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Abstract

Bit commitment schemes are at the basis of modern cryptography. Since information-
theoretic security is impossible both in the classical and the quantum regime, we need to look
at computationally secure commitment schemes. In this paper, we study worst-case complexity
assumptions that imply quantum bit-commitment schemes. First, we show that QSZK 6⊆ QMA
implies a computationally hiding and statistically binding auxiliary-input quantum commitment
scheme. Additionally, we give auxiliary-input commitment schemes using quantum advice that
depend on the much weaker assumption that QIP 6⊆ QMA (which is weaker than PSPACE 6⊆ PP).
Finally, we find a quantum oracle relative to which honest-verifier QSZK is not contained in
QCMA, the class of languages that can be verified using a classical proof in quantum polynomial
time.

1 Introduction

The goal of modern cryptography is to design protocols that remain secure under the weakest
possible complexity assumptions. Such fundamental protocols include commitment schemes, digital
signatures, authentication, one-way functions, pseudorandom generators, etc. All these primitives
have been proven to be equivalent, for example commitment schemes imply one-way functions [11]
and conversely one-way functions imply commitments [21, 9, 8].

In this paper we study complexity assumptions that imply commitment schemes, which are the
basis for many cryptographic constructions, for example zero knowledge protocols for NP [7, 2]. A
commitment scheme is a protocol between a sender and a receiver that consists of two phases. In
the commit phase, the sender interacts with the receiver such that at the end of this phase, the
sender is bound to a specific value of a bit, that remains hidden from the receiver, until the reveal
phase of the protocol, where the receiver learns the bit.

There are two security conditions for such schemes: binding (the sender cannot reveal more
than one value) and hiding (the receiver has no information about the bit before the reveal phase).
These conditions can hold statistically, i.e. against a computationally unbounded adversary, or
computationally, i.e. against a polynomial-time adversary.

The main complexity assumptions that have been used for the construction of one-way functions,
and hence commitments, involve the classes of Computational and Statistical Zero Knowledge.
Ostrovsky and Wigderson [23] proved, at a high level, that if Computational Zero Knowledge (ZK)
is not trivial then there exists a family of functions that are not ‘easy to invert’. The result was
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extended by Vadhan [29] to show that if ZK does not equal Statistical Zero Knowledge (SZK), then
there exists an auxiliary-input one-way function, i.e. one can construct a one-way function given an
auxiliary input (or else advice). Looking at auxiliary-input cryptographic primitives is convenient,
since we are looking at worst-case complexity classes. Last, Ostrovsky and Wigderson also showed
that if ZK contains a ‘hard-on-average’ problem, then ‘regular’ one-way functions exist.

With the advent of quantum computation and cryptography, one needs to revisit computational
security, since many widely-used computational assumptions, such as the hardness of factoring or
the discrete logarithm problem, become false when the adversary is a polynomial-time quantum
machine [26].

In this paper, we study complexity assumptions under which quantum commitment schemes
exist. We only look at worst-case complexity classes, and hence similar to the classical case,
we obtain auxiliary-input commitments, i.e. commitments that can be constructed with classical
and/or quantum advice. Needless to say, since our commitments are quantum, we define the
computationally binding and hiding properties against quantum poly-time adversaries (that are
also allowed to receive an arbitrary quantum auxiliary input).

Our first result, involves the class of Quantum Statistical Zero Knowledge, QSZK, and states
the following

Theorem 1.1. If QSZK 6⊆ QMA there exists a non-interactive auxiliary-input quantum statistically
binding-computationally hiding commitment scheme.

Before explaining this result, let us try to see what an equivalent classical result would mean.
At a high level, the classical statement would be of the following form: if SZK is not in MA, then
auxiliary-input commitments exist. However, under some derandomization assumptions, we have
that NP = MA = AM ([20, 18]) and since SZK ⊆ AM, we conclude that SZK ⊆ MA. Hence, the
equivalent classical assumption is quite strong and, if one believes in derandomization, possibly
false.

However, in the quantum setting, it would be surprising if QSZK is actually contained in QMA.
We know that QSZK ⊆ QIP[2] [33], where QIP[2] is the class of languages that have quantum
interactive proofs with two messages (note that one only needs three messages to get the whole
power of quantum interactive proofs). So far, any attempt to reduce QIP[2] to QMA or find any
plausible assumptions that would imply it, have not been fruitful. The main reason is that the
verifier’s message cannot be reduced to a public coin message nor to a pure quantum state. His
message is entangled with his quantum workspace and this seems inherent for the class QIP[2]. It
would be striking if one can get rid of this entanglement and reduce the class to a single message
from the prover.

Last, if we weaken the security condition to hold against quantum adversaries with only classical
auxiliary input, then the above assumption also becomes weaker, i.e. QSZK 6⊆ QCMA, where QCMA
is the class where the quantum verifier receives a single classical message from the prover. We give
evidence that QSZK is not contained in QCMA by providing a quantum oracle relative to which
the honest-verifier QSZKHV (equal to QSZK [33]) is not contained in QCMA.

Theorem 1.2. There exists a quantum oracle A such that QSZKA
HV

6⊆ QCMAA.

We then turn our attention to even weaker complexity assumptions about quantum interactive
proofs. More precisely, we look at the class QIP (which is believed to be much larger than QSZK)
and its relation to QMA and show the following
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Theorem 1.3. If QIP 6⊆ QMA there exist non-interactive auxiliary-input quantum commitment
schemes (both statistically hiding-computationally binding and statistically binding-computationally
hiding) with quantum advice.

Note, that QIP = PSPACE [12] and QMA ⊆ PP [19], so our assumption is extremely weak, in
fact weaker than PSPACE 6⊆ PP. Of course, with such a weak assumption we get a weaker form of
commitment: the advice is now quantum (and classical). This means that in order for the prover
and the verifier to efficiently perform the commitment for a security parameter n, they need to
receive a classical auxiliary input as well as quantum advice of size polynomial in n. This quantum
advice is a quantum state on poly(n) qubits that is not efficiently constructible (otherwise, we
could have reduced the quantum advice to classical advice by describing the efficient circuit that
produces it). Moreover, the quantum advice we consider does not create entanglement between the
players.

The key point behind this result is the structure of QIP. More precisely, we use the fact that
there exists a QIP-complete problem where the protocol has only three rounds and the verifier’s
message is a single coin. The equivalent classical result would say that if three-message protocols
with a single coin as a second message are more powerful than MA then commitments exist. Again,
classically, if we believe that AM = MA, then this assumption is false. Taking this assumption to
the quantum realm, it becomes ‘almost’ true, unless PSPACE = PP.

Let us also note that all our commitments are non-interactive, a feature that could be useful
for applications. Last, from the QIP 6⊆ QMA assumption we construct both statistically hiding-
computationally binding commitments and statistically binding-computationally hiding ones, whose
constructions are conceptually different. In order to prove the security of the second construction
we prove a parallel repetition result for protocols based on the swap test that may be of independent
interest. From the QSZK 6⊆ QMA assumption we show only the construction of statistically binding-
computationally hiding commitments, but one can also similarly construct statistically hiding-
computationally binding commitments.

2 Definitions

2.1 Norms

In order to define the statistical distance between quantum states, we use a generalization of the
ℓ1 norm to linear operators. This is the trace norm which gives the sum of the singular values of
an operator. More formally, the trace norm may be expressed as

‖ X ‖tr =
√
X†X = max

U
|trXU | , (1)

where the maximization is taken over all unitaries of the appropriate size. This norm is particularly
appealing for cryptographic applications due to the fact that it characterizes the distinguishability of
quantum states. Given one of two states ρ, σ each with equal probability, the optimal measurement
to distinguish them succeeds with probability 1/2+ ‖ ρ− σ ‖tr/4 [10]. Note that this measurement
is not, in general, computationally efficient. One further property of the trace norm that we will
need is that when applied to a Hermitian operatorX the trace norm is given by tr(Π+X)−tr(Π−X),
where Π+ and Π− are the projectors onto the positive and negative eigenspaces of X, respectively.
This fact, which follows from Equation (1), will be important when we consider the trace norm of
the difference of two quantum states.
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The diamond norm is a generalization of the trace norm to quantum channels that preserves
the distinguishability characterization. Given one of two quantum channels Q0, Q1 each with equal
probability, then the optimal procedure to determine the identity of the channel with only one
use succeeds with probability 1/2 + ‖ Q0 −Q1 ‖⋄/4. The definition of the diamond norm is more
complicated than the trace norm, however, as the optimal distinguishing procedure may make use
of an auxiliary space, sending only a portion of some entangled state through the channel. It is
known, however, that the dimension of this auxiliary space does not need to exceed the dimension
of the input space [15, 27]. The diamond norm, for a linear map from Q : L(H) → L(K) with an
auxiliary space F with dimF = dimH can be defined as

‖ Q ‖⋄ = max
X∈L(H⊗F)

‖ Q(X) ‖tr
‖ X ‖tr

.

Closely related to the diamond norm is a known studied in operator theory known as the
completely bounded norm. An upper bound on this norm can be found in [24]. Since the diamond
norm is dual to this norm, this bound may also be applied also to the diamond norm. See [13]
for a discussion of this bound and the relationship between the diamond and completely bounded
norms.

Lemma 2.1. Let Φ: L(H) → L(K) be a linear map, then

‖ Φ ‖⋄ ≤ (dimH)‖ Φ ‖tr = (dimH) sup
X∈L(H)

‖ Φ(X) ‖tr
‖ X ‖tr

.

One inconvenient property of the diamond norm is that for some maps the maximum in the
definition may not be achieved on a quantum state. Fortunately, in the case of the difference of
two completely positive maps it is known that this maximum is achieved by a pure state. This fact
will be essential to the protocol in Section 4.

Lemma 2.2 ([25]). Let Φ0,Φ1 : L(H) → L(K) be completely positive linear maps and let Φ =
Φ0 − Φ1. Then, there exists a Hilbert space F and a unit vector |φ∗〉 ∈ F ⊗H such that

‖ Φ ‖⋄ = ‖ (IF ⊗Φ)(|φ∗〉〈φ∗|) ‖tr.
In addition to these norms, we will also make use of the fidelity between two quantum states.

This quantity is introduced in [14], where several important properties are also discussed. The
fidelity may be defined by F(ρ, σ) = tr

√√
σρ

√
σ, and although it is not obvious from this definition,

the fidelity is symmetric in the two arguments. One property that is important for the results in this
paper is that the fidelity only increases under the application of a quantum channel. Specifically,
tracing out part of the states under consideration can only increase the fidelity, i.e. for ρ, σ density
matrices on H⊗K, it holds that F(ρ, σ) ≤ F(trK ρ, trK σ). We will also make significant use of the
following relationship between the trace norm and the fidelity.

Lemma 2.3 ([6]). For any density matrices ρ and σ

1− F(ρ, σ) ≤ 1

2
‖ ρ− σ ‖tr ≤

√

1− F(ρ, σ)2.

When analyzing the binding property of the commitment protocols in Sections 3 and 4 we will
need the following result that provides a sort-of triangle inequality for the fidelity.

Lemma 2.4 ([28, 22]). Let ρ, σ be any two density matrices, then

max
ξ

(

F(ρ, ξ)2 + F(ξ, σ)2
)

= 1 + F(ρ, σ).
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2.2 Quantum interactive complexity classes

The class QMA, first studied in [30], is informally the class of all problems that can be verified by
a quantum polynomial-time verifier with access to a quantum proof.

Definition 2.5. A language L is in QMA if there is poly-time quantum verifier V such that

1. if x ∈ L, then there exists a state ρ such that Pr[V (x, ρ) accepts] ≥ a,

2. if x 6∈ L, then for any state ρ, Pr[V (x, ρ) accepts] ≤ b,

where a, b are any efficiently computable functions of |x| such that such that |a− b| is at least an
inverse polynomial [16, 19].

If in the above definition the witness state ρ is restricted to be a classical witness while keeping
a quantum poly-time verifier, then the class is called QCMA.

The class QIP, first studied in [32], consists of those problems that can be interactively verified
in quantum polynomial time. A recent result has shown that QIP = PSPACE [12].

Definition 2.6. A language L ∈ QIP if there is a polynomial time quantum algorithm V exchanges
quantum messages with a computationally unbounded prover P such that, for any input x

1. if x ∈ L, then there exists a prover P such that, (V, P ) accepts with probability at least a.

2. if x 6∈ L, then for any prover P , (V, P ) accepts with probability at most b.

As in the case of QMA, we need only require that |a− b| is at least an inverse polynomial in the
input size [17].

One key property of QIP is that any quantum interactive proof system can be simulated by
one using only three messages [17]. This is not expected to hold in the classical case, as it would
imply that PSPACE = AM. This property allows us to define simple complete problems involving
quantum circuit for the class.

In what follows we consider quantum unitary circuits C, that output a state in the space O⊗G.
These spaces can be different for each circuit. O corresponds to the output space and G to the
garbage space. For any circuit C, we define |φC〉 = C|0〉 in the space O ⊗ G to be the output
of the circuit before the garbage space is traced out, and ρC = TrG(|φC〉〈φC |) to be the mixed
state output by the circuit after the garbage space is traced out. We will also consider mixed-state
quantum circuits C,that take as input a mixed quantum state σ and output a mixed quantum
state, denoted by C(σ). Note that circuits of this form can (approximately) represent any quantum
channel. The size of a circuit C is equal to the number of gates in the circuit plus the number of
qubits used by the circuit. This is denoted |C |. We will also use the notation |X | to refer to the
size of a Hilbert space X , which is the number of qubits needed to represent a vector in the space,
i.e. |X | = ⌈log2 dimX⌉. We now describe some complete problems for the class.

Definition 2.7 (QCD Problem). Let µ a negligible function. We define the promise problem
Quantum Circuit Distinguishability QCD = {QCDY ,QCDN} as follows

• Input: two mixed-state quantum circuits C0, C1 of size n.

• (C0, C1) ∈ QCDY ⇔ ‖ C0 − C1 ‖⋄ ≥ 2− µ(n)

5



• (C0, C1) ∈ QCDN ⇔ ‖ C0 − C1 ‖⋄ ≤ µ(n)

Quantum Circuit Distinguishability is QIP-complete [25].

Definition 2.8 (Π Problem). Let µ a negligible function. We define the following promise problem
Π = {ΠY ,ΠN}:

• Input: two mixed-state quantum circuits C0, C1 of size n that take as input quantum states
in D(X ⊗ Y) and output a single bit .

• (C0, C1) ∈ ΠY ⇔ ∃ρ0, ρ1 ∈ D(X ⊗ Y) with trX (ρ0) = trX (ρ1) such that

1

2

(

Pr[C0(ρ
0) = 1] + Pr[C1(ρ

1) = 1]
)

= 1

• (C0, C1) ∈ ΠN ⇔ ∀ρ0, ρ1 ∈ D(X ⊗ Y) with trX (ρ0) = trX (ρ1), we have

1

2

(

Pr[C0(ρ
0) = 1] + Pr[C1(ρ

1) = 1]
)

≤ 1

2
+ µ(n)

The promise problem Π problem is also complete for QIP (see Appendix A for a proof).
The complexity class QSZK, introduced in [31], is the class of all problems that can be inter-

actively verified by a quantum verifier who learns nothing beyond the truth of the assertion being
verified. In the case that the verifier is honest, i.e. does not deviate from the protocol in an attempt
to gain information, this class can be defined in the following way.

Definition 2.9. A language L ∈ QSZKHV if

1. There is a quantum interactive proof system for L.

2. The state of the verifier in this proof system after the sending of each message can be ap-
proximated, within negligible trace distance, by a polynomial-time preparable quantum state.

If we insist that Item 2 holds even when the Verifier departs from the protocol, the result is the
class QSZK. Watrous has shown that these two notions give the same complexity class, i.e. that
QSZKHV = QSZK [33].

This definition of QSZK is somewhat informal. Fortunately this class has complete problems.
This will allow us to work with this class without considering a completely formal definition.

Definition 2.10 (QSD Problem). Let µ a negligible function. We define the promise problem
QSD = {QSDY ,QSDN} as follows

• Input: two unitary quantum circuits C0, C1 of size n and m output qubits.

• (C0, C1) ∈ QSDY ⇔ ‖ ρC0 − ρC1 ‖tr ≥ 2− µ(n)

• (C0, C1) ∈ QSDN ⇔ ‖ ρC0 − ρC1 ‖tr ≤ µ(n)

The promise problem QSD is QSZK-complete [31].
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2.3 Quantum computational distinguishability

The following definitions may be found in [33].

Definition 2.11. Two mixed states ρ0 and ρ1 on m qubits are (s, k, ε)-distinguishable if there exists
a mixed state σ on k qubits and a quantum circuit D of size s that performs a binary outcome
measurement on (m+ k) qubits, such that

|Pr[D(ρ0 ⊗ σ) = 1]− Pr[D(ρ1 ⊗ σ) = 1]| ≥ ε.

If ρ0 and ρ1 are not (s, k, ε)-distinguishable, then they are (s, k, ε)-indistinguishable.

Let I ⊆ {0, 1}∗ and let an auxiliary-input state ensemble be a collection of mixed states {ρx}x∈I
on r(|x|) qubits for some polynomial r. These states have the further property that given x they
can be generated in time t(|x|), for some polynomial t.

Definition 2.12. Two auxiliary-input state ensembles {ρ0x} and {ρ1x} on I are quantum computa-
tionally indistinguishable if for all polynomials p, s, k and for all but finitely many x ∈ I, the states
ρ0x and ρ1x are (s(|x|), k(|x|), 1/p(|x|))-indistinguishable.

The ensembles {ρ0x} and {ρ1x} on I are quantum computationally distinguishable if there ex-
ist polynomials p, s, k such that for all x ∈ I, the states ρ0x and ρ1x are (s(|x|), k(|x|), 1/p(|x|))-
distinguishable.

If two ensembles are computationally distinguishable, then for all x there exists an efficient
procedure in |x| that distinguishes ρ0x and ρ1x with probability at least 1/2 + 1/p(|x|). Note that
this is not a uniform procedure: the circuit that distinguishes the two states may depend on x.

We also define the statistical case

Definition 2.13. Two auxiliary-input state ensembles {ρ0x} and {ρ1x} on I are quantum statistically
indistinguishable if for any polynomial p and for all but finitely many x ∈ I,

||ρ0x − ρ1x||tr ≤
1

p(|x|)
Definition 2.14. Two admissible superoperators Φ0 and Φ1 from t qubits to m qubits are (s, k, ε)-
distinguishable if there exists a mixed state σ on t+ k qubits and a quantum circuit D of size s that
performs a binary outcome measurement on (m+ k) qubits, such that

|Pr[D((Φ0 ⊗ 1k)(σ)) = 1]− Pr[D((Φ1 ⊗ 1k)(σ)) = 1]| ≥ ε,

where 1k denotes the identity superoperator on k qubits. If the superoperators Φ0 and Φ1 are not
(s, k, ε)-distinguishable, then they are (s, k, ε)-indistinguishable.

Let I ⊆ {0, 1}∗ and let an auxiliary-input superoperator ensemble be a collection of superoper-
ators {Φx}x∈I from q(|x|) to r(|x|) qubits for some polynomials q, r, where as in the case of state
ensembles given x the superoperators can be performed efficiently in |x|.
Definition 2.15. Two auxiliary-input superoperator ensembles {Φ0

x} and {Φ1
x} on I are quantum

computationally indistinguishable if for all polynomials p, s, k and for all but finitely many x ∈ I,
Φ0
x and Φ1

x are (s(|x|), k(|x|), 1/p(|x|))-indistinguishable.
Two auxiliary-input state ensembles {Φ0

x} and {Φ1
x} on I are quantum computationally distin-

guishable if there exist polynomials p, s, k such that for all x ∈ I the superoperators Φ0
x and Φ1

x are
(s(|x|), k(|x|), 1/p(|x|))-distinguishable.
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If two superoperator ensembles are computationally distinguishable then there exists an efficient
procedure (in |x|) to distinguish them with probability at least 1/2+1/p(|x|) for some polynomial
p. As in the case of state ensembles, this procedure is not necessarily uniform.

If the property of being (s, k, ε)-indistinguishable holds for all s, then we call an ensemble
statistically-indistinguishable.

Let us note, that these definitions provide a strong quantum analogue of the classical non-
uniform notion of computational indistinguishability, since the non-uniformity includes an arbitrary
quantum state as advice to the quantum distinguisher.

We now define a new notion that we will use later on. Intuitively, we say that two circuits that
take as input mixed states on the space X ⊗Y and output a single bit are witnessable if there exist
two input states that are equal on the space Y that are accepted respectively from the two circuits
with high enough probability. More formally,

Definition 2.16. Two superoperators Φ0 and Φ1 from L(X ⊗ Y) to a single bit are (s, k, p)-
witnessable if there exist two input states ρ0, ρ1 ∈ L(X ⊗ Y) such that

1.
1

2

(

Pr[Φ0(ρ0) = 1] + Pr[Φ1(ρ1) = 1]
)

≥ 1/2 +
1

p(n)

2. there exists a state σ ∈ L(W) with |W| = k and an admissible superoperator Ψ : L(W ⊗X ) →
L(X ) of size s, such that

ρ1 = (Ψ⊗ IY)(σ ⊗ ρ0)

where IY denotes the identity superoperator on L(Y).

If the superoperators Φ0 and Φ1 are not (s, k, p)-witnessable, then they are (s, k, p)-unwitnessable.

Let I ⊆ {0, 1}∗ and let an auxiliary-input superoperator ensemble be a collection of superoper-
ators {Φx}x∈I from q(|x|) to 1 bit for some polynomial q, where given x the superoperators can be
performed efficiently in |x|.

Definition 2.17. Two auxiliary-input superoperator ensembles {Φ0
x} and {Φ1

x} on I are quantum
computationally witnessable if there exist polynomials s, k, p such that for all x ∈ I the superopera-
tors Φ0

x and Φ1
x are (s(|x|), k(|x|), p(|x|))-witnessable.

Two auxiliary-input superoperator ensembles {Φ0
x} and {Φ1

x} on I are quantum computationally
unwitnessable if for all polynomials s, k, p and for all but finitely many x ∈ I the superoperators Φ0

x

and Φ1
x are (s(|x|), k(|x|), p(|x|))-unwitnessable.

2.4 Quantum commitments

Definition 2.18. A quantum commitment scheme (resp. with quantum advice) is an interactive
protocol Com = (S,R) with the following properties

• The sender S and the receiver R have common input a security parameter 1n (resp. both S
and R have a copy of a quantum state |φ〉 of poly(n) qubits). The receiver has private input
the bit b ∈ {0, 1} to be committed. Both S and R are quantum algorithms that run in time
poly(n).
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• In the commit phase, the sender S interacts with the receiver R in order to commit to b.

• In the reveal phase, the sender S interacts with the receiver R in order to reveal b. The
receiver R decides to accept or reject depending on the revealed value of b and his final state.
We say that S reveals b, if R accepts the revealed value. In the honest case, R always accepts.

A commitment scheme is non-interactive if both the commit and the reveal phase consist of a
single message from the sender to the receiver.

When the commit phase is non-interactive, we call ρbS the state sent by the honest sender during
the commit phase if his input bit is b.

Since we will only consider non-interactive commitments, we define auxiliary-input quantum
commitment schemes only for the non-interactive case.

Definition 2.19. A non-interactive auxiliary-input quantum commitment scheme (resp. with
quantum advice) on I which is statistically/computationally hiding and statistically/computationally
binding is a collection of non-interactive quantum commitment schemes (resp. with quantum advice)
C = {Comx = (Sx, Rx)}x∈I with the following properties

• there exists a quantum circuit Q of size polynomial in |x|, that given as input x for any
x ∈ I, can apply the same maps that Sx and Rx apply during the commitment scheme in time
polynomial in |x|.

• (statistically/computationally hiding) the two auxiliary-input state ensembles {ρ0Sx
}x∈I and

{ρ1Sx
}x∈I are quantum statistically/computationally indistinguishable.

• (statistically/computationally binding) for all but finitely many x ∈ I, for all polynomial p
and for any unbounded/polynomial dishonest sender S∗

x, we have

PS∗
x
=

1

2
(Pr[S∗

x reveals b = 0] + Pr[S∗
x reveals b = 1]) ≤ 1

2
+

1

p(|x|)

When referring to a commitment scheme, we will use the (bs, hc) and (bc, hs) to denote schemes
that are statistically binding-computationally hiding and computationally binding-statistically hid-
ing, respectively.

In high level, the distinction between the two notions, with or without advice, is the following.
We can assume that the two players decide to perform a commitment scheme and agree on a security
parameter n. Then, in the first case, a trusted party can give them the description of the circuits
(C0, C1) so that the players can perform the commitment scheme themselves. One can think of
the string (C0, C1) as a classical advice to the players. In the second case, the trusted party gives
them the description of the circuits, as well as one copy of a quantum state each. This quantum
state is of polynomial size, however it is not efficiently constructable, otherwise the trusted party
could have given the players the classical description of the circuit that constructs it. Hence, in the
second notion the players receive both classical and quantum advice.

3 Quantum commitments unless QSZK ⊆ QMA

Theorem 1.1. If QSZK 6⊆ QMA, then there exists a non-interactive auxiliary-input quantum
(bs, hc)-commitment scheme on an infinite set I.
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Proof. First, we show the following

Lemma 3.1. If QSZK 6⊆ QMA then there exist two auxiliary-input state ensembles that are quantum
computationally indistinguishable on an infinite set I.

Proof. Let us consider the complete problem QSD = {QSDY ,QSDN} for QSZKHV. We may
restrict attention to the honest verifier case, since it is known that QSZK = QSZKHV [33]. Let
n = |(C0, C1)| and define |φCb

〉 = Cb(|0〉) in the space O ⊗ G to be the entire output state of the

circuit on input |0〉 and ρCb

(C0,C1)
= TrG(|φCb

〉〈φCb
|) be the output of circuit Cb on m(n) qubits for

a polynomial m.
Recall that the set QSDY consists of pairs of circuits (C0, C1), such that the trace norm satisfies

‖ ρC0

(C0,C1)
− ρC1

(C0,C1)
‖
tr

≥ 2 − µ(n). We now consider the two auxiliary-input state ensembles

{ρC0

(C0,C1)
} and {ρC1

(C0,C1)
} for (C0, C1) ∈ QSDY . Assume for contradiction that they are quantum

computationally distinguishable on QSDY , i.e. for some polynomials p, s, k and for all (C0, C1) ∈
QSDY , the states ρC0

(C0,C1)
and ρC1

(C0,C1)
are (s(n), k(n), 1/p(n))-distinguishable. In other words, for

polynomials p, s, k and for all (C0, C1) ∈ QSDY there exists a mixed state σ on k(n) qubits and
a quantum circuit Q of size s(n) that performs a binary outcome measurement on m(n) + k(n)
qubits, such that

|Pr[Q(ρC0

(C0,C1)
⊗ σ) = 1]− Pr[Q(ρC1

(C0,C1)
⊗ σ) = 1]| ≥ 1

p(n)
.

We now claim that this implies that QSZK ⊆ QMA, which is a contradiction. For any input (C0, C1)
the prover can send the classical polynomial size description of Q to the verifier as well as the mixed
state σ with polynomial number of qubits. Then, for all (C0, C1) ∈ QSDY , the verifier with the
help of Q and σ can distinguish between the two circuits with probability higher than 1

2 + 1
2p(n) .

On the other hand, for all (C0, C1) ∈ QSDN , no matter what Q and σ the prover sends, since
‖ ρC0

(C0,C1)
− ρC1

(C0,C1)
‖
tr

≤ µ(n) the verifier can only distinguish the two circuits with probability

at most 1
2 + µ(n)

2 . This implies that there is an inverse polynomial gap between the acceptance
probabilities in the two cases. By applying standard error reduction tools for QMA [16, 19], we
obtain a QMA protocol to solve QSD.

This implies that if QSZK 6⊆ QCMA then there exists a non empty set I ⊆ QSDY such that
the two auxiliary-input state ensembles {ρC0

(C0,C1)
} and {ρC1

(C0,C1)
} are quantum computationally

indistinguishable on I. Notice that the set I is infinite. Indeed, if I is finite, then by hard-wiring
this finite number of instances into the QMA verifier (who always accepts these instances), we have
again that QSZK ⊆ QMA.

We now show how to construct a commitment scheme from these ensembles

Lemma 3.2. The two auxiliary-input state ensembles {ρC0

(C0,C1)
}(C0,C1)∈I and {ρC1

(C0,C1)
}(C0,C1)∈I

that are quantum computationally indistinguishable on the infinite set I imply a non-interactive
auxiliary-input quantum (bs, hc)-commitment scheme on I.

Proof. For every (C0, C1) ∈ I we define the following commitment scheme

• Define n = |(C0, C1)| to be the security parameter.
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• Commit phase: To commit to bit b, the sender S runs the quantum circuit Cb with input |0〉
to create |φCb

〉 = Cb(|0〉) and sends ρCb

(C0,C1)
to the receiver R, which is the portion of |φCb

〉
in the space O.

• Reveal phase: To reveal bit b, the sender S sends the remaining qubits of the state |φCb
〉 to

the receiver R, which lie in the space G (the honest sender sends |φ′〉 = Cb|0〉). The receiver

applies the circuit C†
b on his entire state and then measures all his qubits in the computational

basis. He accepts if and only if the outcome is |0〉.

Let us analyze the above scheme. First, note that all operations of the sender and the receiver
in the above protocol can be computed in time polynomial in n given the input (C0, C1). This
includes the receiver’s test during the reveal phase.

Moreover, it is computationally hiding since the states {ρC0

(C0,C1)
} and {ρC1

(C0,C1)
} are quantum

computationally indistinguishable.
The fact that the protocol is statistically binding follows from the fact that for the states

{ρC0

(C0,C1)
} and {ρC1

(C0,C1)
} (for (C0, C1) ∈ I ⊆ QSDY ) we have ‖ ρC0

(C0,C1)
− ρC1

(C0,C1)
‖
tr
≥ 2 − µ(n),

for a negligible function µ. More precisely, if ξ is the total quantum state sent by a dishonest sender
S∗ in the commit and reveal phase of the protocol, then the probability that ξ can be revealed as
the bit b is bounded by

Pr[S∗ reveals b from ξ] = tr(|0〉〈0|C†
b ξCb) = F(Cb(|0〉), ξ)2 ≤ F(ρCb

(C0,C1)
, trG ξ)

2

using the monotonicity of the fidelity with respect to the partial trace. This calculation follows the
proof of Watrous that QSZK is closed under complementation [31]. Using this fact, as well as the
property of the fidelity given in Lemma 2.4, we have

PS∗ =
1

2
(Pr[S∗ reveals b = 0] + Pr[S∗ reveals b = 1])

≤ max
ξ

1

2

(

F(ρC0

(C0,C1)
, trG ξ)

2 + F(ρC1

(C0,C1)
, trG ξ)

2
)

=
1

2

(

1 + F(ρC0

(C0,C1)
, ρC1

(C0,C1)
)
)

≤ 1

2
+

√

µ(n)

2
,

where the final inequality follows from Lemma 2.3 and the fact that the trace distance of the two
states satisfies ‖ ρC0

(C0,C1)
− ρC1

(C0,C1)
‖
tr

≥ 2 − µ(n). This implies that the protocol is statistically

binding.

By combining the above two Lemmata, we conclude that if QSZK 6⊆ QMA, then there exists a
non-interactive auxiliary-input quantum (bs, hc)-commitment scheme on an infinite set I.

Note, that if we are willing to relax the indistinguishability condition, i.e. enforce the indistin-
guishability of the states against a quantum algorithm that has only classical auxiliary input (i.e.
get rid of the state ξ), then the condition becomes QSZK 6⊆ QCMA. In Section 6 we show that this
condition is true, relative to a quantum oracle.

Notice also that by using a result of Crépeau, Légaré, and Salvail [5] we can convert this
commitment scheme into one that is statistically hiding and computationally binding.
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4 Quantum (bs, hc)-commitments unless QIP ⊆ QMA

First, let us note that the condition QIP ⊆ QMA implies that PSPACE ⊆ PP which is widely
believed not to be true. Hence, the commitment we exhibit are based on a very weak classical
computational assumption. Of course, since the result is so strong, the commitments themselves
are weaker, in the sense that apart from a classical advice, one needs a quantum advice as well
in order to construct them. Note of course, that our definitions of security are against quantum
adversaries that also receive an arbitrary quantum advice, hence our honest players are not more
powerful than the dishonest ones. Moreover, the quantum advice doesn’t create entanglement
between the two players.

The proof is very similar to the previous one. The first protocol that we obtain is based on the
swap test on two nearly orthogonal states. For this reason a cheating Sender can open either zero
or one with probability 3/4 + neg(n). Following the proof of this Theorem (in Proposition 4.4 we
show how to repeat the protocol in parallel to obtain negligible binding error.

Theorem 4.1. If QIP 6⊆ QMA, then there exists a non-interactive auxiliary-input quantum (bs, hc)-
commitment scheme with quantum advice on an infinite set I. This scheme has constant binding
error.

Proof. We first show the following

Lemma 4.2. If QIP 6⊆ QMA, there exist two auxiliary-input superoperator ensembles {Q0}(Q0,Q1)∈I
and {Q1}(Q0,Q1)∈I that are quantum computationally indistinguishable on an infinite set I.

Proof. Suppose QIP 6⊆ QMA. Let us consider the complete problem QCD for QIP with input the
mixed-state circuits (Q0, Q1). Let n = |(Q0, Q1)|. Let I denote the input space, O the output
space and G the output garbage space of the circuits Q0, Q1.

Consider the set QCDY , whose elements are pairs of circuits (Q0, Q1), such that the dia-
mond norm satisfies ‖ Q0 −Q1 ‖⋄ ≥ 2−µ(n), and the two auxiliary-input superoperator ensembles
{Q0}(Q0,Q1)∈QCDY

and {Q1}(Q0,Q1)∈QCDY
. Assume for contradiction that they are quantum com-

putationally distinguishable on QCDY , i.e. for some polynomials p, s, k and all (Q0, Q1) ∈ QSDY ,
the superoperators Q0 and Q1 are (s(n), k(n), 1/p(n))-distinguishable. In other words, for polyno-
mials p, s, k and for all (Q0, Q1) ∈ QSDY there exists a mixed state σ on t(n) + k(n) qubits and
a quantum circuit D of size s(n) that performs a binary outcome measurement on (m(n) + k(n))
qubits, such that

|Pr[D((Q0 ⊗ 1k)(σ)) = 1]− Pr[D((Q1 ⊗ 1k)(σ)) = 1]| ≥ 1

p(n)

We now claim that this implies that QIP ⊆ QMA, which is a contradiction. For any input (Q0, Q1)
the QMA-prover can send to the verifier the classical polynomial size description of D as well as
the mixed state σ with poly(n) qubits. Then, for all (Q0, Q1) ∈ QCDY , the verifier with the
help of D and σ can distinguish between the two circuits with probability higher than 1

2 + 1
2p(n) .

On the other hand, for all (Q0, Q1) ∈ QCDN , no matter what D and σ the prover sends, since
‖ Q0 −Q1 ‖⋄ ≤ µ(n) the verifier can only distinguish the two circuits with probability at most
1
2 + µ(n)

2 . Hence, there is at least an inverse polynomial gap between the two probabilities, so we
can use error reduction [16, 19] to obtain a QMA protocol that solves QCD with high probability.
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We just showed that QIP 6⊆ QMA implies that there exists a non-empty set I ⊆ QCDY and
two auxiliary-input superoperator ensembles {Q0}(Q0,Q1)∈QCDY

and {Q1}(Q0,Q1)∈QCDY
which are

quantum computationally indistinguishable on I. Once again, the set I must be infinite, as if I is
finite then by hard-wiring this finite number of instances into the QMA verifier (who always accepts
these instances), we have again that QIP ⊆ QMA.

We now need to show how to construct a commitment scheme on I based on these indistin-
guishable superoperator ensembles. The protocol we obtain has only constant binding error: the
average of the probability of successfully revealing 0 and the probability of successfully revealing
1 is negligibly larger than 3/4. Following this Lemma we prove a parallel repetition result for this
protocol that reduces this error to a negligible function.

Lemma 4.3. The two auxiliary-input superoperator ensembles {Q0}(Q0,Q1)∈I and {Q1}(Q0,Q1)∈I ,
which are quantum computationally indistinguishable on the infinite set I ⊆ QCDY , imply a non-
interactive auxiliary-input quantum (bs, hc)-commitment scheme with quantum advice on I. This
protocol has constant binding error.

Proof. For every (Q0, Q1) ∈ I we define a quantum commitment scheme with quantum advice. For
convenience we let U b be the unitary operation that simulates the admissible map Qb, in other
words we have that Qb(ρ) = trG U

b(ρ⊗ |0〉〈0|)(U b)†. Note that any Qb can be efficiently converted
to a unitary circuit U b. Let also |φ∗〉 be the pure state from Lemma 2.2, such that

‖ Q0 −Q1 ‖⋄ = ‖ (IF ⊗ (Q0 −Q1))(|φ∗〉〈φ∗|) ‖tr.

• Define n = |(Q0, Q1)| to be the security parameter. S and R also receive as advice a copy of
the state |φ∗〉 on poly(n) qubits.

• Commit phase: To commit to bit b, the sender S runs the quantum circuit 1F ⊗ U b with
input |φ∗〉|0〉. The entire output of the circuit is a state in the space F ⊗O ⊗ G. The sender
then sends the qubits in the space O ⊗F to the receiver R.

• Reveal phase: To reveal bit b, the sender S sends the remaining qubits of the state (1F ⊗
U b)(|φ∗〉|0〉) in the space G to the receiver R. The receiver first applies the operation 1F⊗(U b)†

to the entire state he received from the sender and then performs a swap test between this
state and his copy of |φ∗〉|0〉.

Let us analyze the above scheme. First, note that all operations of the sender and the receiver
in the above protocol can be computed in time polynomial in n given the input (Q0, Q1). This
includes the receiver’s test during the reveal phase, since given a description of a unitary circuit it
can be inverted by simply taking the inverse of each gate and running the circuit in reverse and
the swap test which is also efficient.

The protocol is computationally hiding since the superoperators Q0 and Q1 are quantum com-
putationally indistinguishable.

The fact that the protocol is statistically binding (with constant error) follows from the fact
that we have ‖ Q0 −Q1 ‖⋄ ≥ 2 − µ(n) for a negligible function µ. More precisely, let σb be the
state sent by the sender with trG σ0 = trG σ1 = σOF (the honest sender sends the pure state
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(1F ⊗U b)(|φ∗〉|0〉)). Then the receiver accepts if and only if the output of (1F ⊗ (U b)†)σb(1F ⊗Ub)
and his copy of |φ∗〉|0〉 pass the swap test. This probability is equal to

Pr[S∗ reveals b from σb] =
1

2
+

1

2
tr
[

(|φ∗〉〈φ∗| ⊗ |0〉〈0|)(1F ⊗ (U b)†)σb(1F ⊗ Ub)
]

=
1

2
+

1

2
F((1F ⊗ Ub)(|φ∗〉〈φ∗| ⊗ |0〉〈0|)(1F ⊗ (U b)†), σb)2

≤ 1

2
+

1

2
F(1F ⊗Qb(|φ∗〉〈φ∗|), trG σb)2

≤ 1

2
+

1

2
F(1F ⊗Qb(|φ∗〉〈φ∗|), σOF )

2

where we have used the fact that the swap test on a state ρ ⊗ σ returns the symmetric outcome
with probability 1

2 + 1
2 tr ρσ, as well as the monotonicity of the fidelity with respect to the partial

trace.
Using this calculation, the binding property of the protocol is given by

PS∗ =
1

2
(Pr[S∗ reveals b = 0] + Pr[S∗ reveals b = 1])

≤ 1

2
+

1

4

(

F(1F ⊗Q0(|φ∗〉〈φ∗|), trG σ)2 + F(1F ⊗Q1(|φ∗〉〈φ∗|), trG σ)2
)

≤ 1

2
+

1

4

(

1 + F(1F ⊗Q0(|φ∗〉〈φ∗|),1F ⊗Q1(|φ∗〉〈φ∗|))
)

≤ 3

4
+

√

µ(n)

4
,

where we have used Lemma 2.2 and Lemma 2.4.

From the above two Lemmata, we almost have thatif QIP 6⊆ QMA, then there exists a non-
interactive auxiliary-input quantum (bs, hc)-commitment scheme with quantum advice on an infinite
set I, with constant binding error. The only thing to do is to reduce the cheating probability of
the sender to 1/2 + neg(n). To do this, we will use parallel repetition of the above protocol.

Proposition 4.4. Consider a k-fold repetition of the above bit commitment protocol. This protocol
is a non-interactive auxiliary-input quantum (bs, hc)-commitment scheme with quantum advice on
I.

Proof. The two things we have to make sure of is that the computationally hiding property remains
under parallel repetition and that the cheating probability of the sender decreases as a negligible
function in k. To show that the protocol is computationally hiding, we use the following Lemma.

Lemma 4.5 ([33]). Suppose that ρ1, . . . ρn and ξ1, . . . , ξn are m-qubit states such that ρ1 ⊗ · · · ⊗ ρn
and ξ1⊗ · · ·⊗ ξn are (s, k, ε)-distinguishable. Then there exists at least one choice of j ∈ {1, . . . , n}
for which ρj and ξj are (s, (n− 1)m+ k, ε/n)-distinguishable.

From this Lemma, we easily have that if the superoperators Q0 and Q1 are quantum com-
putationally indistinguishable then the output states of the superoperators Q⊗k

0 and Q⊗k
1 applied

to any product state are quantum computationally indistinguishable for any k of polynomial size.
This proves that the repeated protocol remains computationally hiding, since the honest Sender
prepares a product state.
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We now need to prove that the statistical hiding property decreases to 1/2 + neg(n). We first
prove the following Lemma that applies to the ideal case, i.e. the Receiver applies the swap test to
one of two states with orthogonal reduced states. The calculation that this strategy (approximately)
generalizes to the case of states that are almost orthogonal states follows the proof of the Lemma.

Lemma 4.6. Let |φ0〉, |φ1〉 ∈ A ⊗ B be states such that trB |φ0〉〈φ0| and trB |φ1〉〈φ1| are orthogonal,
and let ρ0, ρ1 be two states on (A⊗ B)⊗k = A1 ⊗ B1 ⊗ · · · ⊗ Ak ⊗Bk such that

trB1⊗···⊗Bk
ρ0 = trB1⊗···⊗Bk

ρ1.

Consider the following test:

Test b: Take k copies of |φb〉 and apply for each i ∈ {1, . . . , k} the swap test
between each copy and the state in Ai ⊗ Bi. Accept if all the swap tests accept.

For any ρ0 and ρ1 with equal reduced states on A1 ⊗ · · · ⊗ Ak, we have

1

2
(Pr[ρ0 passes Test 0] + Pr[ρ1 passes Test 1]) ≤ 1

2
+

1

2k+1

The proof of this Lemma is by induction and it appears in Appendix ??.
Notice that in the original bit commitment protocol the Receiver applies the swap test to |φ∗〉|0〉

and the output of (U †
b ⊗ 1)(σb)(Ub ⊗ 1) where σb is the state sent during the protocol. Since U †

b is
unitary, this is equivalent to applying the swap test between σb and the state |φb〉 = (Ub⊗1)|φ∗〉|0〉,
for whatever value of b the Sender has revealed. Viewed in this way, the receiver applies the swap
test between σb and one of two almost orthogonal states. Furthermore, these two states have the
property that the reduced states on the space O have negligible fidelity. Notice also that the Sender
may send one of two states σ0 and σ1 depending on the value that he wishes to reveal. Since we
are interested in the sum of the probabilities that the Sender can successfully reveal both 0 and 1
in a given instance of the protocol, we may assume that the first message stays the same, i.e. that
trG σ0 = trG σ1. This is exactly the condition in Lemma 4.6 with the exception that instead of the
orthogonality of the states |φi〉 we have only approximate orthogonality. We are able to overcome
this obstacle with the following Lemma.

Lemma 4.7. Let |φ0〉, |φ1〉 ∈ A ⊗ B such that ‖ trB |φ0〉〈φ0|, trB |φ1〉〈φ1| ‖tr ≥ 2 − ε. Then there
exist states |φ′0〉, |φ′1〉 ∈ A ⊗ B such that

1. 〈φ′i|φi〉 ≥ 1− ε for i ∈ {0, 1},

2. trB |φ′0〉〈φ′0| and trB |φ′1〉〈φ′1| are orthogonal.

This Lemma shows that we may replace the two states that are almost orthogonal with nearby
states that have exactly the orthogonality property required by Lemma 4.6, which we can in turn
use to show that the protocol repeated k times is statistically binding. To do so, notice that the
two states |φ0〉 and |φ1〉, which are given by applying the circuits Q0 and Q1 to the state |φ∗〉|0〉,
satisfy

‖ |φ0〉〈φ0| − |φ1〉〈φ1| ‖tr ≥ ‖ trG(|φ0〉〈φ0| − |φ1〉〈φ1|) ‖tr
= ‖ ((Q0 −Q1)⊗ I)(|ψ∗〉〈ψ∗|) ‖tr
= ‖ Q0 −Q1 ‖⋄
≥ 2− µ(n),
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These states are not orthogonal, but are nearly so. We may, however, use Lemma 4.7 to obtain
|φ′0〉 and |φ′1〉 that have the orthogonality property required by Lemma 4.6 that have inner product
at least 1− µ(n) with the original states |φ0〉 and |φ1〉, respectively.

We now relate the probability that the state ρ passes our Test 0, i.e. the k swap tests with
the state |φ0〉⊗k to the probability that the same state ρ passes the k swap tests with the state
|φ′0〉⊗k (denoted by Test′ 0). The difference of these probabilities is upper bounded by the trace
distance of the difference of the states |φ0〉⊗k and |φ′0〉⊗k, since we can view the swap test with ρ
as a measurement to distinguish these two states. This gives

|Pr[ρ passes Test 0]− Pr[ρ passes Test′ 0]| ≤ ‖ (|φ0〉〈φ0|)⊗k − (|φ′0〉〈φ′0|)⊗k ‖tr
= 2

√

1− |〈φ′0|φ0〉|2k

≤ 2
√

1− (1− µ(n))2k

≤ 2
√

2kµ(n),

where the final inequality is Bernoulli’s inequality. Similarly we have

|Pr[ρ passes Test 1]− Pr[ρ passes Test′ 1]| ≤ 2
√

2kµ(n)

Hence, for the binding property of our scheme we have

1

2
(Pr[ρ passes Test 0] + Pr[ρ passes Test 1])

≤ 1

2

(

Pr[ρ passes Test′ 0] + Pr[ρ passes Test′ 1]
)

+ 2
√

2kµ(n)

≤ 1

2
+

1

2k+1
+ 2
√

2kµ(n).

since, for the Test′ 0 and Test′ 1 we can use Lemma 4.6 for the perfect case. This quantity is
negligibly larger than 1/2, as we may take k any polynomial and µ is a negligible function.

The proposition gives the desired result

5 Quantum (bc, hs)-commitments unless QIP ⊆ QMA

Theorem 5.1. If QIP 6⊆ QMA, then there exists a non-interactive auxiliary-input quantum (bc, hs)-
commitment scheme with quantum advice on an infinite set I.

Proof. Recall the Complete problem Π = {ΠY ,ΠN} from Definition 2.8 with inputs the mixed-state
circuits (Q0, Q1) from D(X ⊗ Y) to a single bit and n = |(Q0, Q1)|. To show this Theorem, we first
show the following Lemma

Lemma 5.2. If QIP 6⊆ QMA, there exist two auxiliary-input superoperator ensembles {Q0}(Q0,Q1)∈I
and {Q1}(Q0,Q1)∈I that are quantum computationally unwitnessable on an infinite set I.

Proof. Let us consider the set ΠY and suppose for contradiction that the two auxiliary-input super-
operator ensembles {Q0}(Q0,Q1)∈ΠY

and {Q1}(Q0,Q1)∈ΠY
are quantum computationally witnessable,

i.e. there exist polynomials (s, k, p) such that for all (Q0, Q1) ∈ ΠY the superoperators Q0 and Q1
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are (s(n),k(n),p(n))-witnessable. In other words, there exist polynomials (s, k, p) such that for all
(Q0, Q1) ∈ ΠY there exist two input states ρ0, ρ1 ∈ L(X ⊗ Y) such that first, there exists a state
σ ∈ L(W) with |W| = k and an admissible superoperator Ψ : L(W ⊗X ) → L(X ) of size s, such
that ρ1 = (Ψ⊗ 1Y)(σ ⊗ ρ0); and second

1

2

(

Pr[Q0(ρ0) = 1] + Pr[Q1(ρ1) = 1]
)

≥ 1/2 +
1

p(n)

Then, we provide a QMA protocol for the problem Π. Merlin sends ρ0, σ (of size k(n)) and the
classical description of Ψ (of size s(n)). Arthur with probability 1/2 applies Q0 on ρ0 and accepts
if he gets 1; and with probability 1/2 he first creates ρ1 from ρ0,Ψ and σ, then applies Q1 on it
and also accepts if he gets 1.
(Completeness) If (Q0, Q1) ∈ ΠY , we have

Pr[Arthur accepts] =
1

2

(

Pr[Q0(ρ0) = 1] + Pr[Q1(ρ1) = 1]
)

≥ 1

2
+

1

p(n)

(Soundness) If (Q0, Q1) ∈ ΠN , then for any cheating Merlin, Arthur receives a state ρ0∗, form which
he constructs (with half probability) a state ρ1∗ each in space X ⊗ Y such that trX ρ0∗ = trX ρ1∗. By
definition of ΠN , we have

Pr[Arthur accepts] =
1

2

(

Pr[Q0(ρ0∗) = 1] + Pr[Q1(ρ1∗) = 1]
)

=
1

2
+ µ(n)

We have an inverse polynomial gap between completeness and soundness and hence we conclude
that Π ∈ QMA. This proves that there is an nonempty I that satisfies the property of our Lemma.
Note that if I is finite, then by hard-wiring this finite number of instances into the QMA verifier
(who always accepts these instances), we have again that QIP ⊆ QMA. So if QIP 6⊆ QMA then the
above I is infinite.

To finish the proof of the Theorem, we now need to show the following

Lemma 5.3. The two auxiliary-input superoperator ensembles {Q0}(Q0,Q1)∈I and {Q1}(Q0,Q1)∈I
that are quantum computationally unwitnessable on the infinite set I ⊆ ΠY imply a non-interactive
quantum (bc, hs)-commitment scheme with quantum advice on I.

Proof. Commitment scheme For each (Q0, Q1) ∈ I ⊆ ΠY , we consider the following commitment
scheme

• Let n = |(Q0, Q1)| be the security parameter. The sender receives as quantum advice ρ0, ρ1,
with each ρi in space X i ⊗ Y i such that:

1. trX ρ0 = trX ρ1

2. 1
2

(

Pr[Q0(ρ0) = 1] + Pr[Q1(ρ1) = 1]
)

≥ 1− µ(n)

For consistency with our definitions, we also suppose that the Receiver gets a copy of ρ0, ρ1.
These states will not be used in the honest case and moreover they will not harm the security
for a cheating Receiver.

• (Commit phase) To commit to bit b, the Sender sends the state in register Yb to the Receiver.
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• (Reveal phase) To reveal b, the Sender sends the state in register X b. The Receiver applies
Qb on the space X b ⊗ Yb and accepts if he gets 1.

Statistical hiding property The states that the receiver gets in the commit phase satisfy trX ρ0 =
trX ρ1 and hence our scheme is perfectly hiding.
Computationally binding property The property follows from the fact that the two auxiliary-input
superoperator ensembles {Q0}(Q0,Q1)∈I and {Q1}(Q0,Q1)∈I are quantum computationally unwitness-
able. Let us fix (Q0, Q1) ∈ I with |(Q0, Q1)| = n. After the reveal phase, the Receiver has a state
ρb∗ in space X ⊗ Y, where b is the revealed bit. Since we consider dishonest senders S∗

(Q0,Q1) that

are quantum polynomial time machines with quantum advice, the states ρ0∗ and ρ1∗ satisfy the
property 2 of Definition 2.16. Hence, for all but finitely many (Q0, Q1) ∈ I they must not satisfy
property 1 of Definition 2.16. Then, for such (Q0, Q1) ∈ I we have

PS∗

(Q0,Q1)
=

1

2

(

Pr[S∗
(Q0,Q1) reveals b = 0] + Pr[S∗

(Q0,Q1) reveals b = 1]
)

=
1

2

(

Pr[Q0(ρ
0
∗) = 1] + Pr[Q1(ρ

1
∗) = 1]

)

≤ 1

2
+

1

p(n)

for all polynomials p.

From the above two Lemmata, we conclude that unless QIP ⊆ QMA there exists a non-interactive
auxiliary-input quantum (bc, hs)-commitment scheme with quantum advice on infinite set I.

This result, combined with Theorem 4.1 and Proposition 4.4, completes the proof of Theorem 1.3.

6 Quantum oracle relative to which QSZKHV 6⊆ QCMA

6.1 p-uniform measures

Before proving the oracle result we review some background on measures on quantum states and
channels that will be used in the proof.

Let U(H) be the group of unitary matrices acting on a Hilbert space H. When no confusion
is likely to arise, we will also use the notation U(d), where dimH = d. The set of pure states
on H, i.e. the unit sphere in H, is given by S(H) or Sd−1. We refer to d-dimensional spaces for
convenience: in general d = 2n for some space of n qubits.

Throughout this section, the uniform measure on states and unitaries is given by the Haar
measure. In the case of unitaries, we use µU(H) to denote the Haar measure on the unitaries on H,
that is, the unique left and right invariant measure normalized so that µU(H)(U(H)) = 1. When
the space in question is clear we will drop the subscript and use only µ to refer to this measure.
The Haar measure on S(H) can be obtained by applying a random U ∈ U(H) to a fixed pure state
(the invariance of the Haar measure implies that the choice of the fixed state does not matter). We
will use µS(H) to refer to this measure.

Essential to our argument is the notion of a probability measure that is nearly uniform. Follow-
ing Aaronson and Kuperburg [1], given a measure σ we say that it is p-uniform if pσ ≤ µ, where µ
is the uniform measure over the space in question. This notion is directly related to the class QCMA
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by the fact that if the verifier starts with a uniform measure and conditions on a m-bit classical
message, the result is a (2−m)-uniform measure. The main technical result of this section will be
to show that such a measure over U(d) does not help the verifier identify a particular unitary,
unless m ∈ Ω(d). This result follows by a reduction to the pure state case, which is the key to the
quantum oracle that separates QMA and QCMA [1].

Before doing this, we highlight two straightforward properties of p-uniform measures on U(d)
and Sd−1.

Proposition 6.1. Let σ be a p-uniform measure on U(d).

1. For any U ∈ U(d) the measure Uσ remains p-uniform.

2. For any |ψ〉 ∈ Sd−1, the measure τ on Sd−1 given by

τ(A) = σ({U : U |ψ〉 ∈ A})

is p-uniform.

Proof. The left-invariance of µU(d) gives the first property, since for any A ⊆ U(d),

p(Uσ)(A) = pσ(U †A) ≤ µ(U †A) = µ(A).

The second property follows from the definition of µSd−1 ,

pτ(A) = pσ({U : U |ψ〉 ∈ A}) ≤ µU(d)({U : U |ψ〉 ∈ A}) = µSd−1(A).

where right-invariance of µU(d) implies that the choice of |ψ〉 does not matter.

6.2 Oracle separation

In order to prove the desired result we find a problem in QSZKHV and prove a black-box lower
bound in the QCMA model. We end up with a quantum oracle, as the constructed problem makes
essential use of quantum information. This approach is due to Aaronson and Kuperburg [1], who
prove a similar result for QMA versus QCMA. The argument given here is related to the argument
of Aaronson and Kuperburg, both in structure and in the fact that we make use of a bound on
the expected overlap of a state drawn from a p-uniform distribution with a fixed state. The main
difference is that in the problem we consider we need to extent the proof for the case where it is a
unitary operator that is hidden inside the oracle, not a pure state.

Problem 6.2. Given a quantum oracle O : A → A⊗H⊗K, where dimH = dimK = d and
dimA = 2. The problem is to decide between the two cases

1. there exists a unitary U ∈ U(H) such that the oracle O performs the map

α|0〉 + β|1〉 7→ 1

d2

(

|α|2 |0〉〈0| ⊗ 1H⊗K + αβ̄|0〉〈1| ⊗ U † ⊗ 1K

+ ᾱβ|1〉〈0| ⊗ U ⊗ 1K + |β |2 |1〉〈1| ⊗ 1H⊗K
)

.

This map can be implemented in the following way: the oracle chooses a pure state |ψ〉 ∈
H ⊗ K from the Haar measure and then performs the map

α|0〉 + β|1〉 7→ α|0〉|ψ〉 + β|1〉(U ⊗ 1K)|ψ〉.
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2. the oracle O preforms the map

α|0〉 + β|1〉 7→ 1

d2

(

|α|2 |0〉〈0| ⊗ 1H⊗K + |β |2 |1〉〈1| ⊗ 1H⊗K
)

.

for example by measuring the input qubit and appending the maximally mixed state.

We defined the oracles as superoperators, but one can think of them as unitaries in larger spaces.
The key idea is that in the first case the coherence of the input qubit can be recovered, provided
the hidden unitary U can be inverted, whereas in the second case this coherence is irretrievably
lost. The prover in a QSZK protocol, given only the portion of the state in the space H and a copy
of the input qubit, is able to apply U † in order to disentangle the input space from H⊗K. To
prove a lower bound on this problem, we argue that with at most a small amount of knowledge
about the hidden operator U , an oracle of the first type appears much the same as an oracle of the
second type.

Before proving this lower bound, we give an interactive protocol for the problem. The idea
behind the protocol is that when the input to the oracle is one half of a maximally entangled state
then in the first case a prover is able to assist the verifier in recovering the original input state, but
in the second case no action of the prover can recover the state.

Protocol 6.3. Let O be the oracle in Problem 6.2.

1. V , prepares the state |φ+〉 = (|00〉+ |11〉)/
√
2 ∈ B ⊗A, and uses as input to the oracle O the

portion of the state in A. V then sends the state in A⊗H to P .

2. P applies the unitary U † on H controlled on the qubit in A.

3. V receives a state from P in the space A⊗H and measures the operator |φ+〉〈φ+| on the
space B ⊗A, accepting if and only if the outcome is one.

In the following theorem we prove the completeness and soundness of Protocol 6.3. The fact
that it is also zero-knowledge is argued as part of the proof of Theorem 1.2.

Theorem 6.4. Let V be the verifier in Protocol 6.3.

1. If the oracle is of type 1, there is a prover P that causes V to accept with certainty.

2. If the oracle is of type 2, then for any P , V accepts with probability at most 1/2.

Proof. To prove completeness (item 1), notice that when the oracle is of type 1, the state of the
verifier before sending the message to the prover is

1

2d2

[

|00〉〈00| ⊗ 1H⊗K + |00〉〈11| ⊗ U † ⊗ 1K + |11〉〈00| ⊗ U ⊗ 1K + |11〉〈11| ⊗ 1H⊗K.
]

If the honest prover applies U † on the space H, controlled on the qubit in A, the state of the verifier
at the start of Step 3 is

1

2d2
(

|00〉〈00| + |00〉〈11| + |11〉〈00| + |11〉〈11|
)

⊗ 1H⊗K = |φ+〉〈φ+| ⊗ 1H⊗K
d2

and so the projective measurement on A⊗ B given by {|φ+〉〈φ+|,1 − |φ+〉〈φ+|} always results in
the first outcome. This implies that the verifier can always be made to accept an oracle of type 1.
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To prove soundness (item 2) we show that the verifier rejects an oracle of type 2 with probability
at least 1/2, regardless of the strategy of the prover. In this case the state of the verifier before
sending the message is given by the mixture

1

2d2
(|00〉〈00| ⊗ 1H⊗K + |11〉〈11| ⊗ 1H⊗K) .

After the prover applies an arbitrary transformation to A⊗H, the result is

1

2d
(|0〉〈0| ⊗ ρ0 ⊗ 1K + |1〉〈1| ⊗ ρ1 ⊗ 1K)

for some mixed states ρ0, ρ1 on A⊗H. The probability that the verifier’s measurement results in
the outcome |φ+〉〈φ+| on this state is given by

1

2d
tr
[

|φ+〉〈φ+| (|0〉〈0| ⊗ ρ0 ⊗ 1K + |1〉〈1| ⊗ ρ1 ⊗ 1K)
]

=
1

4
(〈0|ρ0|0〉+ 〈1|ρ1|1〉) ≤

1

2
,

which implies that the verifier accepts with probability at most 1/2 when O is of type 2. In fact,
the best strategy for a cheating prover is not to change the control bit in A at all.

A central component of the argument that a QCMA verifier cannot identify a pure state hidden
in an oracle is a geometric bound on the expected overlap between any fixed state and a state
drawn from a p-uniform distribution.

Lemma 6.5 (Aaronson and Kuperburg [1]). For any p-uniform measure σ on Sd−1 and any state
ρ

E
|ψ〉∈σ

[〈ψ|ρ|ψ〉] ∈ O

(

1 + log 1/p

d

)

Our argument requires a similar geometric bound, except that we have a p-uniform measure
over unitaries and not the pure states. We obtain a reduction from U(d) to Sd−1, which allows us
to extend the bound in Lemma 6.5.

Lemma 6.6. If σ is a p-uniform measure on U(d), then

‖ EU∈σ U ‖tr ∈ O
(

√

d(1 + log 1/p)
)

Proof. Let σ be an arbitrary p-uniform measure, then

‖ EU∈σ [U ] ‖tr = max
V ∈U(d)

∣

∣

∣

∣

tr E
U∈σ

[U ]V

∣

∣

∣

∣

= max
V ∈U(d)

∣

∣

∣

∣

E
U∈σ

[trUV ]

∣

∣

∣

∣

= max
V ∈U(d)

∣

∣

∣

∣

E
U∈σV

[trU ]

∣

∣

∣

∣

.

Notice however that the measure σV is p-uniform whenever σ is, and so by Proposition 6.1 we may,
since σ is arbitrary, discard the maximization over V . Doing so, the desired quantity is

∣

∣

∣

∣

E
U∈σ

trU

∣

∣

∣

∣

≤ E
U∈σ

|trU | = E
U∈σ

d
∑

i=1

|〈i|U |i〉| =
d
∑

i=1

E
|ψi〉∈τi

|〈i|ψi〉| , (2)
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where for each i, τi is the p-uniform measure on Sd−1 obtained by applying a σ-distributed unitary
U to the state |i〉. Having reduced the problem to an expectation over a p-uniform measure on
pure states, we apply the bound in Lemma 6.5 to Equation (2) to get

‖ EU∈σ [U ] ‖tr ≤
d
∑

i=1

O

(
√

1 + log 1/p

d

)

= O
(

√

d(1 + log 1/p)
)

,

as in the statement of the Lemma.

Theorem 6.7. Any QCMA protocol for problem 6.2 with an m-bit witness uses Ω(
√

d/(m+ 1))
calls to the oracle.

Proof. Consider any QCMA protocol with any m-bit witness. We will show that this protocol
requires at least Ω(

√

d/(m + 1)) calls to the oracle to determine whether it is an oracle of the first
or second type.

We use the hybrid approach of Bennet et al. [3]. Let ρ0 be the initial state of the algorithm. Let
ρi be the state of the algorithm immediately after the ith call to an oracle of type 2. After T calls
to such an oracle, we denote the final state of the algorithm (before the measurement of whether
or not to accept) as ρT . In the case that the algorithm is run on an oracle of type 1, we denote the
final state by ξT . Our goal is to show that the distance between ρT and ξT is small, unless T , the
number of oracle calls, is sufficiently large. We will do this by considering running the algorithm
for (i − 1) queries on an oracle of type 2 and then switching the oracle to type 1. We denote the
state obtained in this way by ρ′i. We prove that this state is very close to the state ρi, which will
give the desired result, since ‖ ξT − ρT ‖tr ≤

∑T
i=1 ‖ ρi − ρ′i ‖tr by the triangle inequality.

Let |ν〉 = α|0〉 + β|1〉 and let ν = |ν〉〈ν| be the input to the (k + 1)st call to the oracle, after
the algorithm has been run for k queries to an oracle of type 2. Strictly speaking, ν may be mixed
state, but a convexity argument implies that a pure input state will maximize the distance between
the output states of the two oracles. The output of the O2 on the pure state ν is the mixed state

O2(ν) =
1

d2

(

|α|2 |0〉〈0| ⊗ 1H⊗K + |β |2 |1〉〈1| ⊗ 1H⊗K
)

. (3)

The output of the oracle O1, for a fixed hidden unitary U , is

OU1 (ν) =
1

d2

(

|α|2 |0〉〈0| ⊗ 1H⊗K + αβ̄|0〉〈1| ⊗ U † ⊗ 1K + ᾱβ|1〉〈0| ⊗ U ⊗ 1K + |β |2 |1〉〈1| ⊗ 1H⊗K
)

.

However, since this is the first query the algorithm has made to the oracle O1, it has no information
about the hidden unitary U , except the m-bit classical message from the QCMA prover. This
information constrains the unitary U to a 2−m-uniform distribution σ, so that the output of oracle
O1 can be represented by the mixture of the previous equation over all U ∈ σ, which is

O1(ν) = E
U∈σ

[

OU1 (ν)
]

(4)

One way to think about this, is that the oracle O1 has another space which is initialized to be a
uniform superposition of descriptions of all possible unitaries. Then the oracle uses this register
as a control in order to apply the mapping OU1 . The classical QCMA message could be thought
of as an outcome to a partial measurement on this register, which resulted in the collapse of the

22



uniform superposition to a p-uniform superposition of the unitaries consistent with the measurement
outcome. The verifier’s view can be calculated by tracing out this register.

The remaining task is to compute the diamond norm of the difference of Equations (3) and (4),
which will measure the maximum probability that any measurement can distinguish whether or
not a single call to the oracle O1 has been replaced by a call to O2.

‖ O1(ν)−O2(ν) ‖tr =
1

d2
‖ αβ̄|0〉〈1| ⊗ EU∈σ[U † ⊗ 1K] + ᾱβ|1〉〈0| ⊗ EU∈σ[U ⊗ 1K] ‖tr

We then use the fact that ‖ |0〉〈1| ⊗A† + |1〉〈0| ⊗A ‖tr = 2‖ A ‖tr (see [4, Section II.1] for the
relationship between the eigenvalues of an operator of this form and the singular values of A). This
implies that

‖ O1(ν)−O2(ν) ‖tr =
2 |α| |β |
d2

‖ EU∈σ[U ⊗ 1] ‖tr =
2 |α| |β |

d
‖ EU∈σ[U ] ‖tr.

Finally, since σ is a 2−m uniform measure on U(d) we apply Lemma 6.6 to obtain

‖ O1(ν)−O2(ν) ‖tr ∈ O

(

√

1 +m

d

)

. (5)

This equation bounds the trace distance of the output states of the two oracles. The maximum
distance between the states ρi and ρ′i is upper bounded by the diamond norm, which takes into
account the fact that the algorithm may use an ancillary space to better distinguish the two
oracles. Using the fact that the diamond norm of the difference of two channels is achieved by
a pure quantum state [25], we have shown that there exists some pure state ν such that for all
i ∈ {1, . . . , T}

‖ ρi − ρ′i ‖tr ≤ ‖ O1 −O2 ‖⋄ ≤ 2‖ O1(ν)−O2(ν) ‖tr ∈ O
(

√

(1 +m)/d
)

,

where we have used Lemma 2.1 to upper bound the diamond norm by the trace norm. The triangle
inequality implies that replacing all T calls to O1 with calls to O2 results in states ρT and ξT with
trace distance

‖ ρT − ξT ‖tr ≤
T
∑

i=1

‖ ρi − ρ′i ‖tr ∈ O
(

T
√

(1 +m)/d
)

.

This implies that in order for a black-box algorithm to distinguish O1 and O2 with constant prob-
ability it is required to make T = Ω(

√

d/(1 +m)) calls to the oracle.

We now use Protocol 6.3 and the lower bound in Theorem 6.7 to obtain an oracle relative to
which QSZK is not contained in QCMA. The proof of this follows very closely the argument of
Aaronson and Kuperburg [1], who establish an oracle relative to which QMA is not in QCMA.

Strictly speaking, we find a quantum oracle A such that QSZKAHV 6⊆ QCMAA, i.e. we deal only
with the honest verifier case. While it is known that QSZKHV = QSZK [33], we do not know if this
is still the case given access to the oracle A.

Theorem 1.2. There exists a quantum oracle A such that QSZKA
HV

6⊆ QCMAA
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Proof. Let L be a random unitary language that we will use to define the oracle A = {An}. For
each n, An takes 2n qubits as input (so that d = 2n in Problem 6.2). For each n there are two
cases. If 1n ∈ L then An is an oracle of type 1 in Problem 6.2, i.e. An implements some hidden
unitary U on half of the input qubits. On the other hand, if 1n 6∈ L, then An is of type 2.

We use Theorem 6.4 to give an honest-verifier QSZK protocol for L, given access to the oracle
A. For a given input 1n, the Verifier first runs protocol 6.3 to determine the type of the oracle. The
verifier accepts that 1n ∈ L if and only if this protocol accepts. The completeness and soundness of
the protocol have already been shown. Last, it is easy to show that the protocol is zero knowledge
for the honest verifier. The state of the verifier after Step 1 can be simulated by the simulator,
since it has at its disposal both the honest verifier and the oracle. After the prover’s message, in
the yes case, the state is equal to

|φ+〉〈φ+| ⊗ 1H⊗K/d
2

which can also be easily simulated, and so the protocol is (honest-verifier) zero-knowledge. This
implies that L ∈ QSZKA

HV
.

We then use the lower bound in Theorem 6.7 to show that L 6∈ QCMAA, with probability one
(over the choice of L and the hidden unitary U in the oracle). This portion of the proof is identical
to the proof in [1], but for clarity we repeat it here. Fix M an arbitrary QCMA verifier and let
SM (n) represent the event that the verifier M succeeds on the input 1n, i.e. either 1n ∈ L and
there exists a witness string w such that MA accepts with probability at least 2/3, or 1n 6∈ L and
no witness w causes M to accept with probability larger than 1/3. Theorem 6.7 implies that M
fails for large enough n, i.e. that for some N it holds that for all n ≥ N

Pr
L,V

[SM (n)|SM (1), . . . , SM (n− 1)] ≤ 2

3
.

This implies that the probability that M works on all n is 0, i.e.

Pr
L,V

[SM (1) ∧ SM(2) · · · ] = 0.

Finally, since there are only a countably infinite number of QCMA verifiers (by the Solovay-Kitaev
Theorem [15]), the union bound implies that with probability one L 6∈ QCMA.
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A Proof that Π is QIP-complete

In this section we prove that Problem 2.8 is complete for QIP. This is done via a reduction from
the Close Images problem, which is a restatement of the accepting condition for a three-message
quantum interactive proof system, which implies that it is complete for QIP [17]. This problem can
be defined as
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Problem A.1 (Close Images). The input to the problem is two mixed-state quantum circuit Q0

and Q1 that implement transformations from D(I) to D(O), where n is the number of input qubits
to the circuits and |(Q0, Q1)| ∈ poly(n). The promise problem is to distinguish the two cases:

Yes: Q0(σ0) = Q1(σ1) for some σ0, σ1 ∈ D(I),

No: F(Q0(σ0), Q1(σ1)) ≤ 2−n for all σ0, σ1 ∈ D(I).

Before giving the reduction, we first observe that the problem Π is in QIP. This is done using
the following protocol:

Protocol A.2. On input (C0, C1) an instance of Π.

1. P sends the portion of ρ0 that lies in Y.

2. V chooses i ∈ {0, 1} at random and sends it to P .

3. P sends a state in X so that V has the state ρi. V computes Ci(ρ
i) and accepts if and only

if the output is 1.

Note that in Step 3 the honest prover can always send a state in X so that the verifier holds ρi.
This follows from the unitary equivalence of all purifications of the state trX ρ0 = trX ρ1.

Consider the probability that the verifier accepts in Protocol A.2. At Step 3 the Verifier holds
one of two states ρ0 and ρ1 with the property that trX ρ0 = trX ρ1, because the Prover is forced
to commit to the portion of the state in Y before learning i. Notice also that the Prover can send
one of two arbitrary states satisfying the reduced-state property. Since the Verifier runs each of
the two circuits with uniform probability, he can be made to accept with probability exactly

1

2
max

ρ0,ρ1∈D(X ,Y)
trX ρ0=trX ρ1

(

Pr[C0(ρ
0) = 1] + Pr[C1(ρ

1) = 1]
)

.

This implies that if (C0, C1) ∈ ΠY the V accepts with probability at least 1−µ(n), and if (C0, C1) ∈
ΠN , then V accepts with probability at most 1/2 + µ(n), which puts the problem Π into QIP.

To see that the problem is hard for QIP, let Q0, Q1 be the circuits from an instance of the Close
Images problem. By the standard technique of moving the measurements to the end of the circuit,
we may assume that these circuits are given as unitary circuits U0, U1 : I ⊗ A → O ⊗ G such that

Qi(σ) = trG Ui(σ ⊗ |0〉〈0|)U †
i ,

where A corresponds to the space of any ancillary qubits introduced in the |0〉 state. From these
circuits we construct the circuits C ′

0, C
′
1 : D(O ⊗ G) → D(A) given by

C ′
i(ρ) = trI U

†
i ρUi,

which is, the circuit C ′
i simply runs the unitary Ui in reverse and traces out the space I. To obtain

the final circuits Ci we simply measure the output of C ′
i in the computational basis and output 1 if

the result is |0〉 and 0 otherwise. Informally, the circuit Ci simply runs Qi backwards and accepts
(outputs 1) if and only if the result is a valid initial configuration for the circuit Qi, i.e. the space
of the ‘ancillary’ qubits in A is |0〉. The pair (C0, C1) is the constructed instance of Π.
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If (Q0, Q1) is a yes-instance of Close Images, then (Q0, Q1) ∈ ΠY . To see this, take the states

σ0, σ1 ∈ D(I) such that Q0(σ0) = Q1(σ1). Let ρi = Ui(σi ⊗ |0〉〈0|)U †
i be the state obtained by

running the circuit Qi and not tracing out the space G. This implies that the reduced states of ρ0

and ρ1 on the space O are equal. Furthermore, notice that

C ′
i(ρ

i) = trI U
†
i ρ

iUi = trI U
†
i (Ui(σi ⊗ |0〉〈0|)U †

i )Ui = |0〉〈0|,
and so on these states the circuits C0, C1 output 1 with certainty, which implies that (C0, C1) ∈ ΠY .

On the other hand, if (Q0, Q1) is a no-instance of Close Images, we show that the constructed
instance belongs to ΠN . This argument is more technical. First we compute the acceptance
probability of Ci on a state ρ, which is given by

Pr[Ci(ρ) = 1] = tr(|0〉〈0| trI(U †
i ρUi)) = F(|0〉〈0|, trI U †

i ρUi)
2.

We then apply Uhlmann’s theorem to conclude that, for some fixed purification |φ〉 ∈ A⊗ I ⊗ F
of U †

i ρUi, this quantity is equal to

max
|ψ〉∈I⊗F

F(|0〉〈0| ⊗ |ψ〉〈ψ|, |φ〉〈φ|)2 ≤ max
σ∈D(I)

F(|0〉〈0| ⊗ σ,U †
i ρUi)

2

= max
σ∈D(I)

F(Ui|0〉〈0| ⊗ σU †
i , ρ)

2

≤ max
σ∈D(I)

F(Ci(σ), trG ρ)
2,

where we have made repeated use of the monotonicity of the fidelity with respect to the partial
trace. Using this result, we have, for any two states ρ0, ρ1 such that trG ρ0 = ξ = trG ρ1

Pr[C0(ρ
0) = 1] + Pr[C1(ρ

1) = 1] ≤ max
σ0,σ1

F(C0(σ0), ξ)
2 + F(C1(σ1), ξ)

2

≤ 1 + max
σ0,σ1

F(C0(σ0), C1(σ1))

≤ 1 + 2−n,

where the penultimate inequality is by Lemma 2.4. This implies that (Q0, Q1) ∈ ΠN , and since this
reduction is easily implemented in polynomial time, this implies that the problem Π is complete
for QIP.

B Proofs for the parallel repetition

Proof of Lemma 4.6. We prove the result by induction on k. For k = 1. We have

Pr[ρb passes Test b] = 1/2 + 〈φb|ρb|φb〉/2
= 1/2 + F(|φb〉〈φb|, ρb)2/2
≤ 1/2 + F(trB |φb〉〈φb|, trB ρb)2/2.

Since trB ρ0 = trB ρ1, this implies that

1

2
(Pr[ρ0 passes Test 0] + Pr[ρ1 passes Test 1])

≤ 1

2
+

1

4
(F(trB |φ0〉〈φ0|, trB ρ0)2 + F(trB |φ1〉〈φ1|, trB ρ1)2)

≤ 1

2
+

1

4
(1 + F(trB |φ0〉〈φ0|, trB |φ1〉〈φ1|)) =

3

4
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since the reduced states of |φ0〉, |φ1〉 are orthogonal.
Now we suppose the Lemma is true for k and show it for k + 1. For convenience we set

Si = Ai ⊗ Bi. We take a reference space R of sufficient size to consider purifications of ρ0 and ρ1.
Let ρb = trR |ψb〉〈ψb| be these (arbitrary) purifications. Using this notation, we write

|ψ0〉 = α0|φ0〉S1 |Ω0〉S2⊗···⊗Sk+1⊗R + α1|φ1〉S1 |Ω1〉S2⊗···⊗Sk+1⊗R + α2

n
∑

i=2

|φi〉|Ωi〉 (6)

and

|ψ1〉 = β0|φ0〉S1 |Γ0〉S2⊗···⊗Sk+1⊗R + β1|φ1〉S1 |Γ1〉S2⊗···⊗Sk+1⊗R + β2

n
∑

i=2

|φi〉|Γi〉 (7)

where each |φi〉, |φj〉 are orthogonal for i 6= j (for |φ0〉 and |φ1〉 this follows from the fact that the
reduced states on A1 are orthogonal). Since the goal is to pass swap tests with |φ0〉 and |φ1〉, we
can easily see that we can take α2 = β2 = 0 without loss of generality, since this state will only
have larger probability of passing the tests. As one final notational convenience, let pi = |αi|2 and
qi = |βi|2.

Before we analyze the probability that the swap tests pass, we show that the probabilities p0
and q1 satisfy p0 + q1 ≤ 1. By Equation (6) we have

p0 = |α0 |2 = tr((|φ0〉〈φ0| ⊗ 1)|ψ0〉〈ψ0|)
≤ F(|φ0〉〈φ0|, trS2...Sk+1R |ψ0〉〈ψ0|)2

≤ F(trB1 |φ0〉〈φ0|, trB1S2...Sk+1R |ψ0〉〈ψ0|)2.

By a similar calculation, we have

q1 = |β1 |2 ≤ F(trB1 |φ1〉〈φ1|, trB1S2...Sk+1R |ψ1〉〈ψ1|)2.

Then, using the fact that trB1S2...Sk+1R |ψ0〉〈ψ0| = trB1S2...Sk+1R |ψ1〉〈ψ1|, as well as the fact that
trB1 |φ0〉〈φ0| and trB1 |φ1〉〈φ1| are orthogonal, we have

p0 + q1 ≤ F(trB1 |φ0〉〈φ0|, trB1S2...Sk+1R |ψ0〉〈ψ0|)2 + F(trB1 |φ1〉〈φ1|, trB1S2...Sk+1R |ψ1〉〈ψ1|)2

≤ 1 + F(trB1 |φ0〉〈φ0|, trB1 |φ1〉〈φ1|)
= 1. (8)

We now analyze the probability that the swap tests pass. Consider applying test 0 on |ψ0〉.
When applying the swap test between |φ0〉 and |φ0〉, the result is the state |0〉|φ0〉|φ0〉 where the first
register corresponds to the acceptance of the swap test (0 corresponds to accept). When applying
the swap test between the two states |φ0〉 and |φ1〉, the result before measuring the first qubit is
1√
2
(|0〉(|φ0〉|φ1〉+ |φ1〉|φ0〉) + |1〉(|φ0〉|φ1〉 − |φ1〉|φ0〉)). So the swap test on the space S1 accepts

with probability p0 + p1/2. Conditioned on this test passing, we have the state:

1
√

p0 + p1/2

[

α0|φ0〉|φ0〉|Ω0〉S2⊗···⊗Sk+1R +
α1√
2
(|φ0〉|φ1〉+ |φ1〉|φ0〉)|Ω1〉S2⊗···⊗Sk+1R

]

Discarding the first system results in the state in S2 ⊗ · · · ⊗ Sk+1 ⊗R (using orthogonality of |φ0〉
and |φ1〉) given by

σ =
p0

p0 +
p1
2

|Ω0〉〈Ω0|+
p1
2

p0 +
p1
2

|Ω1〉〈Ω1|
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Let T0(ξ) be the probability that a state ξ ∈ S2⊗· · ·⊗Sk+1⊗R passes all swap tests in S2⊗· · ·⊗Sk+1

with |φ0〉. We include the space R for convenience only: notice that the choice of purification in
the space R has no effect on this probability. Using this notation, we have

Pr[ρ0 passes Test 0] = (p0 +
p1
2
) ·
(

p0
p0 +

p1
2

T0(|Ω0〉〈Ω0|) +
p1
2

p0 +
p1
2

T0(|Ω1〉〈Ω1|)
)

= p0T0(|Ω0〉〈Ω0|) +
p1
2
T0(|Ω1〉〈Ω1|)

Similarly, we define T1(ξ) for any ξ and we have

Pr[ρ1 passes Test 1] =
q0
2
T1(|Γ0〉〈Γ0|) + q1T1(|Γ1〉〈Γ1|)

which gives us

P =
1

2
(Pr[ρ0 passes Test 0] + Pr[ρ1 passes Test 1])

=
1

2

(

p0T0(|Ω0〉〈Ω0|) +
p1
2
T0(|Ω1〉〈Ω1|) +

q0
2
T1(|Γ0〉〈Γ0|) + q1T1(|Ω1〉〈Ω1|)

)

(9)

Consider the states ξ0 = p0|Ω0〉〈Ω0|+p1|Ω1〉〈Ω1| and ξ1 = q0|Γ0〉〈Γ0|+ q1|Γ1〉〈Γ1|. These states are
obtained from ρ0 and ρ1 by discarding the system in S1. This implies that they have the properties
in the statement of the Lemma, i.e. the reduced states of ξ0 and x1 on A2 ⊗ · · · ⊗ Ak+1 are equal.
Thus, by induction, we know that 1

2 (T0(ξ0) + T1(ξ1)) ≤ 1
2 +

1
2k+1 . This means that:

1

2
(p0T0(|Ω0〉〈Ω0|) + p1T0(|Ω1〉〈Ω1|) + q0T1(|Γ0〉〈Γ0|) + q1T1(|Γ1〉〈Γ1|)) ≤

1

2
+

1

2k+1

Using this, as well as Equation (9), we have

P =
1

2

(

p0T0(|Ω0〉〈Ω0|) +
p1
2
T0(|Ω1〉〈Ω1|) +

q0
2
T1(|Γ0〉〈Γ0|) + q1T1(|Γ1〉〈Γ1|)

)

=
1

4
+

1

2k+2
+
p0
4
T0(|Ω0〉〈Ω0|) +

q1
4
T1(|Γ1〉〈Γ1|)

≤ 1

2
+

1

2k+2
,

where the final inequality is by Equation (8).

Proof of Lemma 4.7. For simplicity, let ρi = trB |φi〉〈φi|. We have

2− ε ≤ ‖ ρ0 − ρ1 ‖tr = tr |ρ0 − ρ1 | = trΠ+(ρ0 − ρ1)− trΠ−(ρ0 − ρ1), (10)

where Π+ and Π− are the projectors onto the positive and negative eigenspaces of ρ0 − ρ1 respec-
tively. Notice that

tr(Π+ρ0) = tr(Π+(ρ0 − ρ1)) + tr(Π+ρ1) ≥ tr(Π+(ρ0 − ρ1)),

and similarly tr(Π−ρ1) ≥ − tr(Π−(ρ0 − ρ1)), which implies that

tr(Π+ρ0) + tr(Π−ρ1) ≥ tr(Π+(ρ0 − ρ1))− tr(Π−(ρ0 − ρ1)) ≥ 2− ε,
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by Equation (10). This implies that tr(Π+ρ0) ≥ 1− ε and tr(Π−ρ1) ≥ 1− ε.
We introduce the states ρ′i given by the (renormalized) projection of ρ0 and ρ1 into the spaces

spanned by Π+ and Π−, respectively. Since these are orthogonal projectors the states ρ′0 and ρ′1
are orthogonal. Notice also that

‖ ρ0 − ρ′0 ‖tr = tr
∣

∣ρ0 − ρ′0
∣

∣ = tr(Γ+(ρ0 − ρ′0))− tr(Γ−(ρ0 − ρ′0)) = 2 tr(Γ+(ρ0 − ρ′0)),

where Γ+,Γ− are the projectors onto the positive and negative eigenspaces of ρ0− ρ′0, and we have
also used the fact that tr(ρ0 − ρ′0) = 0, which implies that the positive portion of ρ0 − ρ′0 has the
same trace as the negative portion. Consider the positive eigenspace of ρ0 − ρ′0. This is precisely
the subspace spanned by the support of ρ0 that lies outside the support of ρ′0, i.e. this is exactly
the space spanned by the projector Π− = Γ+. Using this observation

‖ ρ0 − ρ′0 ‖tr = 2 tr(Γ+(ρ0 − ρ′0)) = 2 tr(Π−ρ0) ≤ 2ε, (11)

where we have used the fact that tr(Π−ρ0) = 1− tr(Π+ρ0) ≤ ε. A similar argument establishes the
fact that

‖ ρ1 − ρ′1 ‖tr = 2 tr(Π+ρ1) ≤ 2ε. (12)

Finally, we note that Equations (11) and (12) and Uhlmann’s theorem imply that there exist
purifications |φ′0〉, |φ′1〉 ∈ A ⊗ B of ρ′0 and ρ′1 such that

〈φ′i|φi〉 = F(ρ′i, ρi) ≥ 1− ε.

This, combined with the orthogonality of ρ′0 and ρ′1, completes the proof.
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