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Abstract

We present a discrete model theory similar in structure to or-

dinary quantum mechanics, but based on a finite field instead of

complex amplitudes. The interpretation of this theory involves

only the “modal” concepts of possibility and necessity rather

than quantitative probability measures. Despite its simplicity,

our model theory includes entangled states and has versions of

both Bell’s theorem and the no cloning theorem.

Modal quantum theory

In quantum theory, the states of physical systems are represented by
vectors in a complex Hilbert space. The complex scalars serve as prob-
ability amplitudes, quantities whose squared magnitudes are the proba-
bilities of measurement outcomes. Other types of quantum theory have
sometimes been considered, based on real or quaternionic amplitudes
[1, 2]. Though the quantum mechanics of nature does not appear to
be real or quaterionic, these alternate mathematical formalisms shed
light on the structure of the actual quantum theory (which we will here
abbreviate AQT).

Here we will explore the properties of another type of “toy model” of
quantum theory using scalars drawn from a finite field F . The simplest
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example is based on the two-element field Z2, but many other choices
are possible. Our toy model lacks much of the mathematical para-
phernalia of complex Hilbert spaces. For instance, there is no natural
inner product and thus no concept of “orthogonality” between vectors.
Nevertheless, we will find that the theory is well-defined, that it has a
sensible interpretational framework, and that entanglement and many
other aspects of AQT have analogues in the theory.

The interpretation of AQT involves quantitative probabilities, but
our interpretation of finite-field theories is more primitive, involving
only the distinction between possible and impossible events. Suppose E
is the set of outcomes of some experiment. In AQT, a given quantum
state would yield a probability distribution over the elements of E . But
our new theory will only designate a non-empty subset P ⊆ E , the set
of possible results, without distinguishing more or less likely elements
of the set. Any outcome not in P is taken to be impossible, and if P
only contains a single element r, then we may say that r is “certain”
or “necessary”.

This distinction between “possible”, “impossible” and “necessary”
events is exactly the distinction used in modal logic [3]. Thus, we will
refer to our finite-field quantum theories as modal quantum theory, or
MQT.

For a finite field F , the MQT state of a system is a non-null vector
|ψ) in a finite-dimensional vector space V , which is isomorphic to Fd

for some dimension d. A measurement on the system corresponds to
a basis set A = {|a)} for V, where each basis element |a) is associated
with an outcome a of the measurement procedure. (Note that, in the
absence of an inner product, there is no requirement in MQT that the
basis elements be orthogonal.) Every state vector |ψ) can be written

|ψ) =
∑

a

ψa |a) , (1)

where the coefficients ψa are scalars in F . The measurement outcome
a is possible if and only if ψa 6= 0. For the basis A and state |ψ), the
set of possible measurement results is thus

P(A|ψ) = {a : ψa 6= 0}. (2)

The simplest type of MQT has F = Z2, and the simplest MQT
system has state space dimension d = 2. The resulting example may
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be called a mobit. A mobit has three states: basis states |0) and |1),
and a single superposition state |σ) = |0)+ |1). In fact, any one of these
states is a superposition of the other two, and so any pair of the states is
a basis for the vector space. We define three modal observables, which
we will call X , Y and Z, associated with the three possible basis sets.
For each measurement, we can conveniently label the two outcomes by
+ and −. That is,

|+z) = |0) |+x) = |1) |+y) = |σ)
|−z) = |1) |−x) = |σ) |−y) = |0)

. (3)

The question of whether a basis element corresponds to a possible out-
come generally depends on the entire basis. For example, consider the
mobit state |σ). If we measure Z then the result (+z) corresponding
to the basis vector |0) is possible. However, if we measure Y then the
result (−y) corresponding to the same basis vector |0) is not possible.

Things are clearer if we associate a measurement with a basis of the
dual space V∗. Every basis {|a)} for V is associated with a dual basis
{(a|} for V∗ such that (a |ψ ) = ψa, the component of |ψ) in Equation 1.
(In the absence of an inner product, the correspondence between |a)
and (a| is basis-dependent.) We call the functionals in V∗ effects and
say that an effect (a| is possible given the state |ψ) provided (a |ψ ) 6= 0.
Thus, given a basis A for V∗,

P(A|ψ) = {a : (a |ψ ) 6= 0}. (4)

The question of whether a particular effect is possible does not depend
on the dual basis to which it belongs.

We can express the X , Y and Z mobit measurements using dual
bases. Let {(0| , (1|} be the dual basis corresponding to the {|0) , |1)}
basis. Thus (0 |0) = (1 |1) = 1 and (0 |1) = (1 |0) = 0. The remaining
dual vector is (σ| = (0|+ (1|. Then we have

(+z| = (0| (+x| = (σ| (+y| = (1|
(−z| = (1| (−x| = (0| (−y| = (σ|

. (5)

Compare Equation 3.
Finally, we can outline a framework for describing the time evolution

of a system in MQT. Time must be regarded as a sequence of discrete
intervals. Just as in AQT, the “coherent” time evolution of a system
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over one of these intervals is represented by a linear transformation T
of the state vector. Thus, if |a) → |a′) = T |a) and |b) → |b′) = T |b)
then

|a) + |b) → T (|a) + |b)) = T |a) + T |b) = |a′) + |b′) . (6)

Since the zero vector is not a physical state, we require that T |a) 6= 0
for any state |a). This means that the kernel of T is trivial, so that T
is invertible.

No additional restriction (such as unitarity in AQT) on the time
evolution operator T is motivated by the general framework of MQT.
We will generally suppose that any invertible linear transformation of
state vectors corresponds to a possible time evolution of the system.

Entangled states

In AQT, the Hilbert space describing a composite system is the tensor
product of the Hilbert spaces describing the individual subsystems. The
same rule applies to the vector spaces in MQT. In general, a compos-
ite system may have both product states and non-product (entangled)
states. Since the state spaces in MQT are discrete, we can calculate the
numbers of product and entangled states for a given pair of systems.
We find that every composite system has both product and entangled
states, and that as the subsystem state space dimensions become large,
the entangled states greatly outnumber the product states.

Consider a pair of mobits, for which F = Z2. There are 15 allowed
state vectors for the pair, all representing distinct states of the system.
Nine of these are product states and six are entangled.

One particular entangled state of two mobits has especially elegant
properties: |S) = |0, 1) + |1, 0). Any product effect (a, a| is impossible
for |S) because

(a, a |S ) = (a |0) (a |1) + (a |1) (a |0) = 0 (7)

(recalling that x + x = 0 in Z2). From the dual basis forms of the X ,
Y and Z measurements given in Equation 5, we can draw the following
conclusions:
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• If the same measurement is made on each mobit, then the only
possible joint results have opposite values for each mobit. For
example, (+z,−z) is possible; the result (+z,+z) is impossible,
since (+z,+z| = (0, 0|.

• If different measurements are made on the mobits, then there
is one joint result that is impossible. For example, (+z,−x) is
impossible, since (+z,−x| = (0, 0|.

Since corresponding measurements must lead to opposite results, the
state |S) is analogous to the “singlet” state 1√

2
(|↑↓〉 − |↓↑〉) of a pair

of spins in AQT.
In AQT, Bell showed that the correlations between entangled quan-

tum systems were incompatible with any local hidden variable theory
[4]. He did this by devising a statistical inequality that must hold for
local hidden variable theories but is violated by entangled quantum
systems. Is there an analogous result for MQT? Unfortunately, in the
absence of probabilities and expectation values the Bell approach will
not work. However, Hardy [5] devised an alternate approach based only
on possibility and impossibility.

Hardy constructs a non-maximally entangled state |Ψ〉 of a pair of
qubits, together with binary observables A and B on each qubit. If we
denote by (x, y|X, Y ) the outcome (x, y) of a joint measurement (X, Y ),
then Hardy’s state has the following properties.

• (0, 0|A,B) and (0, 0|B,A) are both impossible—that is, they have
quantum probability p = 0.

• (0, 0|B,B) is possible (p > 0).

• (1, 1|A,A) is impossible (p = 0).

How might a local hidden variable theory account for this situation?
Since (0, 0|B,B) is possible, we may restrict our attention to the set H
of values of the hidden variables that lead to this result. The result of
a measurement on one qubit is unaffected by a change in the choice of
measurement on the other (locality). Furthermore, no allowed values
of the hidden variables can lead to (0, 0|A,B) or (0, 0|B,A). Thus,
for values in H , we would have to obtain the results (1, 0|A,B) and
(0, 1|B,A). But these jointly imply that the result (1, 1|A,A) would
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be obtained for values in H , so that this result must be possible. This
contradicts AQT.

In the same way, we can show that the structure of possible and
impossible measurement results arising from the entangled mobit state
|S) above is incompatible with any local hidden variable theory.

In a hidden variable theory, we imagine that the MQT state |S)
corresponds to a set H of possible values of a hidden variable. We
further imagine that the hidden variable controls the outcomes of the
possible measurements on the mobits in a completely local way. That
is, for any particular value h ∈ H , the set of possible results of Alice’s
measurement depends only on h and her own choice of measurement,
not any measurement choices or results for Bob’s mobit. Let Ph(E)
be the set of possible results of a measurement of E for the hidden
variable value h. Our locality assumption means that, given VA and
WB measurements for Alice and Bob and a particular h value,

Ph(VA,WB) = Ph(VA)× Ph(WB) , (8)

the simple Cartesian product of separate sets Ph(VA) and Ph(WB).The
MQT set of possible results arising from |S) should therefore be

P(VA,WB|S) =
⋃

h∈H

Ph(VA)×Ph(WA) . (9)

The individual sets Ph(VA), etc., are simultaneously defined for all of
the measurements that can be made by Alice and Bob. Therefore, we
may consider the set

J =
⋃

h∈H

Ph(XA)× Ph(YA)×Ph(ZA)

× Ph(XB)× Ph(YB)× Ph(ZB) . (10)

There might be up to 26 = 64 elements in J . However, since J can
only contain elements that agree with the properties of |S), we can
eliminate many elements. For instance, the fact that corresponding
measurements on the two mobits must give opposite results tells us that
(+,+,+,+,+,+) cannot be in J , though (+,+,+,−,−,−) might be.
However, when all the properties of |S) are applied, we find the surpris-
ing result that all of the elements of J are eliminated. No assignment of
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definite results to all six possible measurements can possibly agree with
the correspondences obtained from the entangled MQT state |S). We
therefore conclude that these correspondences are incompatible with
any local hidden variable theory.

Mixed states and cloning

In both actual quantum theory and modal quantum theory, a mixed

state arises when we cannot ascribe a definite quantum state vector to
a system. This may happen because several state vectors are possible,
or because the system is only a part of a larger system in an entangled
state.

Suppose that a system in MQT might be in any one of several
possible states |ψ1), |ψ2), etc. We collect these together into a set M ,
which characterizes the mixture of states. An effect is possible for the
mixture M if it is possible for at least one of the state vectors in M .
Equivalently, we say that (a| is impossible for M provided (a |ψ ) = 0
for all |ψ) ∈M .

Two mixtures M1 and M2 are equivalent when they lead to exactly
the same possible effects. Because the effect functionals are linear, it
follows that any mixture M is equivalent to the subspace 〈M〉 spanned
byM . Therefore, two mixturesM1 andM2 will be equivalent if 〈M1〉 =
〈M2〉. If the two mixtures span different subspaces, then we can always
find an effect (a linear functional) which is possible for one but not the
other. Therefore, we identify the mixed state M as the subspace 〈M〉
spanned by the mixture M . In MQT, mixed states are subspaces of V.

How can we arrive at a mixed state for a subsystem of an entangled
system in MQT? Suppose systems #1 and #2 have a joint state vector
|ψ12). Given a basis {|a)} for system #1, we can write this as

|ψ12) =
∑

a

|a, ψa) . (11)

We can take the non-zero states |ψa) that appear in this to define a
mixture M for system #2, which defines in turn a mixed state M =
〈M〉. It is straightforward to show that this mixed state for system #2
is independent of the choice of basis {|a)} for system #1.



Modal quantum theory 8

Finally, we note that a no-cloning theorem holds in MQT, and that
its proof is virtually identical to that of Wootters and Zurek for AQT [6].
We imagine a cloning machine that successfully copies distinct input
states |a) and |b), a process that can be represented by the evolution
of the input, output and machine systems:

|a, 0,M0) → |a, a,Ma) and |b, 0,M0) → |b, b,Mb) . (12)

If we now consider the superposition input state |c) = |a)+|b), linearity
of the overall evolution means that the final state of input and output is
instead either a superposition or mixture of |a, a) and |b, b) (depending
on the relation of the final machine states |Ma) and |Mb)). In neither
case do we obtain the cloned state |c, c) = |a, a) + |a, b) + |b, a) + |b, b).
Therefore, any cloning machine in MQT must fail for some input states.

Superdense coding and teleportation

One remarkable feature of entangled states in AQT is superdense coding
[7], whereby entanglement can double the information capacity of a
quantum system. There is a straightforward analogue of this in MQT.
Consider the following set of states for two mobits:

|R) = |0, 0) + |1, 1) |U) = |0, 0) + |1, 0) + |1, 1)
|S) = |0, 1) + |1, 0) |V ) = |0, 0) + |0, 1) + |1, 0)

. (13)

These four entangled states form a basis, and so may be identified
with the outcome of some measurement. We also note that any of the
four states can be transformed into any other one by invertible linear
evolution on one of the mobits. Given operators G and K such that

G |0) = |1) K |0) = |0)
G |1) = |0) K |1) = |0) + |1)

(14)

we find that

|S) = G1 |R) |U) = K1 |R) |V ) = K1G1 |R) . (15)

Suppose that Alice wishes to send Bob a message by transferring
a single mobit to him. She can reliably transmit one bit (two possible
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messages), since she can encode the message by two basis states |0) and
|1), which Bob can distinguish by a Z measurement. She cannot send
more without the possibility of error; and in any case, there are only
three distinct mobit states available for her to use.

But now suppose instead that Alice and Bob initially share a pair of
mobits in the joint state |R). Alice can encode two bits (four possible
messages) by choosing to apply the operators 1, G, K or KG to her
mobit, resulting in one of the four states |R), |S), |U) or |V ). If she
then delivers her transformed mobit to Bob, he can perform a joint
measurement on both mobits to reliably distinguish these possibilities.
This is the MQT analogue of superdense coding.

The same set of entangled mobit states and single-mobit transfor-
mations can also be used to accomplish the MQT analogue of quantum
teleportation [8].

Remarks

The mathematical structure of MQT is considerably simpler than the
Hilbert space of AQT. Without an inner product, MQT lacks probabil-
ity amplitudes (and thus probabilities), orthogonal bases, and unitary
(inner-product-preserving) evolution. Without an outer product, MQT
cannot represent mixed states by density operators, or numerical ob-
servables by Hermitian operators. There is no Hermitian conjugate (†)
operation. Furthermore, when F is finite, systems only have a finite
number of available states, and time evolution must be discrete rather
than continuous.

Nevertheless, modal quantum theory exemplifies many of the basic
ideas of actual quantum theory, and has analogues for many of the most
striking quantum phenomena. There is a distinction between “classi-
cal” and “quantum” modal variables. Modal quantum systems exhibit
superposition and interference effects, and the time evolution of an iso-
lated system can be described by a linear operator. These systems
display complementarity between incompatible observables. The prop-
erties of entangled states can be used to exclude local hidden variable
theories and cloning; they also support information protocols such as
superdense coding and teleportation. Finally, mixed states of modal
quantum systems can be naturally identified with the subspaces of the
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modal state space.
Thus, despite its extreme simplicity, MQT is a remarkably rich “toy

model” for quantum physics.
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