r
+O (r) ,

where differentiation rules (A2a) and (A2b) are used [28].
Since expansion (20) exhibits hydrogenic angular depen-
dence rℓuℓ(r)Yℓm(ϑ, ϕ) in the vicinity of Coulomb singu-
larities the radial logarithmic derivatives of Ψ have the
following one-sided limits:

lim
r→±0

1

Ψ

∂Ψ

∂r
= lim

r→±0

∂ℓ+1
r Ψ

∂ℓrΨ
= ± (ℓ + 1)a, (24)

where a is defined by Eq. (19a) and

r → +0 ≡ (r → 0, ϑ, ϕ),

r → −0 ≡ (r → 0, π − ϑ, π + ϕ).

Equation (24) is our second boundary condition.
Equations (23) and (24) represent homogeneous Robin

boundary conditions for the many-electron wave function
and have the same form as Eqs. (3) and (4) obtained
for the H atom which is a consequence of asymptotic
isotropy (8) of Hamiltonian at singular points.

B. Cusp conditions

Boundary condition (24) is the exact form of first order
cusp condition which does not contain spherical average.
By substituting specific values of M , q1 and q2 into Eq.
(24) we obtain cusp conditions for the electron-nucleus
coalescence

lim
r→±0

∂ℓ+1
r Ψ

∂ℓrΨ
= ∓ Aν

Aν + 1
Zν , ℓ = 0, 1, 2, . . . , (25)

where Aν and Zν stand for mass and charge of the νth

nucleus, respectively. Similarly we obtain following cusp
conditions for electron-electron coalescences

lim
r→±0

∂ℓ+1
r Ψ↑↓
∂ℓrΨ↑↓

= ±1

2
, ℓ = 0, 2, 4, . . . , (26a)

lim
r→±0

∂ℓ+1
r Ψ↑↑
∂ℓrΨ↑↑

= ±1

2
, ℓ = 1, 3, 5, . . . , (26b)

where ↑↓ and ↑↑ denote singlet and triplet spin states,
respectively.
Since 2nd order radial partial derivative (e · ∇r)

2 is of
definite sign the 2nd order cusp condition has the form

lim
r→0

1

Ψ

∂2Ψ

∂r2
= lim

r→0

∂ℓ+2
r Ψ

∂ℓrΨ
= (ℓ + 1) (ℓ+ 2) b, (27)

where differentiation rules (A2a) and (A2c) are used, b is
defined by Eq. (19b).
Coefficient a in Eqs. (24, 27) depends only on charges

and masses of the coalescent particles. In view of Eqs.
(15) and (19b), coefficient b = b (r3, . . . , rN ) in Eq. (27)
depends on distances of non-coalescent particles hence it
should be averaged over all possible configurations and
has the same value for the spherically averaged system.
Arbitrarily high order cusp conditions can be obtained
from Eq. (22) by means of recurrence relation (B1)
in the framework of central field approximation. Third
and higher order cusp conditions for exact wave func-
tions require spherical average similarly to Kato’s cusp
condition (5) since higher order coefficients of expansion
(20) depend both on distances and directions of the non-
coalescent particles.
In view of Eq. (20) the electron pair density exhibits

short-range hydrogenic angular dependence in the vicin-
ity of coalescence points hence satisfies exact 1st and 2nd

order cusp conditions similar to Eqs. (26) and (27).
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IV. CONSEQUENCES

A. Physical Consequences

Potential energy termW0 defined by Eq. (15) is related
to the NMR chemical shift since it is proportional to ratio
Hi(0)/H of induced diamagnetic shielding field to the
applied external magnetic field [29, 30].

We saw that all odd powers vanish in expansion (14)
of potential W (r) about electron-electron coalescences
(q1 = q2 and m1 = m2) due to their inversion symmetry
in the center of mass system. Hence electron-electron po-
tentials are even functions of interparticle separation in
the vicinity of coalescence points regardless of molecular
or crystalline symmetry. A nearly quadratic behavior of
exchange-correlation potential was observed by Umrigar
and Gonze [31] without explanation, saying ”we know of
no theoretical reason why this must be rigorously true”.
Nagy and Sen [32] obtained exact quadratic behavior
of spherically averaged Kohn-Sham potential around the
nuclei in the framework of heavy nucleus approximation.
Qian and Sahni [33] found a small linear term ”which is
solely due to correlation-kinetic effects”. From author’s
point of view these effects are specific to the density func-
tional theory (DFT).

Expansion (20) characterizes short-range behavior of
many-electron wave function both in the vicinity of
electron-nucleus and electron-electron coalescences hence
can be used to describe short-range electron correlation,
where parameter b = (r3, . . . , rN ) represents the chemi-
cal environment. First order cusp condition (19a, 24) is
responsible for boundedness of many-electron wave func-
tion at Coulomb singularities by exactly canceling sin-
gular kinetic and potential energy terms. Second order
cusp condition (19b, 27) enforces correct value E of local

energy Eloc ≡ Ψ−1ĤΨ at Coulomb singularities by im-
posing constraints on curvature of many-electron wave
function. These conditions are exact for arbitrary val-
ues of ℓ and do not need spherical average in contrast to
Kato’s cusp condition (5). It follows from Eq. (22) that
all radial partial derivatives of eigenfunctions of spheri-
cally averaged Hamiltonian at coalescence points depend
on the same constant quantities: ℓ, q1, q2, M , E andW0.
Third and higher order derivatives of exact eigenfunc-
tions depend on anisotropic multipole potential terms of
expansion (14) as well. In view of Eq. (20), symmetry
considerations apply only to terms O

(

r
ℓ+3

)

and of higher
orders.

B. Numerical consequences

If both boundary conditions are known the numeri-
cal solution of Schrödinger equation over a grid yields
an algebraic eigenvalue problem which can be solved by
means of Jacobi - Goldstine - Murray - von Neumann di-
agonalization algorithm [34]. Before Kato’s cusp condi-

tion only long-range behavior (23) of wave function was
known hence a numerical trick called shooting method

was used to substitute the missing boundary condition
at Coulomb singularities. This method is best suited to
equidistant grids, where inward and outward numerical
integrations are equally accurate. Since most of energy is
concentrated at near-nucleus regions the practical grids
used in quantum chemistry are substantially finer in the
vicinity of nuclei than in the interstitial and exterior re-
gions. The grid is coarsest at large distances representing
∞ in the numerical calculation hence an outward inte-
grated solution starting from a guessed initial condition
is fitted at a midpoint to an inward integrated solution
based on an inaccurate initial condition. Kato’s cusp con-
dition (5) is suitable only to the central-field approxima-
tion and cannot be used as an exact boundary condition.
Our boundary conditions (23) and (24) are exact regard-
less of molecular or crystalline symmetry since the wave
function exhibits hydrogenic angular dependence in both
limiting cases. A shooting method based on our cusp con-
dition (24) would be more accurate than the traditional
one due to the finer grid at nuclei. Since both bound-
ary conditions are known one can transform Schrödinger
equation to an algebraic eigenvalue problem instead of
performing the time-consuming shooting loop. Approx-
imate wave function (22) can be used to find optimal
near-nucleus step size for the grid.
Basis sets satisfying cusp conditions improve conver-

gence of Hartree-Fock-Roothaan variational calculations.
It is well known that Slater-type basis sets satisfy 1st or-
der cusp condition if exponential decay parameter of one
basis function is appropriately fixed

R(r) = c0r
ℓe−

Zr
ℓ+1 +

L
∑

λ=1

cλr
ℓ+λe−ζλr

letting only its weight factor c0 to be varied. Similar
basis set was used by Roothaan and Kelly [35] however
their summation inexplicably starts from λ = 3 resulting
in slow convergence for ℓ > 0 hence use of cusp condi-
tion was limited to the s orbitals in their atomic calcula-
tions. It is easy to construct a Slater-type basis set satis-
fying both 1st and 2nd order cusp conditions by equating
three leading expansion coefficients of linear combination
of two Slater functions with equal exponential factors to
that of expansion (18) yielding

R = c0r
ℓ

[

1 +

(

b− a2

2

)

r2
]

ear +
L
∑

λ=3

cλr
ℓ+λe−ζλr,

where a and b are defined by Eqs. (19). In order to
preserve asymptotic behavior of wave function as r → ∞
a Slater function of the form (11) should be added to the
basis set.
It is widely believed that Gaussian basis sets are not

suitable to describe nuclear cusps since they have zero
gradients at the nuclei which is true only for individual
Gauss functions but not for their linear combinations.
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By equating three leading expansion coefficients of linear
combination of three Gauss functions with equal expo-
nential factors to that of expansion (18) we obtain Gaus-
sian basis set

ψ(x, y, z) = c0r
ℓ
[

1 + ar + (b+ g0) r
2
]

e−g0r
2

Yℓm(ϑ, ϕ)

+
L
∑

i+j+k≥ℓ+3

cijkx
iyjzke−gijkr

2

satisfying both 1st and 2nd order cusp conditions, where
a and b are defined by Eqs. (19) and r2 = x2 + y2 + z2.
There is no finite linear combination of Gauss functions
which exhibits asymptotic behavior (11) of wave function
as r → ∞. Use of basis functions satisfying both 1st and
2nd order electron-electron cusp conditions provides the
simplest way to include short-range correlation effects.
Asymptotic hydrogenic angular dependence of three

leading terms of expansion (20) of many-electron wave
function about Coulomb singularities explains the suc-
cess of central-field approximation in atomic calculations
and muffin-tin approximation in the solid state physics.
Kummer-type confluent hypergeometric function (22) in-
tended to characterize the short-range behavior of eigen-
functions rℓuℓ(r)Yℓm(ϑ, ϕ) of the spherically averaged
Hamiltonian is surprisingly accurate even at relatively
large distances, e.g. one can see from Fig. 2 that relative
error of this approximation to radial density 4πr2 |ψ|2 is
5.8% at the effective Bohr radius and is 0.4% at its half.
Therefore the spherically averaged part of Hamiltonian is
responsible for most of the effects and anisotropic terms
can be considered as perturbations.
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Appendix A: Some differentiation rules

Leibniz’s theorem for differentiation of products states

[f(x)g(x)]
(n)

=

n
∑

k=0

(

n

k

)

f (n−k)(x)g(k)(x).

For f(x) = xℓ we obtain

[

xℓg(x)
](n)

=
n
∑

k=0

(

n

k

)

ℓ!xℓ−n+kg(k)(x)

(ℓ− n+ k)!
.

Specific higher order derivatives of the above type used
in this paper are

[

xℓg(x)
](ℓ)−→

x→0
ℓ! g(0) +O (x) , (A1a)

[

xℓg(x)
](ℓ+1)−→

x→0
(ℓ+ 1)! g′(0) +O (x) , (A1b)

[

xℓg(x)
](ℓ+2)−→

x→0
(ℓ+ 2)! g′′(0) + O (x) . (A1c)

For higher order radial partial derivatives of rℓu(r) we
obtain similarly

∂ℓrℓu(r)

∂rℓ
−→
r→0

ℓ!u(0) +O (r) , (A2a)

∂ℓ+1rℓu(r)

∂rℓ+1
−→
r→0

(ℓ + 1)!
∂u

∂r

∣

∣

∣

∣

r=0

+O (r) , (A2b)

∂ℓ+2rℓu(r)

∂rℓ+2
−→
r→0

(ℓ + 2)!
∂2u

∂r2

∣

∣

∣

∣

r=0

+O (r) . (A2c)

Quotients of above derivatives become isotropic if u(r)
can be written as a product of radial and angular parts.

Appendix B: Series expansion of function (22)

Solution of Eq. (17) in the vicinity of r = 0 is

uℓ(r) = e−βr
1F1 (ℓ+ 1 + α/β; 2ℓ+ 2; 2βr)

with α ≡ Mq1q2 and β2 ≡ 2M (W0 − E). By substi-
tuting power series uℓ(r) =

∑∞
k=0 akr

k into the equation
we obtain following boundary condition and three-term
recurrence relation

a1 =
α

ℓ + 1
a0, (B1a)

ak+1 =
2αak + β2ak−1

(2ℓ+ 2 + k)(k + 1)
k = 1, 2, . . . , (B1b)

providing a simple way of generating higher order cusp
conditions for eigenfunctions of spherically averaged
Hamiltonian (21).
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