
ar
X

iv
:1

01
0.

25
88

v1
  [

qu
an

t-
ph

] 
 1

3 
O

ct
 2

01
0

Gaussian flexibility with Fourier accuracy: the periodic von Neumann basis set
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We propose a new method for solving quantum mechanical problems, which combines the flexibil-
ity of Gaussian basis set methods with the numerical accuracy of the Fourier method. The method
is based on the incorporation of periodic boundary conditions into the von Neumann basis of phase
space Gaussians [F. Dimler et al., New J. Phys. 11, 105052 (2009)]. In this paper we focus on the
Time-independent Schrödinger Equation and show results for the harmonic, Morse and Coulomb
potentials that demonstrate that the periodic von Neumann method or pvN is significantly more
accurate than the usual vN method. Formally, we are able to show an exact equivalence between
the pvN and the Fourier Grid Hamiltonian (FGH) methods. Moreover, due to the locality of the
pvN functions we are able to remove Gaussian basis functions without loss of accuracy, and obtain
significantly better efficiency than that of the FGH. We show that in the classical limit the method
has the remarkable efficiency of 1 basis function per 1 eigenstate.

PACS numbers: 2.70.Hm, 2.70.Jn, 3.65.Fd 82.20.Wt

The formal framework for quantum mechanics is an
infinite dimensional Hilbert space. In any numerical cal-
culation, however, a wave function is represented in a
finite dimensional basis set and therefore the choice of
basis set determines the accuracy. The optimal basis set
should combine accuracy and flexibility, allowing a small
number of basis functions to represent the wave functions
even in the presence of complex boundary conditions and
geometry. Unfortunately, these two criteria —accuracy
and efficiency— are usually in conflict, and globally ac-
curate methods [1–3] lack the flexibility of local methods
[4, 5]. For example, in the pseudospectral Fourier grid
method the wave function is represented by its values on
a finite number of evenly spaced grid points. Due to the
Nyquist sampling theorem, this allows for an exact repre-
sentation of the wave provided the wavefunction is band
limited with finite support[6–8]. However, the non-local
form of the basis functions in momentum space leads to
limited efficiency. On the other hand, in the von Neu-
mann basis set [9, 10] each basis function is localized on
a unit cell of size h in phase space. However, despite the
formal completeness of the vN basis set[11], attempts to
utilize this basis in quantum numerical calculations have
been plagued with numerical errors[12, 13].

The purpose of this paper is to establish a precise
mathematical formalism for the von Neumann basis on
a truncated phase space. This allows us to demonstrate
an exact equivalence with the Fourier method while re-
taining the flexibility of a Gaussian basis. It puts on a
rigorous basis the seminal work of Dimler et al.[14] who
used a vN basis with periodic boundary conditions, al-
though in our formalism the periodicity of the vN basis
appears only implicitly.

The von Neumann basis set [10] is a subset of the “co-
herent states” of the form:

gnl(x) =

(

2α

π

)
1
4

exp

(

−α(x− na)2 − il
2π~

a
(x − na)

)

(1)

where n and l are integers. Each basis function is a Gaus-
sian centered at (na, 2πl

a
) in phase space. The parameter

α =
σp

2σx
controls the FWHM of each Gaussian in x and p

space. Taking ∆x = a,∆p = h/a as the spacing between
neighboring Gaussians in x and p space respectively, we
note that ∆x∆p = h so we have exactly one basis func-
tion per unit cell in phase space. As shown in[11] this
implies completeness in the Hilbert space.

The “complete” vN basis, where n and l run over all
integers, spans the infinite Hilbert space. In any numeri-
cal calculation, however, n and l take on a finite number
of values, producing N Gaussian basis functions {gi(x)},
i = 1...N . Since the size of one vN unit cell is h, the area
of the truncated vN lattice is given by SvN = Nh.

In the pseudospectral Fourier method, a function ψ(x)
that is periodic in L and band limited in K = P

~
can be

written in the following form: ψ(x) =
∑N

n=1 ψ(xn)θn(x),
where xn = δx(n − 1), and δx = πℏ

P
= L

N
. The basis

functions {θn(x)} are given by [15]:

θn(x) =

N
2

∑

j=−N
2

+1

1√
LN

exp

(

i2πj

L
(x− xn)

)

, (2)

which can be shown to be sinc functions that are periodic
on the domain [0, L]. The set {θi(x)} i = 1, .., N spans
a rectangular shape in phase space with area of SFGH =
2LP = 2Lπ~

δx
= Nh. Thus N unit cells in the vN lattice

and N grid points in the Fourier method cover the same
rectangle with an area in phase space of:

SvN = SFGH = Nh (3)

(Fig. 1). This suggests that N vN basis functions con-
fined to this area will be equivalent to the Fourier basis
set. Unfortunately, the attempt to use N Gaussians as
a basis set for the area in eq.(3) (Fig. 1) is unsuccessful,
a consequence of the Gaussians on the edges protruding
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from the truncated space. However, by combining the
Gaussian and the Fourier basis functions we can generate
a “Gaussian-like” basis set that is confined to the trun-
cated space. We use the basis sets {gi(x)} and {θi(x)}
to construct a new basis set, {g̃i(x)}:

g̃m(x) =
N
∑

n=1

θn(x)gm(xn) (4)

for m = 1, ..., N . The new basis set is in some sense, the
Gaussian functions with periodic boundary conditions.
We can write eq.(4) in matrix notation as: G̃ = ΘG
where Gij = gj(xi) By taking the width parameter α =
∆p
2∆x

we can guarantee that the pvN functions have no
linear dependence and that the matrix G is invertible,
that is G̃G−1 = Θ. The invertibility of G implies that
both bases span the same space.

The representation of |ψ〉 in the pvN basis set is given
by:

|ψ〉 =
N
∑

m=1

|g̃m〉am. (5)

To find the coefficients am we first define the overlap
matrix, S:

Sij = 〈g̃i|g̃j〉 =
∫ L

0

g̃∗i (x)g̃j(x)dx

=

N
∑

n=1

N
∑

m=1

g∗i (xn)gj(xm)

∫ L

0

θ∗n(x)θm(x)dx

=

N
∑

n=1

g∗i (xn)gj(xn) (6)

or

S = G†G. (7)

Using the completeness relationship for non-orthogonal
bases, |ψ〉 can be expressed as

|ψ〉 =
N
∑

n=1

N
∑

m=1

|g̃m〉(S−1)mn〈g̃n|ψ〉. (8)

Comparing with eq.(5) we find that am =
∑N

n=1(S
−1)mn〈g̃n|ψ〉 and 〈g̃i|ψ〉 =

∑N

n=1 g
∗
i (xn)ψ(xn).

Although the periodic von Neumann (pvN) and the
Fourier methods span the same rectangle in phase space,
the localized nature of the basis functions in the pvN
method can lead to significant advantages. In particu-
lar, if |ψ〉 has an irregular phase space shape we may
expect that some of the pvN basis functions will ful-
fill the relation: 〈g̃j |ψ〉 = 0, j = 1, ...,M . Due to the
non-orthogality of the basis we cannot simply eliminate
the states g̃j, since the coefficients of g̃j may include

FIG. 1: N = 9 coordinate grid points and N = 9 vN unit cells
span the same area in phase space,S = Nh. The vN basis functions
are Gaussians located at the center of each unit cell.

contributions from remote basis functions, but we can
take advantage of the vanishing overlaps by defining a
bi-orthogonal von Neumann basis (bvN) {bi(x)}.

|bi〉 =
N
∑

j=1

|g̃j〉(S−1)ji (9)

or in matrix notation: B = G̃S−1. Inserting eq.9 into
eq.8, |ψ〉 can be written as

|ψ〉 =
N
∑

n=1

|bn〉cn =

N
∑

n=1

|bn〉〈g̃n|ψ〉. (10)

By assumption, M of the coefficients are zero, hence in
order to represent |ψ〉 in the bvN basis set we need only
N ′ = N−M basis functions. Note that the bvN and pvN
are bi-orthogonal bases, meaning that each set taken by
itself is non-orthogonal but they are orthogonal to each
other. This can be shown easily by:

〈g̃i|bj〉 =

N
∑

n=1

g∗i (xn)fj(xn)

=

N
∑

m=1

N
∑

n=1

g∗i (xn)gm(xn)(S
−1)mj

=
N
∑

m=1

Sim(S−1)mj = δij . (11)

For many practical applications the full knowledge of the
basis wavefunctions is unnecessary: we need only the
value of the basis functions at the sampling points. For
example the evaluation of Hamiltonian matrix elements
can be performed explicitly by:
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HpvN
ij = 〈g̃i|H |g̃j〉

=

N
∑

m=1

N
∑

n=1

g∗i (xm)〈θm|H |θn〉gj(xn)

=
N
∑

m=1

N
∑

n=1

g∗i (xm)HFGH
mn gj(xn) (12)

and similarly:

HbvN
ij =

N
∑

m=1

N
∑

n=1

b∗i (xm)HFGH
mn bj(xn) (13)

where HFGH = V FGH + TFGH and the potential and the
kinetic matrix are given by: V FGH

ij ≈ V (xi)δij and

TFGH
ij =

ℏ
2

2M

{

K2

3 (1 + 2
N2 ), if i = j

2K2

N2

(−1)j−i

sin2(π j−i

N
)
, if i 6= j

(14)

[16]. The eigenvalue problem in a non-orthogonal basis
set becomes HU = sUE; in the pvN basis set s is given
by eq. (7) and in the bvN basis set s is given by:

B†B = S−1G†GS−1 = S−1. (15)

Diagonalization should give accurate results for all wave-
functions localized to the classically allowed region of the
rectangle.

As a numerical test of the pvN basis set we studied
the standard example of the harmonic oscillator V (x) =
mω2x2

2 in units such that m = ~ = ω = 1. We calcu-
lated the first 8 eigenenergies using 16 pvN compared
with 16 conventional Gaussian basis functions. In the
Gaussian basis set the Hamiltonian and the overlap ma-
trices were calculated analytically as: Hij = 〈gi|H |gj〉 =
∫∞

−∞
g∗i (x)[− d2

dx2 + V (x)]gj(x)dx and Sij = 〈gi|gj〉 =
∫∞

−∞
g∗i (x)gj(x)dx. The 16 sampling points were taken

from -5 to 5-δx and the width parameter was α = 0.5.
The results, shown in Fig. 2, show the superiority of the
pvN basis set compared to the standard Gaussian basis
set. In fact, the results obtained with the pvN basis set
are exactly as accurate as in the Fourier grid method.
The kinetic energy spectra in Fig. 2 reveal the deficiency
of the conventional Gaussian scheme.

In the bvN basis set we are able to remove some of the
basis functions and construct lower dimensional HbvN

and SbvN matrices without losing accuracy. In order to
test this claim, we calculated numerically the eigenener-
gies of the Morse oscillator V (x) = D(1−e−βx)2 and the

Coulomb potential V (x) = −Q2

x
by using both the FGH

and fvN basis sets. The Morse parameters were taken
to be D = 12, m = 6, β = 0.5 and ~ = 1. For FGH,
100 grid points between [−1.6, 20.1] were required in or-

FIG. 2: (a) Error in the lowest 8 eigenvalues of the harmonic
oscillator. vN(◦), pvN(N). (b) Kinetic energy spectra using 16
basis functions. vN(dashed), pvN(solid).

der to get 4 digits of accuracy in energy for all 24 bound
states. By using the bvN basis functions (constructed
from 10×10 vN functions with α = 0.5) we obtain the
same 4 digit accuracy with only 48 basis functions. This
is demonstrated graphically in Fig. 3 (a). The figure
shows the phase space representation of 100 evenly grid
points. Although it requires 100 pvN basis functions to
span this area in phase space, due to the flexibility of the
bvN basis set we can suffice with just the basis functions
in the classically allowed region (white squares).

FIG. 3: Phase space area spanned in the bvN method (white) and
in the pvN (or FGH) method (full rectangle) for Morse (a) and
Coulomb (b).

In the Coulomb potential the efficiency of the bvN ba-
sis set is even higher. The rectangular shape in phase
space of the FGH is a very wasteful representation for
the cross-like shape of the eigenstates. The Coulomb pa-
rameters were taken to be Q = 1, m = 1 and ~ = 0.5.
For FGH 1599 grid points between [−50.2, 50.1] were re-
quired in order to get 4 digits of accuracy in energy for the
first 9 excited states. By using the bvN basis functions
(constructed from 39×41 vN functions with α = 0.2367)
only in the classically allowed energy shell we obtain the
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same accuracy with only 189 basis functions. Fig. 3
(b)illustrates the efficiency of the bvN basis by showing
the phase space area in FGH and bvN bases. Figure 4
shows the error in the eigenenergies by using 190 func-
tions in the FGH and in the bvN method respectively.

FIG. 4: The deviation between the calculated and the exact
eigenenergies for the lowest 20 eigenstates of the Coulomb potential
using 190 basis functions for the bvN (N) and pvN (or FGH)(◦)

The ability to localize a bvN function at a specific point
in phase space results in the remarkable concept of 1 ba-
sis function per 1 eigenstate. This means that in order
to calculate N eigenenergies we need only N basis func-
tions. Obviously, such one per one efficiency, if reachable,
will be the ideal efficiency for any basis set. In order to
test the ability of the bvN method to reach the ideal
efficiency we examined the Morse potential and looked
for the smallest number of bases that will provide ex-
act values of the energies (12 digits of accuracy) for all
the eigenstates in the energy shell E = 11.25. The bvN
method indeed, tends to the ideal efficiency in the clas-
sical limit where ~ → 0 (Fig. 5). This remarkable result
is unique for the bvN method. For example, the effi-
ciency of the Fourier method has an upper bound, which
can be calculated analytically as η = 1.6959 (the ratio
of the classically allowed phase space to the area of the
rectangle).
In summary, we introduced the “Gaussian-like” pvN

basis set and showed the equivalence between the pvN
and the Fourier method. Several TISE problems were
tested. We showed that the pvN method is as accurate
as the Fourier method; however, due to the localization of
the basis functions, we can construct a flexible basis set,
bvN, which is much more efficient then the FGH. We also
have shown that in the classical limit the number of basis
functions is equal to the number of the exact eigenvalues.
This remarkable “1 per 1” quality, is of course, an optimal
result for any basis set, and as far as we are aware has
never been achieved before.
As discussed above, the use of primitive Gaussian

functions on the vN lattice yields disappointing results

FIG. 5: Basis efficiency for the Morse potential as function of ~.
For pvN (or FGH) (dashed) and bvN(solid)

[12, 13]. The success of our method is due to two key
points: 1. By defining the basis set as a linear combina-
tion of the {θi(x)} we ensure that the basis indeed spans
a band limited region with finite support. 2. By using
the bvN basis set the coefficients become locallized. In
the conventional Gaussian basis set the delocalized coef-
ficients arise from the non-locality of S−1.

In this paper we focused on model 1-d TISE problems.
However, Gaussians are used as basis functions in a va-
riety of methods for solving the TISE and TDSE[18–21].
All these methods have suffered from numerical difficul-
ties resulting from the non-locality of S−1 and we be-
lieve that significant improvement is possible using the
pvN and the bvN basis sets. Finally, the pvN method is
not limited to quantum mechanical problems. There is
a large literature on the use of a Gaussian basis set in
signal processing where it goes by the name of the Ga-
bor transform [22–26]. The Gabor transform is known to
have problems with stability, which can be traced to the
“no-go” theorem of Balian and Low[27, 28]—the state-
ment that localized basis sets are incompatible with or-
thogonal basis sets. While the pvN and bvN bases do
not violate the no-go theorem, they seem to effectively
circumvent it. We therefore believe they can have a sig-
nificant impact on signal processing in general.

This work was supported by the Israel Science Founda-
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of the Harold Perlman family.
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