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Quantum codes give counterexamples to the unique pre-image conjecture of the
N-representability problem
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It is well known that the ground state energy of many-particle Hamiltonians involving only 2-body
interactions can be obtained using constrained optimizations over density matrices which arise from
reducing an N-body state. While determining which 2-body density matrices are “/N-representable”
is a computationally hard problem, all known extreme N-representable 2-body reduced density ma-
trices arise from a unique N-body pre-image, satisfying a conjecture established in 1972. We present
explicit counterexamples to this conjecture through giving Hamiltonians with 2-body interactions
which have degenerate ground states that cannot be distinguished by any 2-body operator. We
relate the existence of such counterexamples to quantum error correction codes and topologically

ordered spin systems.

PACS numbers: 71.10.-w, 03.67.Pp, 03.65.Ud, 03.67.-a

For all known systems of identical particles, which have
Hamiltonians restricted to symmetric (bosonic) or anti-
symmetric (fermionic) states, the Hamiltonians contain,
at most, two-body interactions. Therefore, for many pur-
poses, in particular energy calculations, an N-body state
can be replaced by its 2-body reduced density matrix
(RDM). In doing so, one might hope to reduce complex
N-body calculations by simpler 2-body ones. Early ef-
forts gave absurdly low energies until it was realized that
it was necessary to restrict to 2-body density matrices
which, in fact, come from the reduction of an N-body
state of the appropriate symmetry (its pre-image). Char-
acterizing these 2-body RDMs is a fascinating question
known as the N-representability problem [TH3].

In the 1960’s, the N-representability problem was
solved for one-body RDMs [I]. However, finding a so-
lution for 2-body RDMs is so challenging that most of
those who tried concluded that it was intractable. This
intuition was recently validated with a quantum infor-
mation theoretic proof that N-representability for the 2-
body RDM belongs to the complexity class called QMA
complete [4], i.e., the worst cases would be hard even
with a quantum computer.

Surprisingly, this coincided with a revival of interest in
the N-representability problem from several directions.
A number of groups have obtained good approximations
to the ground state energy in special situations [5]. New
eigenvalue bounds for the 1-body RDM have been found
for pure N-body fermion states [6]. For both fermions
and bosons the first improvements on expectation value
bounds since 1965 were obtained in [7]. Moreover, the
map from an N-body state to a m-body RDM is a spe-
cial type of quantum channel, which found an important
application involving Renyi entropy in [§].

A widely held property about the convex set of N-
representable 2-body RDMs is that all the extreme
RDMs arise from a unique N-body pre-image. FEz-
treme N -representable RDMs are fundamental; every N-
representable 2-body RDM comes from a weighted av-
erage of extreme points, and because energy is a linear
function of the RDM, its minimum must lie on the set
of extreme points. The unique pre-image property holds
for the best known extreme points, which come from gen-
eralizations of BCS states [3, [@]. It is also true for the
few other known extreme RDMs, and similar observa-
tions [I0] have been made for RDMs of translationally
symmetric spin lattice systems. In 1972, Erdahl [9 Sec-
tion 6] formally conjectured that all extreme RDMs have
a unique pre-image, and it has been widely believed to
hold since then.

Erdahl’s conjecture has been proven for m-body ex-
treme RDMs when 2m > N [0]. Moreover, if the con-
jecture were false, there would exist an unusual 2-body
Hamiltonian, whose ground state degeneracy is “blind”
to, i.e. undetectable by, 2-body operators. All ground
states of such a “2-blind” Hamiltonian would have the
same 2-body RDM, and thus the degeneracy cannot be
broken without at least a 3-body interaction; 2-body per-
turbations would only shift the energy.

In this paper, we give explicit counterexamples to Er-
dahl’s conjecture. To do so, we first exhibit a class of 2-
blind spin lattice Hamiltonians, whose ground states are
quantum error correction codes. Extended to fermions,
these examples provide extreme N-representable 2-body
RDMs with multiple pre-images, which are thus the de-
sired counterexamples. We then directly relate the gen-
eral conditions for quantum error correction to the ex-
istence of such counterexamples. Our results imply that



the set of N-representable RDMs is much larger and very
different from what has long been the prevailing wisdom.
In addition, the Hamiltonians we use [II] play a pivotal
role in the study of topological quantum error correction
[12] [13].

N-representability and the unique pre-image con-
jecture: We begin with a brief description of the N-
representability problem and its generalization beyond
fermionic symmetries. For fermions, a symmetric 2-body
Hamiltonian Hy acts on antisymmetric states |¢p~) for
which the 2-body RDM is p1, = Trs. n| 7 )¢~ |. A 2-
body RDM pi, is called N-representable if it has a pre-
image A, ie. pi, = Trz. nA, where A =Y py— [¢p7) (17|
is an N-body state of appropriate symmetry. The critical
interplay between the one and two-body terms of Hy is
captured by
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where Ej is the ground state energy of Hy, and H ]]\,i =

Vie + 575 (Tj + T) — (g)_lEo is known as the reduced
Hamiltonian. One can verify the energy of A is deter-
mined by its 2-body RDM p7, by

(3)Tr H}Y pry = Tr HA > 0, (2)

with equality if and only if A is a ground state of Hy.
__Although H is positive semidefinite by construction,
HY is not positive semidefinite in general; however, it
acts as if it were on the set of N-representable RDMs.
Thus it acts as a “witness” for N-representability, a spe-
cial case of a general duality concept known as the polar
cone of a convex set.

N body density matrix

FIG. 1. Mapping of N-body density matrices to N-
representable 2-body RDMs. ~4,v, are extreme 2-body
RDMs with unique pre-images. 7. is an extreme 2-body RDM
with multiple pre-images.

N-representable 2-body RDMs form a convex set, as
the average of two is also N-representable. The set of
N-representable RDMS;, like any convex set, is charac-
terized by its extreme points, which are not the aver-
age of any two points in the set (Fig. [I). Erdahl [9
Section 3] showed that in finite dimensions every ex-
treme N-representable RDM 12 is also ezposed in the
sense that there is some Hamiltonian H fg for which v

is the unique lowest energy N-representable RDM. Ev-
ery extreme point thus corresponds to the ground state
eigenspace of at least one two-body Hamiltonian Hy .

When the ground state of Hpy is non-degenerate, it
is the unique pre-image of its 2-body RDM. A degener-
ate ground state eigenspace defines a convex subset of
the N-representable 2-body RDMs, which typically cor-
responds to a flat (exposed) region on the boundary. In
exceptional cases, this region is a single extreme point
with multiple pre-images; this happens when the Hamil-
tonian is 2-blind, meaning that all degenerate ground
states have the same 2-body RDM.

It is useful to extend the concept of N-representability
to the complete absence of symmetry. This leads to the
closely related quantum marginal problem which asks if
there is a pre-image A =) py|1) (| consistent with the
reduction to {pjr} = (p12, P13, - PIN, P23, - - - PN—1,N),
where {p;.} is expressed in vector form to emphasize
that those which are consistent form a convex set. The
reduced spin lattice Hamiltonian {H,} is also written in
vector form, and Eq. becomes Zj<k Tr PAIjk,ojk.

Erdahl’s conjecture is equivalent to the statement that
there is no 2-blind fermionic Hamiltonian. We first
present a 2-blind spin lattice Hamiltonian which gives
an extreme quantum marginal {p;,} with multiple pre-
images. We then explain how to extend this to fermions
to disprove Erdhal’s conjecture.

Lattice example: We consider the Hamiltonian for the
two-dimensional quantum compass model used in con-
densed matter physics [14]. It has a doubly degenerate
ground state eigenspace, known as the Bacon-Shor code
[11] in quantum information theory, for which the 2-body
RDMs {pji} are independent of the choice of eigenstate.

Let X;, and Z;, denote the Pauli operators o, and
o0, respectively, acting on the site (7, k) in a square n xn
spin lattice, and define

Hn2 = — Z (Jij7ka+1,k + JZZ',kZ‘,k-&-l)a (3)
jk

where J,,J, > 0, and subscript addition is mod n, cor-
responding to cyclic boundary conditions.
For n = 3, define the even parity columns

0 0 1 1
Vo = 0 5 v = 1 5 Vg = 0 , VUs = 1
0 1 1 0

The odd parity columns are obtained by flipping all
spins 0 < 1. Symmetry considerations can be used to
show that H,2 is block diagonal, including two blocks
spanned by states where all columns have even parity or
all columns have odd parity.

It can be shown that the lowest energy eigenvalues of
these blocks are unique and those of other blocks strictly
larger [I1, 15]. (In fact it is not hard to verify that
Ey < —9Jz on these blocks and that for Jz > J, the



Hamiltonian is 2 —5Jz on the other blocks.) Therefore,
this Hamiltonian has a pair of ground states which can
be distinguished by even and odd parity. Let
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(vj,v5,0;),
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The even parity ground state of Eq. is
|Co> :a1|A1>+a2|A2>+a3\A3>, (4)

and the odd parity ground state |C7) can be obtained by
flipping all spins.

To verify that all ground states u|Cp) + v|C1) have the
same 2-body RDMs, it is both necessary and sufficient
to show that for all 2-body operators B,

(Cp| BICq) = 0pgb ()

for some constant b. To prove that (Cp,|B|Cp) =

b for all p, we introduce the operators )N(j = I1, Xj,,
which act equivalently on the ground space; )?j|Cp> =
|C1_p) for all j. Given any two-body operator B which
acts on sites (j1, k1) and (j2, k2), an )Z'j may be chosen
which does not affect the same sites as B; j # ji,ja-
Therefore:

(Co|B|Cy) = (Co|X;BX;|Co) = (C1|BIC1) = b. (6)

One can similarly show (Co|B|Cy) = 0 using Z, =
Hi Zi,k-

Therefore, because H,2 is a two-body Hamiltonian
where all degenerate ground states have the same 2-body
RDMs, it follows that H,,2 is 2-blind and H,,> gives an ex-
posed, and therefore extreme {p;x} with no unique pre-
image. This fact is already surprising and interesting.
We show next that this can be mapped to fermions to
give a counterexample to Erdahl’s conjecture.

From spin lattices to fermions: To extend our exam-
ple to fermions we replace our spin lattice of IV sites with
a system of NV fermions. Each fermion has both a spatial
(site) and an internal (spin) degree of freedom. To map
a spin state |¢) to a fermionic state [¢)~), we map each
computational basis state to a Slater determinant with
exactly one fermion per site (half-filled orbitals) by

Vils)®...®|sy)—al, ...ak, 19, (7)
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where a; s, creates a fermion at site j with spin s; and

|Q2) is the vacuum state. The map V satisfies VIV = I,
and VVT = Py, ., the projection onto fermionic states
with half-fillled orbitals. We may map non-trivial(Trace

zero) one-body spin operators to corresponding one-body
“fermionized” operators:

Wj - Zw5t|8j><tj| = ijerm = ZwSta;,Sjaj;tj' (8)

It can be verified that the fermionized operators have
the same algebra and expectation values on states with
half-filled orbitals that the original spin operators have
on spin states:

Wi~y = Wiy ly) = VWil (9)

Therefore, we can see a similar correspondence between
quantum marginals and 2-body RDM of states with half-
filled orbitals:

{pjr} = (];,)—1. >

1<j<k<N

ijﬁjkak = Pias

where Vi : [s;s5) — a},sja;st acts similarly on pairs

of sites. This gives us the full correspondence:

) = [¥7)
g 1

{pjk} +— P2

Since there is a linear, one-to-one correspondence
{pjr} <— piy, it follows that pi, is extreme with
multiple pre-images if and only if {p;r} is extreme
with corresponding pre-images. Applying this proce-
dure to the Bacon-Shor code gives an extreme fermionic
2-body RDM with multiple pre-images, disproving Er-
dahl’s conjecture. Moreover, because every extreme N-
representable 2-body RDM is exposed, we know that
there exists a “2-blind” fermionic Hamiltonian which ex-
poses this extreme point.

We can explicitly construct such a Hamiltonian by ap-
plying Eq. to all terms in the spin Hamiltonian. Be-
cause of Eq.(]g[)7 the eigenstates and energies in the in-
variant subspace of half-filled orbitals, i.e. n; = a}Taﬁ +

a;TajT = 1 for all j, correspond to those of the spin

Hamiltonian by |¢5) = V] g). To ensure that all ground
states have half-filled orbitals, we must add a penalty
term >, U (nj — 1)* with U; sufficiently large to ensure
that states with n; # 1 have higher energy. Moreover,
there is a threshold M such that U; > M defines an
n2-parameter family of exposing Hamiltonians.

These procedures also work for bosonic systems.

Quantum error correction codes: The counterexam-
ple given above is a special case of a much more general
connection between RDMs with multiple pre-images, m-
blind Hamiltonians, and quantum error correction codes.
In quantum coding theory [16], a quantum state is en-
coded into a subspace of a larger system in a way such
that errors can be identified and corrected without dis-
turbing the encoded state. This subspace is spanned by
an orthonormal basis of codewords |Cy), and a necessary
and sufficient condition for a quantum code to be able to



correct a set of single particle errors & = {FE,,} is that
[16]

(Co|E}En|Cq) = 8pqQum- (10)

& contains the operators {F} 4, ... Fn,q} for all a, where
Fjo,Fj1...F; 421 is a basis of for single-particle opera-
tors on site j. Therefore, since EgEm =F ;aFk)a/ forms
a basis for the set of two-body operators, the criteria
for a code to be able to correct all single-particle errors
<Cp|EgEn7,|Oq> = 0;5Qem, is ezactly the criteria of Eq.
for all states in the code space {|C}p)} to have the same
set of 2-body RDMs.

This set of 2-body RDMs will be extreme if and only if
the code space is the ground space of some Hamiltonian
with at most 2-body interactions. The Bacon-Shor code
has this property and yields extreme points with multiple
pre-images. However, most quantum codes, including
stabilizer codes and non-stabilizer CWS codes [16} [17],
do not have this property and simply yield interior points
with multiple pre-images.

Erdahl’s general conjecture was for m-body RDMs,
with m > 2. While counterexamples for m > 2 can
come from the Bacon-Shor code defined on larger lattices,
they also come from m-blind Hamiltonians whose ground
states define a quantum code that can correct any |7 |-
particle errors. Topological quantum codes can have this
property; for example, Kitaev’s toric code [12] is a 4-blind
Hamiltonian which gives an extreme N-representable 4-
body RDM with multiple pre-images. Other topological
quantum codes exhibit the same properties [I3] [I8]. In-
deed, similar relationships between topological quantum
codes and RDMs have been observed in [19] 20].

Extensions and open issues: The fermionic extreme
points constructed here, which come from N-body states
with half-filled orbitals, are quite different from those
one encounters for atomic and molecular systems, and
also differ from the best known extreme points which
come from generalizations of BCS states [3| [@]. The crit-
ical issue is not whether the states described here — or
their associated Hamiltonians — arise in practical applica-
tions. Our results demonstrate that the class of extreme
points is much larger and more complex than previously
believed. From the standpoint of quantum chemistry,
the challenge is to characterize a class of extreme points
which will lead to useful new computational algorithms.

The 2-blind fermionic Hamiltonians we used to dis-
prove Erdahl’s conjecture are quite different from
fermionic Hamiltonians that physicists usually encounter,
which have two-body potential terms as well as one-
body terms having the form of a Laplacian. This leads
to a question of fundamental importance in developing
physically realizable quantum codes; can Hamiltonians
with physically reasonable Laplacian and local potential
terms, including realistic spin and magnetic interactions,
be 2-blind?

Some of these counterexamples are closely related to
topologically ordered spin systems. Stabilizer topologi-
cal codes are counterexamples for m > 2, and subsystem
[21] topological codes [22] are candidates of counterex-
amples for m = 2. Further work along these directions
will undoubtedly continue to forge new connections be-
tween quantum information, condensed matter physics,
and quantum chemistry.
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