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Optimal unambiguous comparison of two unknown squeezed vacua
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We propose a scheme for unambiguous state comparison (USC) of two unknown squeezed vacuum states
of an electromagnetic field. Our setup is based on linear optical elements and photon-number detectors, and
achieves optimal USC in an ideal case of unit quantum efficiency. In realistic conditions, i.e., for non-unit
quantum efficiency of photodetectors, we evaluate the probability of getting an ambiguous result as well as the
reliability of the scheme, thus showing its robustness in comparison to previous proposals.
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I. INTRODUCTION

The possibility of creating physical systems with identical
properties is crucial for any physical theory that is verifiable
by experiments. Comparison of preparators – a procedure of
determining whether they prepare the same objects or not – is
one of the basic experiments we would like to do when testing
a theory, because it allows us to operationally define equiva-
lence of such devices for their further use. In the framework
of classical physics, we can in principle measure and deter-
mine the state of the system perfectly without disturbing it.
Thus, to compare states of two systems it suffices to mea-
sure each system separately. However, in quantum theory,
due to its statistical nature, we cannot make deterministiccon-
clusions/predictions even for the simplest experimental situa-
tions. Therefore, the comparison of quantum states is different
compared to the classical situation.

Imagine we are given two independently prepared quan-
tum systems of the same physical nature (e.g., two photons
or two electrons). We would like to determine unambiguously
whether the (internal) states of these two systems are the same
or not. If we have just a single copy of each of the states and
we possess no further information about the preparation then
a measurement performed on each system separately cannot
determine the states precisely enough to allow an error-free
comparison. In this case, also all other strategies would fail,
because our knowledge about the states is insufficient [1], e.g.,
if each of the systems can be in an arbitrary mixed state, then
it is impossible to unambiguously test whether the states are
equal or not. However, there are often situations in which
we have some additionala priori information on the states
we want to compare. For example, we might know that each
system has been prepared in a pure state. This kind of sce-
nario has been considered in Ref. [2] for two qudits and in
Ref. [3] for the comparison of a larger number of systems.
Thereafter, the comparison of coherent states and its applica-
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tion to quantum cryptography has been addressed in Ref. [4].
Sedláket al.[5] analyzed the comparison with more copies of
the two systems and proposed an optimal comparator for co-
herent states, which, on this subset, outperforms the optimal
universal comparator [2] working for all pure states.

In the present paper we analyze the unambiguous quantum
state comparison (USC) of two unknown squeezed vacuum
states, that is, we would like to unambiguously determine
whether two unknown squeezed-vacuum states are the same
or not. The conclusion has to be drawn from a procedure using
only a single copy of the states. At the end of the procedure,
using only the outcome of the measurement we have to decide
whether the two states given to us have been the same, differ-
ent, or that we don’t know which of the former conclusions is
true. We thrive to find an optimal procedure, i.e., one maxi-
mizing the probability of correctly judging the equivalence of
the compared squeezed states.

Our proposal relies on the interference of two squeezed
states at a beam splitter and on the subsequent measurement of
the difference between the number of detected photons at the
two output ports. In Ref. [4], unambiguous comparison of co-
herent states has been considered in detail and a short remark
is devoted to the comparison of squeezed vacua. In the setup
of Ref. [4], after interference at a beam splitter, one needsto
measure the parity of the detected number of photons: a de-
tection of an odd number of photons indicates the difference
between the inputs. As a consequence, the quantum efficiency
of the detectors is a critical parameter and plays a crucial role
in the robustness of the scheme. As we will show, this prob-
lem is less relevant in our case, since our setup requires the
measurement of the difference of the detected number of pho-
tons. Our configuration also allows us to prove optimality of
our setup.

The plan of the paper is as follows. In Section II we in-
troduce our scheme to compare two squeezed vacuum states,
whereas the proof of the optimality of the setup is given in
Section III. The performances of our scheme, also in the pres-
ence of imperfections at the detection stage, are investigated
in Section IV, together with its reliability in the presenceof
noise. Section V closes the paper with concluding remarks.
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FIG. 1: Schematic diagrams of two equivalent setups for USC of
squeezed vacuum states. HereS(ξ) |0〉 andS(ζ) |0〉 are squeezed
vacuum states,arg(ξ) = arg(ζ), andr± = (ξ ± ζ)/2, respectively.
See the text for details.

II. COMPARISON OF SQUEEZED VACUUM STATES

Our goal is the comparison of two squeezed vacuum
states|ξ〉 ≡ S(ξ) |0〉 and |ζ〉 ≡ S(ζ) |0〉, whereS(γ) =
exp[ 12γ(a

†)2 − 1
2γ

∗a2] is the single-mode squeezing opera-
tor, ξ, ζ, γ ∈ C [6]. We let ξ = r eiψ andζ = s eiϕ, where
r = |ξ|, ψ = arg(ξ), s = |ζ|, ϕ = arg(ζ), and, for the sake of
simplicity, we consider the scenario in which the states have
the same phase, that isarg(ξ) = arg(ζ) = ϕ. We remind that
a comparator is a measuring device with two systems at the in-
put and two or more possible outcomes, aimed at determining
whether the two systems have been prepared in the same state.
The setup we propose for the comparison of the two squeezed
vacuum states is composed of a phase shifter, beam splitter
and photon-counting detectors, and can be implemented with
a current technology. The basic idea is sketched in Fig. 1 (a):
we start from the two squeezed vacuum states we wish to com-
pare,S(ξ) |0〉 andS(ζ) |0〉. At the first stage of our proto-
col, one of the two states, sayS(ξ) |0〉, undergoes a phase
shiftU(π/2), i.e.U(π/2)S(ξ) |0〉 = S(−ξ) |0〉; then we mix
the states, having now orthogonal phases, at a balanced beam
splitter (BS). Ifξ = ζ, i.e., the input states are equal, then the
output state is the two-mode squeezed vacuum state of radia-
tion (twin-beam state, TWB) [7], namely:

|Ψout(ξ, ξ)〉〉 = UBSS(ξ)⊗ S(−ξ) |0〉 ≡ S2(ξ) |0〉 (1)

=
√

1− |λ(ξ)|2
∞
∑

n=0

λ(ξ)n |n〉 |n〉 , (2)

where|n〉 |n〉 ≡ |n〉⊗|n〉,UBS is the unitary operator describ-
ing the action of the BS,S2(ξ) = exp(ξa†b† − ξ∗ab) is the
two-mode squeezing operator acting on the two modesa and
b, respectively, andλ(γ) = ei arg(γ) tanh |γ|. One finds per-
fect correlations in the photon number of the two beams, that
can be detected, e.g., by measuring the difference between the
number of photons at the outputs (see Fig. 1), that, in this case,
is always equal to zero. On the contrary, ifξ 6= ζ, a different
number of photons can be detected in the two beams, as we

are going to show in the following.
The same result of the evolution as in Fig. 1 (a) can be

obtained considering the setup displayed in Fig. 1 (b) (see
Appendix A). Here the two input states with squeezing pa-
rametersξ and ζ are substituted with two squeezed vac-
uum states having the same squeezing parameter amplitude
r+ = (ξ+ ζ)/2; now, after the mixing at the BS, the outgoing
modes undergo two local squeezing operations with amplitude
r− = (ξ − ζ)/2. In formula [recall thatarg(ξ) = arg(ζ)]:

UBS S(ξ)⊗ S(−ζ) |0〉 = S(r−)⊗ S(r−) S2(r+) |0〉 . (3)

SinceS2(r+) |0〉 =
√

1− |λ(r+)|2
∑

n λ(r+)
n |n〉 |n〉, we

have:

|Ψout(ξ, ζ)〉〉 =
√

1− |λ(r+)|2
∞
∑

n=0

λ(r+)
n |ψn〉 |ψn〉 , (4)

where we defined the new basis|ψn〉 = S(r−) |n〉. Fi-
nally, the probability of measuringh andk photons in the two
beams, respectively, is given by:

p(h, k) = | 〈h| 〈k|Ψout(ξ, ζ)〉〉|2, (5)

with:

〈h| 〈k|Ψout(ξ, ζ)〉〉 =
√

1− |λ(r+)|2
∑

n

λ(r+)
n[S(r−)]hn [S(r−)]kn, (6)

where [S(r−)]lm = 〈l|S(r−) |m〉 are the matrix elements
of the squeezing operator, whose analytical expressions are
given e.g., in Ref. [8]. Ifξ = ζ and h 6= k, then
〈h| 〈k|Ψout(r, r)〉〉 = 0 andp(h, k) = 0, as one can see from
Eq. (2). Thus, the probabilityp(h, k), for h 6= k, can be non-
zero only ifξ 6= ζ, that is only if the input states are different.

In the ideal case (unit quantum efficiency of the detec-
tors) the measurement apparatus we want to use gives two
possible outcomes: zero or non-zero photon-counting differ-
ence. Thus, the POVM performed is defined by the effectsE0

andED, corresponding to the “zero” and “non-zero” photon-
counting events, respectively, given by:

E0 =
∞
∑

n=0

|n〉〈n| ⊗ |n〉〈n| , ED = I− E0. (7)

The occurrence of the “D” event implies that the incident
squeezed-vacuum states could not have been identical [see
Eqs. (4) and (6)]. The occurrence of the “0” event, on the
other hand, implies nothing, as each possible pair of squeezed-
vacuum states leads to a non-zero overlap with any of the
states|n〉 |n〉. Thus, event “D” unambiguously indicates the
difference of the compared squeezed states, whereas “O” is
an inconclusive outcome.

III. PROOF OF THE OPTIMALITY OF THE SETUP

Let us denote bySϕ ≡ {S(reiϕ) |0〉 ; r ∈ R} the set of
squeezed states from which we randomly chose the states to
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be compared. We also define the setsSϕS ≡ {S(reiϕ) |0〉 ⊗
S(reiϕ) |0〉 ; r ∈ R}, SϕD ≡ Sϕ ⊗ Sϕ\ SϕS , composed by
pairs of identical and different squeezed vacuum states, re-
spectively. We assume a generic measurement with three out-
comes (”same”, ”different” and ”don’t know”) described by
the POVMΠS + ΠD + Π0 = I and we optimize the overall
probability:

P = zS

∫

S
ϕ

S

dΦ pS(Φ) 〈Φ|ΠS |Φ〉

+ zD

∫

S
ϕ

D

dΦ pD(Φ) 〈Φ|ΠD |Φ〉 , (8)

wherezD andzS = 1−zD are the a priori probability of being
different or the same,pS(Φ), pD(Φ) are probability densities
of choosing|Φ〉 from SϕS , SϕD, respectively. We also impose
the no-error constraints:

Tr(ΠS |Φ〉 〈Φ|) = 0, ∀ |Φ〉 ∈ SϕD, (9a)

Tr(ΠD |Φ〉 〈Φ|) = 0, ∀ |Φ〉 ∈ SϕS , (9b)

which guarantee the unambiguity of the results. From the
mathematical point of view, the constraints (9) restrict the sup-
port of the operatorsΠS andΠD. The fact that the possible
states inSϕ form a continuous subset of pure states, is respon-
sible for the impossibility to unambiguously confirm that the
compared states are identical. The proof of this statement can
be found in Appendix B and essentially states that, due to the
no-error conditions (9), we must haveΠS = 0. Thus, the mea-
surement actually has only two outcomes, the effective POVM
is given byΠD,Π0 = I− ΠD, and it is clear that increasing
the eigenvalues ofΠD without changing its support increases
the figure of merit and leaves the no-error conditions satis-
fied. This is true independently of the distributionpD and thus
the optimal measurement is formed byΠD being a projector
onto the biggest support allowed by the no-error condition (9)
andΠ0 being a projector onto the orthocomplement. More-
over, the quantity that completely characterizes the behavior
of the squeezed-states comparator isp(D|r, s) = 〈Φ|ΠD |Φ〉,
i.e., the conditional probability of obtaining the outcomeΠD
if different squeezed states|Φ〉 = S(reiϕ) |0〉 ⊗ S(seiϕ) |0〉
(r 6= s) are sent to the comparator. Summarizing, in order
to find an optimal comparator of squeezed states fromSϕ we
need to refine the definition of the largest allowed support of
ΠD hidden in the no-error condition (9b). To do this we equiv-
alently rewrite Eq. (9b) as:

Tr(WΠDW
†W |Φ〉 〈Φ|W †) = 0 ∀ |Φ〉 ∈ SϕS , (10)

which, by denotingED ≡ WΠDW
† and choosingW to be

the unitary transformation performed by the proposed setup
from Fig. 1 (a), becomes:

Tr(ED|Ψout(r, r)〉〉〈〈Ψout(r, r)|) = 0 ∀r ∈ R. (11)

The optimality of the proposed setup is proved by showing
that the biggest support allowed by the previous condition co-
incides with the support of the projective measurementED
we use, see Eq. (7).

From the expression of|Ψout(r, r)〉〉, Eq. (2), it is clear that
for any operatorED with the support orthogonal to the span
of |n〉 |n〉, with n ∈ N, the unambiguous no-error condition
(11) holds. Hence, if any such operatorED is a part of a
POVM, then the emergence of the outcome related to it un-
ambiguously indicates the difference of the squeezing param-
eters. We now proceed to show that the support of suchED
cannot be further enlarged. Now let us assume that a vector
that a vector|v〉〉 = ∑∞

h,k=0 dhk |h〉 |k〉 with at least one non-
zero coefficientdii is in the support ofED. As a consequence
of the required no-error condition (11) the overlap

〈〈v|Ψout(r, r)〉〉 =
√

1− |λ(r)|2
∞
∑

n=0

d∗nnλ(r)
n (12)

has to be vanishing for all values ofr. Eq. (12) is vanishing if
and only if

〈〈v|Ψout(r, r)〉〉
√

1− |λ(r)|2
=

∞
∑

n=0

d∗nnλ(r)
n (13)

vanishes for allr. The sum on the right-hand side of Eq. (13)
can be seen as a polynomial inλ(r) and should vanish for all
possible values ofλ(r), i.e. for all|λ(r)| < 1. Polynomials of
this type on a finite interval form a vector space with linearly
independent basis vectorsλ(r)k , with k ∈ N. Thus the sum
in Eq. (13) vanishes∀r ∈ 〈0,∞) only if dnn = 0, ∀n ∈ N.
This is in contradiction with our assumption about the vector
|v〉 and therefore the largest support an operatorED, unam-
biguously indicating the difference of the squeezing parame-
ters, can have is the orthocomplement of the span of vectors
|n〉 |n〉, with n ∈ N. This concludes the proof.

In the case of compared states with arbitrary phases of the
complex squeezing parameters, the proof can be done in the
same way as before, up to defining accordingly the set of pairs
of same/different states.

IV. PERFORMANCES OF THE SETUP

In this section we give a thorough analysis of the statistics
of our setup also in the presence of non-unit quantum effi-
ciency at the detection stage in order to assess its reliability in
Section IV C.

A. Probability of revealing the difference

The conditional probability of revealing the difference of
compared states withξ 6= ζ [but arg(ξ) = arg(ζ) = ϕ], that
is the probability to obtain aED outcome, reads:

p(D|ξ, ζ) = 1− p(0|ξ, ζ) (14)
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FIG. 2: (Color online) Plot of the conditional probability of reveal-
ing the difference of two squeezed vacuum states|ψ1〉 = S(r) |0〉
and |ψ2〉 = S(s) |0〉 in the ideal case (η = 1) as a function of
δ− = |r−s|. Solid lines, from top to bottom, correspond to the opti-
mal squeezed-states comparator (blue) and the universal comparator
(red line). The dashed line is the upper bound on the probability in
the case of only two possible squeezings. See the section IV Cfor
details.

with:

p(0|ξ, ζ) = 〈〈Ψout(ξ, ζ)|E0|Ψout(ξ, ζ)〉〉

=
[

1− |λ(r+)|2
]

∞
∑

n,m=0

[λ(r+)]
n[λ∗(r+)]

m

×
∞
∑

k=0

{

[S(r−)]kn
}2 {

[S†(r−)]mk
}2
, (15)

where|Ψout(ξ, ζ)〉〉 is given in Eq. (4). Forξ → ζ we correctly
obtainp(0|ξ, ξ) = 1. By noting that [8]:

[S(γ)]hk ∝
{

exp{i(h−k2 )θ} for h, k odd or even,
0 otherwise,

(16)

whereγ = |γ|eiθ, it is straightforward to see that Eq. (15)
does not depend on the (equal) phaseϕ of ξ andζ. Thus, in
order to investigate the performances of the optimal squeezed-
states comparator, we may setϕ = 0 and letξ = r andζ = s,
with r, s ∈ R, without loss of generality. Furthermore, it
is possible to show by numerical means that the probability
p(D|r, s) does not depend on the sum of the squeezing pa-
rameterδ+ = r + s, but only on the differenceδ− = |r − s|.
In Fig. 2 we plot the probabilityp(D|r, s) given in Eq. (15)
as a function ofδ− = |r − s|, and we compare it with the
possible use of the universal comparator [2], which works un-
ambiguously for all pure states leading to

pUC(D|ω) = 1

2
(1− ω2) , (17)

whereω = |〈ψ1|ψ2〉| = (cosh δ−)
−1/2 is the overlap between

the two squeezed vacuum states.

B. Influence of non-ideal detectors

In a realistic scenario, in which the photon-number resolv-
ing detectors have non-unit quantum efficiencyη, we should

modify the POVM by replacing to the projectors|n〉〈n| in
Eq. (7) by the following operators [9, 10]:

Πn(η) = ηn
∞
∑

k=n

(1− η)k−n
(

k

n

)

|k〉 〈k| , (18)

namely (we assume that the two detectors have the same quan-
tum efficiency):

E0(η) =

∞
∑

n=0

Πn(η)⊗Πn(η), (19a)

ED(η) = I− E0(η). (19b)

The performance of this kind of detector and its reliabilityto
resolve up to tens of photons have been recently investigated
in Ref. [11]. The conditional probability now reads:

pη(D|ξ, ζ) = 1− pη(0|ξ, ζ), (20)

with:

pη(0|ξ, ζ) = 〈〈Ψout(ξ, ζ)|E0(η)|Ψout(ξ, ζ)〉〉

=
[

1− |λ(r+)|2
]

∞
∑

n,l,m=0

η2n [λ(r+)]
l [λ∗(r+)]

m

×
∞
∑

h,k=n

(1 − η)h+k−2n

(

h

n

)(

k

n

)

× [S(r−)]kl [S(r−)]hl [S
†(r−)]mk [S

†(r−)]mh, (21)

that, in the case ofξ = ζ, reduces to:

pη(0|ξ, ξ) = 〈〈Ψout(ξ, ξ)|E0(η)|Ψout(ξ, ξ)〉〉

= [1− |λ(ξ)|2]
∞
∑

n=0

η2n|λ(ξ)|2n

× 2F1[1 + n, 1 + n, 1, (1− η)2|λ(ξ)|2], (22)

where2F1 are hypergeometric functions and[S(r−)]lm are
the matrix elements of the squeezing operator as in Eq. (6).
Because of Eq. (16), the probabilities (20) and (21) are still
independent onϕ, thus, from now on, we setϕ = 0 and put
ξ = r andζ = s, with r, s ∈ R, without loss of generality. In
Fig. 3 we plotpη(0|r, r) andpη(D|r, r) for different values of
η. If r ≪ 1, then Eq. (22) can be expanded up to the second
order inr, obtaining:

pη(0|ξ, ξ) ≈ 1− 2η(1− η)r2. (23)

C. Reliability of the setup

In order to assess the reliability of our setup, we address
the scenario in which only two squeezing parameters for each
of the squeezed vacua are possible. In such case one knows
that the two squeezing parameters are either{(r, r), (s, s)} or
{(r, s), (s, r)} with the same prior probability. Our squeezed-
states comparator may not be optimal in this case. However,
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FIG. 3: (Color online) Plot ofpη(0|r, r) (solid) andpη(D|r, r) (dot-
dashed lines) as functions ofr for different values of the efficiencyη;
from top to bottom (solid) and from bottom to top (dot-dashedlines):
η = 0.999 (red),0.99 (green),0.90 (blue),0.50 (magenta).
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FIG. 4: (Color online) Top: ReliabilityRD(η; r, s) (reliability) as
a function ofδ− for fixed δ+ = 1.0 and different values of the ef-
ficiency. Bottom: ReliabilityRD(η; r, s) as a function ofδ+ for
differenceδ− = 0.2 and different values of the efficiency. In both
plots, from top to bottom:η = 0.999 (red),0.99 (green),0.90 (blue),
0.50 (magenta).

as one can see in Fig. 2, the performance of our setup is nearly
as good as if it was optimized also for this restricted scenario.
In particular, the dashed line in Fig. 2 refers to the optimal
measurement, unambiguously detecting the difference in the
case of only two possible squeezing parameters, in formula
[12]:

pmax(D|ω) = 1− ω2

1 + ω2
. (24)

We define the reliabilityRD of the scheme in revealing the
difference of the squeezing parametersr and s as the con-
ditional probability of the two squeezed vacuum states being

different if the outcomeED is found, i.e., (we assume equal
prior probabilities):

RD(η; r, s) =
pη (D|r, s) + pη (D|s, r)
∑

u,v=r,s pη (D|u, v) . (25)

In the ideal case, i.e.,η = 1, we havepη (D|r, r) = 0 and,
thus,RD(η; r, s) = 1, which is guaranteed by the construction
of the setup. On the other hand, ifη < 1, thenpη (D|r, r) 6=
0 and the actual value ofRD can be numerically calculated
starting from Eq.s (20) and (21). The reliabilityRD(η; r, s)
is plotted in the upper panel of Fig. 4 as a function ofδ− =
|r − s|. Note that differently from the caseη = 1, for η < 1
the probabilitypη (D|r, s) depends not only on the difference
δ− = |r−s| but also on the sumδ+ = r+s. The dependence
onδ+ is shown in the the lower panel of Fig. 4, where we plot
RD(η; r, s) as a function ofδ+ for fixed differenceδ− = 0.2.

V. CONCLUDING REMARKS

In this paper we have addressed the comparison of two
squeezed vacuum states of which we have a single copy avail-
able. We have suggested an optical setup based on a beam
splitter, a phase shifter and two photodetectors which is fea-
sible with the current technology. We have proved the opti-
mality of our scheme in the ideal case and analyzed its per-
formances and reliability also in the presence of non-unit
quantum efficiency at the detection stage. As one may ex-
pect, the detection efficiency strongly affects the reliability;
nevertheless we have shown that, for small energies and not
too low quantum efficiency, the setup is still robust. Our
scheme may be employed not only for the comparison of two
squeezed vacua, but for a more general scenario in which the
input states|ξ〉 and |ζ〉 are known to be transformed by two
fixed knownlocal unitariesU andV , respectively (namely,
U |ξ〉 ⊗ V |ζ〉) or by anyfixed knownglobal unitary trans-
formationW (W |ξ〉 ⊗ |ζ〉): now it is enough to apply the
inverse of the transformation before processing the state with
our setup.
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Appendix A: Proof of the equivalence of the two schemes

In this Appendix we show the equivalence between the
schemes in Fig. 1 (a) and 1 (b). Since the squeezed states
are Gaussian states and all operations involved in the schemes
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(phase shift and beam splitter mixing) preserve the Gaussian
character, we use the phase-space description of the system
evolution [13]. For the sake of simplicity we focus on the
case of real squeezing parameters, i.e.,ξ = r andζ = s, with
r, s ∈ R. The symplectic transformation associated with the
squeezing operatorS(r) is:

S(r) =

(

er 0
0 e−r

)

, (A1)

while the symplectic transformation associated with the bal-
anced beam splitter operatorUBS is:

SBS =
1√
2

( 12 −1212 12 )

, (A2)

where12 is a2× 2 identity matrix. The covariance matrix of
the outgoing Gaussian state in the scheme Fig. 1 (a) [for the
sake of simplicity we usedU(π/2)S(s) = S(−s) and we do
not write explicitly the symplectic transformation of the phase
shift]:

|Ψout(r, s)〉〉 = UBSS(r)⊗ S(−s) |0〉 , (A3)

is, thus, given by:

σout = SBS LS(r,−s) σ0 LS(r,−s)T S
T
BS, (A4)

whereσ0 = 1
214,

LS(r,−s) =
(

S(r) 0

0 S(−s)

)

, (A5)

represents the two local squeezing operationsLS(r,−s) =
S(r)⊗ S(−s). The explicit form of (A4) reads:

σout =
1

2







f(r,−s) 0 g(r,−s) 0
0 f(−r, s) 0 g(−r, s)

g(r,−s) 0 f(r,−s) 0
0 g(−r, s) 0 f(−r, s)






,

(A6)
where:

f(x, y) =
e2x + e2y

2
and g(x, y) =

e2x − e2y

2
. (A7)

Note that by settings = r one obtains the covariance matrix
of the TWB in Eq. (1).

It is now straightforward to verify that the same result of
the evolution as in Fig. 1 (a), corresponding to the covariance
matrix in Eq. (A6), may be obtained considering the setup dis-
played in Fig. 1 (b). Here two input states with same squeez-
ing parameter amplituder+ = (r + s)/2 are mixed after a
phase shift at the BS and the outgoing modes undergo two lo-
cal squeezing operations with amplituder− = (r − s)/2; in
formula:

σ
′ = LS(r−, r−) S2(r+) σ0 S2(r+)

T
LS(r−, r−)

T ,
(A8)

whereS2(r+) = SBS LS(r+,−r+) is the symplectic trans-
formation associated withS2(r) defined in Eq. (1). By per-
forming the calculation one findsσ′ = σout, and, since Gaus-
sian states are completely characterized by their covariance
matrix (and first moments), one can conclude that the final
states are the same.

Appendix B: No unambiguous detection of sameness of two
states

In this Appendix we show that the no-error condition given
in Eq. (9b), together with continuity of the involved mappings,
imply that we cannot unambiguously detect the sameness of
two states. Let us consider a state|Φ〉 = S(reiϕ) |0〉 ⊗
S(seiϕ) |0〉 ∈ SϕD with r 6= s. The no-error condition (9b)
demand that:

Tr(ΠS |Φ〉 〈Φ|) = 0, ∀r 6= s. (B1)

Let us now take the limits → r. Thanks to continuity of the
trace and the chosen parameterization of the set of states, we
conclude that∀r:

〈0|S†(reiϕ)⊗S†(reiϕ)ΠSS(re
iϕ)⊗S(reiϕ) |0〉 = 0. (B2)

It follows that Eq. (B1) has to hold for arbitraryr ands. Since
ΠS is a positive operator, it should be zero on the relevant
part of the Hilbert space spanned bySϕ ⊗ Sϕ, i.e., all the
possible pairs of the compared states. Hence, without loss of
generality, we can chooseΠS = 0 on the whole Hilbert space.
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