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We propose a scheme for unambiguous state comparison (US®p ainknown squeezed vacuum states
of an electromagnetic field. Our setup is based on lineacalpélements and photon-number detectors, and
achieves optimal USC in an ideal case of unit quantum effigierin realistic conditions, i.e., for non-unit
quantum efficiency of photodetectors, we evaluate the fmibtyaof getting an ambiguous result as well as the
reliability of the scheme, thus showing its robustness mgarison to previous proposals.
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I. INTRODUCTION tion to quantum cryptography has been addressed in Ref. [4].
Sedlaket al.[5] analyzed the comparison with more copies of
the two systems and proposed an optimal comparator for co-
properties is crucial for any physical theory that is vepifa  N€rent states, which, on this subset, outperforms the aptim
by experiments. Comparison of preparators — a procedure &fiversal comparator|[2] working for all pure states.
determining whether they prepare the same objects or not —is In the present paper we analyze the unambiguous quantum
one of the basic experiments we would like to do when testingtate comparison (USC) of two unknown squeezed vacuum
a theory, because it allows us to operationally define equivastates, that is, we would like to unambiguously determine
lence of such devices for their further use. In the frameworkwvhether two unknown squeezed-vacuum states are the same
of classical physics, we can in principle measure and deter not. The conclusion has to be drawn from a procedure using
mine the state of the system perfectly without disturbing it only a single copy of the states. At the end of the procedure,
Thus, to compare states of two systems it suffices to meassing only the outcome of the measurement we have to decide
sure each system separately. However, in quantum theorywhether the two states given to us have been the same, differ-
due to its statistical nature, we cannot make deterministic ~ ent, or that we don’t know which of the former conclusions is
clusions/predictions even for the simplest experimeritaas  true. We thrive to find an optimal procedure, i.e., one maxi-
tions. Therefore, the comparison of quantum states isrdifte  mizing the probability of correctly judging the equivalenaf
compared to the classical situation. the compared squeezed states.

Imagine we are given two independently prepared quan- oy proposal relies on the interference of two squeezed

tum systems of the same physical nature (e.g., two photongates at a beam splitter and on the subsequent measurdment o
or two electrons). We would like to determine unambiguouslyine gifference between the number of detected photons at the
whether the (intern_al) states of these two systems are the sa o output ports. In Ref|[4], unambiguous comparison of co-
or not. If we have just a single copy of each of the states anflgrent states has been considered in detail and a shorteemar
we possess no further information about the preparatiam thejg qeyoted to the comparison of squeezed vacua. In the setup
a measurement performed on each system separately caniypires {4, after interference at a beam splitter, one needs
determine the states precisely enough to allow an errer-freyaasure the parity of the detected number of photons: a de-
comparison. In this case, also all other strategies woulld fa gction of an odd number of photons indicates the difference
because our knowledge about the states is insufficientd], € petween the inputs. As a consequence, the quantum efficiency
if each of the systems can be in an arbitrary mixed state, thegs the detectors is a critical parameter and plays a cruclal r

it is impossible to unambiguously test whe_ther_the states arp, the robustness of the scheme. As we will show, this prob-
equal or not. However, there are often situations in whichgp, s |ess relevant in our case, since our setup requires the
we have some additional priori information on the states maasurement of the difference of the detected number of pho-

we want to compare. For example, we might know that eachons  our configuration also allows us to prove optimality of
system has been prepared in a pure state. This kind of SCBur setup.

nario has been considered in Ref. [2] for two qudits and in . )
Ref. [3] for the comparison of a larger number of systems. The plan of the paper is as follows. In Sectloh I we in-

Thereafter, the comparison of coherent states and itsaappli roduce our scheme to compare two squeezed vacuum states,
whereas the proof of the optimality of the setup is given in

Sectior Tll. The performances of our scheme, also in the-pres

ence of imperfections at the detection stage, are invastiga
*Electronic address: stefano.olivares@mi.infn.it in Sectior 1V, together with its reliability in the presenck
tElectronic addres$: fyzimsed@savba.sk; On leave fronistaaa. noise. SectiofV closes the paper with concluding remarks.

The possibility of creating physical systems with identica
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are going to show in the following.

The same result of the evolution as in Hig. 1 (a) can be
obtained considering the setup displayed in Eilg. 1 (b) (see
Appendix[8). Here the two input states with squeezing pa-
rameters¢ and ¢ are substituted with two squeezed vac-
uum states having the same squeezing parameter amplitude
ry+ = (£4¢)/2; now, after the mixing at the BS, the outgoing
modes undergo two local squeezing operations with amgitud
r— = (£ = ¢)/2. In formula [recall thatrg(¢) = arg(()]:

Uss S(§) ® 5(=¢)[0) = S(r-) ® 5(r-) S2(r4)[0). (3)

since Sy (r4) [0) = /T — AG=)2 S, A(ry)" [n) [n), we
have:

(b)

Sa(r4)[0)

FIG. 1: Schematic diagrams of two equivalent setups for USC o e
squeezed vacuum states. He&i) [0) and S(¢) |0) are squeezed  [Wout(§,Q)) = V1 — [A(ry)|? Z )™ [n) [vn), (4)
vacuum statesirg(€) = arg(¢), andr+ = (£ + ¢)/2, respectively. n=0

See the text for details.
eefhelextiordetars where we defined the new bagig,,) = S(r_)|n). Fi-
nally, the probability of measuringandk photons in the two

Il. COMPARISON OF SQUEEZED VACUUM STATES beams, respectively, is given by:
. . p(h7 k) = | <h’| <k|‘Ilout(§a <)>>|27 (5)
Our goal is the comparison of two squeezed vacuum

states|¢) = S(£)|0) and|¢) = S(¢)|0), whereS(y) =  with:
exp[2v(af)? — £~*a?] is the single-mode squeezing opera-
tor, £,¢,v € C [6]. We leté = re™ and( = se'?, where (] (kI ®oue (€, C)) =
r = 8], ¥ = arg(£), s = [cl, o = arg((), and, for the sake of VI=IACOR Y M) (S0 n [S(r=)]ins (6)
simplicity, we consider the scenario in which the statesshav "
the same phase, thatdisg(¢) = arg(¢) = ¢. We remind that )
a comparator is a measuring device with two systems at the if¥here [S(r—)lim = (I| S(r-)|m) are the matrix elements
put and two or more possible outcomes, aimed at determiningf e squeezing operator, whose analytical expressians ar
whether the two systems have been prepared in the same stad/en €.g., in Ref.l[8]. If¢ = Candh # K, then
The setup we propose for the comparison of the two squeeze‘é‘[ (k| Woui(r, 7)) = 0 andp(h, k) = 0, as one can see from
vacuum states is composed of a phase shifter, beam splitt&d- (2)- Thus, the probability(h, k), for h 7 k, can be non-
and photon-counting detectors, and can be implemented witFer© Only if¢ # ¢, that is only if the input states are different.
a current technology. The basic idea is sketched in[Fig.:1 (a) !N the ideal case (unit quantum efficiency of the detec-
we start from the two squeezed vacuum states we wish to cont@'S) theé measurement apparatus we want to use gives two
pare,S(€) [0) and S(¢) |0). At the first stage of our proto- possible outcomes: zero or non-zero photon-countingreliffe
col, one of the two states, s&(¢) |0), undergoes a phase €NCe- Thus, the POVM perforrped is def|r‘1‘ed by the”effEBts
shift U(r/2), i.e.U(r/2)S(€) |0) = S(—¢) [0); then we mix andE_D, corresponding to the zero and “non-zero” photon-
the states, having now orthogonal phases, at a balanced be&RHNting events, respectively, given by:
splitter (BS). If¢ = ¢, i.e., the input states are equal, then the )
output state is the two-mode squeezed vacuum state of radia- Ey = Z In){n| @ |n){n|, Ep=1- FEy. )
tion (twin-beam state, TWB) [7], namely: n=0

_ _ - The occurrence of theD” event implies that the incident
[Tout (&, €)) = UpsS(§) ® S(wf) 0)=52(6)10) (1) squeezed-vacuum states could not have been identical [see
— Aoz n Egs. [4) and[{6)]. The occurrence of thé” “‘event, on the
= V1= ;)\(5) I} I} @ other hand, implies nothing, as each possible pair of sqtkez
vacuum states leads to a non-zero overlap with any of the
where|n) |n) = |n)®|n), Ugs is the unitary operator describ- statesn) [n). Thus, event D” unambiguously indicates the
ing the action of the BSS»(¢) = exp(éa’bt — ¢*ab) is the  difference of the compared squeezed states, wher@ass”
two-mode squeezing operator acting on the two medassd  an inconclusive outcome.
b, respectively, and(y) = ¢*2¢(¥) tanh |y|. One finds per-
fect correlations in the photon number of the two beams, that

can be detected, e.g., by measuring the difference betheent  !ll. PROOF OF THE OPTIMALITY OF THE SETUP
number of photons at the outputs (see Eig. 1), that, in this,ca .
is always equal to zero. On the contrary i~ ¢, a different Let us denote bys¥ = {S(re’?)|0);r € R} the set of

number of photons can be detected in the two beams, as vegueezed states from which we randomly chose the states to
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be compared. We also define the sfs= {S(re’¥) |0) ® From the expression ¢, (r,7))), Eq. [2), it is clear that
S(re)|0);r € R}, 8§ = S¥ ® §¥\SE, composed by for any operato, with the support orthogonal to the span
pairs of identical and different squeezed vacuum states, ref |n) |n), with n € N, the unambiguous no-error condition
spectively. We assume a generic measurement with three oUEll) holds. Hence, if any such operatBp, is a part of a
comes ("same”, "different” and "don’t know”) described by POVM, then the emergence of the outcome related to it un-
the POVMIIg + IIp + 11, = I and we optimize the overall ambiguously indicates the difference of the squeezingrpara
probability: eters. We now proceed to show that the support of dugh
cannot be further enlarged. Now let us assume that a vector
P =2z / d® pg(®) (®| g | @) that a vectotv)) = 3°)% _ dnx [h) |k) with at least one non-
S¢ zero coefficientl;; is in the support offp. As a consequence
of the required no-error condition{[11) the overlap
+zp \/S@ d‘I)pD((I)) <(I)|HD|(I)>, (8)
D o0
wherezp andzg = 1—zp are the a priori probability of being (v[Wour(r,r))) = V1 = |A(r)[? Z dpp A(r)" (12)
different or the sameys(®), pp(P) are probability densities n=0
of choosing|®) from S¢, S}, respectively. We also impose

the no-error constraints: has to be vanishing for all values of Eq. [12) is vanishing if
and only if
Tr(Ilg [®) (@) =0, V[®) € Sp, (9a)
Tr(lp |®) (@) =0, V|®) € SE, 9%b ou >
which guarantee the unambiguity of the results. From the V1=IA®)] n=0

mathematical point of view, the constrairitk (9) restrietshp-
port of the operatorslg andIIp. The fact that the possible Vvanishes for alk. The sum on the right-hand side of Elq.|(13)
states inS¥ form a continuous subset of pure states, is responcan be seen as a polynomialirr) and should vanish for all
sible for the impossibility to unambiguously confirm thagth possible values oX(r), i.e. for all|\(r)| < 1. Polynomials of
compared states are identical. The proof of this statemamt ¢ this type on a finite interval form a vector space with lingarl

be found in AppendikB and essentially states that, due to th#ndependent basis vectok¢r)*, with k € N. Thus the sum
no-error conditiong{9), we must halle, = 0. Thus, the mea- in Eq. (I3) vanishesr € (0,00) only if d,,, = 0, Vn € N.
surement actually has only two outcomes, the effective POVM his is in contradiction with our assumption about the vecto

is given byIlp,II, = I — IIp, and it is clear that increasing |v) and therefore the largest support an operatgr unam-

the eigenvalues dfi , without changing its support increases biguously indicating the difference of the squeezing paam
the figure of merit and leaves the no-error conditions satisters, can have is the orthocomplement of the span of vectors
fied. This is true independently of the distributipp and thus  |1) |n), with n € N. This concludes the proof.

the optimal measurement is formed Hy, being a projector In the case of compared states with arbitrary phases of the
onto the biggest support allowed by the no-error condifl)n ( complex squeezing parameters, the proof can be done in the
andIl, being a projector onto the orthocomplement. More-same way as before, up to defining accordingly the set of pairs
over, the quantity that completely characterizes the hiehav of same/different states.

of the squeezed-states comparatg(iB|r, s) = (®|IIp |P),

i.e., the conditional probability of obtaining the outcoiiig

if different squeezed state®) = S(re’?) |0) ® S(se*?) |0)

(r # s) are sent to the comparator. Summarizing, in order IV. PERFORMANCES OF THE SETUP

to find an optimal comparator of squeezed states Ssmve
need to refine the definition of the largest allowed support of
I hidden in the no-error conditiob (Pb). To do this we equiv-
alently rewrite Eq.[(9b) as:

In this section we give a thorough analysis of the statistics
of our setup also in the presence of non-unit quantum effi-
ciency at the detection stage in order to assess its retyaipil

T(WIL,WIW @) (@ WT) = 0 V|®) eS¢, (10) SectioflVd.

which, by denotingp = WIIp,WT and choosingV to be
the unitary transformation performed by the proposed setup
from Fig.[1 (a), becomes: A. Probability of revealing the difference

Tr(Ep|Your(r, 1)) (You(r,r)l) = 0 vreR. (11) The conditional probability of revealing the difference of

The optimality of the proposed setup is proved by showingompared states with 7 ¢ [butarg(¢) = arg(C) = ¢, that
that the biggest support allowed by the previous conditin ¢ 'S the probability to obtain &p outcome, reads:
incides with the support of the projective measuremept

we use, see EQ(7). p(DI€,¢) =1 —p(0[£,¢) (14)
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pD|r, 9 modify the POVM by replacing to the projectofs)(n/| in
0.2¢t 3 Eq. (1) by the following operators|[9, 10]:
0.1% e e
) =0 Y- (N e, as)
0.1Ct k=n
005 namely (we assume that the two detectors have the same quan-
T tum efficiency):
00602 04 06 08 10

Ey (77) = Z 11, (77) ® 11, (77)’ (19a)
n=0

FIG. 2: (Color online) Plot of the conditional probability meveal-
ing the difference of two squeezed vacuum statgs = S(r) |0) Ep(n) =1- Ey(n). (19b)

and |12) = S(s)|0) in the ideal caser( = 1) as a function of o ) S
§_ = |r—s|. Solid lines, from top to bottom, correspond to the opti- The performance of this kind of detector and its reliabity

mal squeezed-states comparator (blue) and the univensglasator ~ resolve up to tens of photons have been recently investigate
(red line). The dashed line is the upper bound on the prdbabil in Ref. [11]. The conditional probability now reads:
the case of only two possible squeezings. See the sdctiohfdy C

details. pn(DI§, Q) =1 = py(0¢, C), (20)
with:
with:
p(0|§’<.) — <<\Ijout(€7<)|E0|q}out(€7<)>> pﬁ(0|§7<) = <<\Ijout(€7<)O|OEO(77)|\IJOut(§7<)>>
& _ _ r 2 2n r Iry* r m
= [L=AEPT X Al )™ = [ ]m;ﬂ" A P
n,m=0
o - _ h+k—2n h k
<SS STt} (15) x 2, A=t () )
k=0

h,k=

S ()it [S ) h [ST ) onss [STr ) mn, (21
where|U,.+ (£, ¢))) is givenin Eq.[(#). Fo€ — ¢ we correctly XA (=) (ST [S7(r=hn, (21)
obtainp(0|¢, £) = 1. By noting that|[3]: that, in the case af = ¢, reduces to:

(16) pn(0|§,§) = <<\Ijout(§7§)|E0(77)|\Ijout (575)»
= [L= PP Y_ P IA©)
n=0

X2F1[1+n71+n517(1_77)2|/\(€)|2]v (22)

exp{i(25%)0} for h, k odd or even
[ ()]nk ox { 0 ’ otherwise

wherey = |yle?, it is straightforward to see that Eq.{15)
does not depend on the (equal) phasef ¢ and(. Thus, in
order to investigate the performances of the optimal sqeabez

states comparator, we may get= 0 and letg = r and¢ = s, where, F; are hypergeometric functions afé(r_)];,, are

with r,s € R, without loss of generality. Furthermore, it the matrix elements of the squeezing operator as in[Eq. (6).

is possible to show by numerical means that the probabilit)éecause of E 6). the probabilitiés¥20) and (21) aré stil
p(D|r, s) does not depend on the sum of the squeezing pe\hdependent oqnloj,(%hl);s, fr0|E)n now on,-W((e s;m _ O(anzj put

rameterd. = r + s, but only on the differencé_ = |r — s|. ¢ —randC = s, with r. s . .

) - . : = =s, € R, without loss of generality. In
In Fig.[2 we plot the probability(D|r, s) given in Eq. [15) ; ’ :

as a function off_ = |r — s|, and we compare it with the Fig.[3 we plotp, (0]r, r) andp,(D]r, r) for different values of

n. If r < 1, then Eq.[(2R) can be expanded up to the second
order inr, obtaining:

py(0€, &) = 1 = 2n(1 —n)r’. (23)

possible use of the universal comparator [2], which works un
ambiguously for all pure states leading to

puc(Dlw) = %(1 —w?), a7)
wherew = |(11|1)2)| = (cosh§_)~1/2 is the overlap between C. Reliability of the setup
the two squeezed vacuum states.
In order to assess the reliability of our setup, we address
the scenario in which only two squeezing parameters for each
B. Influence of non-ideal detectors of the squeezed vacua are possible. In such case one knows
that the two squeezing parameters are eiflierr), (s, s)} or
In a realistic scenario, in which the photon-number resolv-{(r, s), (s, )} with the same prior probability. Our squeezed-
ing detectors have non-unit quantum efficiemgyve should states comparator may not be optimal in this case. However,
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Py(®[r, 1) different if the outcome®p is found, i.e., (we assume equal
1.0 prior probabilities):
0.8t D D
R, s) = LaPIns) + poDlsr) = o,
0.6} Zu,v:r,s pﬁ (D|u’ ’U)
0.4 . In the ideal case, i.e = 1, we havep, (D|r,r) = 0 and,
0.2t e thus,Rp(n;r, s) = 1, which is guaranteed by the construction
' e T T of the setup. On the other handyjif< 1, thenp,, (D|r,r) #
e ‘ = “r 0 and the actual value dkRp can be numerically calculated

starting from Eq.s[{20) an@(P1). The reliabilifyy (n;r, s)
is plotted in the upper panel of Figl 4 as a functionmof =
|r — s|. Note that differently from the casg= 1, forn < 1
the probabilityp,, (D|r, s) depends not only on the difference

FIG. 3: (Color online) Plot op, (0|, r) (solid) andp, (D|r, r) (dot-
dashed lines) as functions ofor different values of the efficienay;
from top to bottom (solid) and from bottom to top (dot-dasheds):

n = 0.999 (red),0.99 (green),0.90 (blue),0.50 (magenta). 0 = [r— s butalso on the sumy, = r+s. The dependence
ond is shown in the the lower panel of FId. 4, where we plot
Ro Rp(n;r,s) as afunction ob for fixed differencej_ = 0.2.
1.0
0.9t V. CONCLUDING REMARKS
0.8}
In this paper we have addressed the comparison of two
0.7} squeezed vacuum states of which we have a single copy avail-
0.6} able. We have suggested an optical setup based on a beam
05 splitter, a phase shifter and two photodetectors whichas fe
' sible with the current technology. We have proved the opti-
mality of our scheme in the ideal case and analyzed its per-
Ro formances and reliability also in the presence of non-unit
1.0 guantum efficiency at the detection stage. As one may ex-

pect, the detection efficiency strongly affects the relighi
nevertheless we have shown that, for small energies and not
too low quantum efficiency, the setup is still robust. Our
scheme may be employed not only for the comparison of two
squeezed vacua, but for a more general scenario in which the
input stateg¢) and|¢) are known to be transformed by two
fixed knownlocal unitariesU andV, respectively (namely,
04 05 06 07 0809 1'.06+ U &) ® V|¢)) or by anyfixed knownglobal unitary trans-
formation W (W |€) ® |¢)): now it is enough to apply the
FIG. 4: (Color online) Top: ReliabilityRp ;7 s (reliability) as  iNverse of the transformation before processing the stéte w

a function ofs_ for fixed 5, = 1.0 and different values of the ef- OUr SEtup.

ficiency. Bottom: ReliabilityRp(n;r, s) as a function ofdy for

differenceé— = 0.2 and different values of the efficiency. In both

plots, from top to bottomy = 0.999 (red),0.99 (green),0.90 (blue), Acknowledgments
0.50 (magenta).
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1 — w?

Tra? (24) Appendix A: Proof of the equivalence of the two schemes
w

pmaX(D|w) =
We define the reliability? , of the scheme in revealing the  In this Appendix we show the equivalence between the
difference of the squeezing parameterand s as the con- schemes in Fid]1 (a) aid 1 (b). Since the squeezed states
ditional probability of the two squeezed vacuum statesdpein are Gaussian states and all operations involved in the sehem



(phase shift and beam splitter mixing) preserve the GaussiaNote that by setting = r one obtains the covariance matrix

character, we use the phase-space description of the systarithe TWB in Eq.[(1).

evolution [13]. For the sake of simplicity we focus on the It is now straightforward to verify that the same result of
case of real squeezing parameters, {.e-,r and¢ = s, with the evolution as in Fid.]1 (a), corresponding to the covagan

r,s € R. The symplectic transformation associated with thematrix in Eq. [A8), may be obtained considering the setup dis

squeezing operatdt(r) is: played in Fig[l (b). Here two input states with same squeez-
ing parameter amplitude; = (r + s)/2 are mixed after a
S(r) = ( e’ 9 ) (A1) phase shift at the BS and the outgoing modes undergo two lo-
0 e )’ cal squeezing operations with amplitude = (r — s)/2; in
) ) ) ) _ formula:
while the symplectic transformation associated with thie ba
anced beam splitter operatgs is: o' =LS(r_,r_) Sa(rs) oo Sa(ry)T LS(r_,r_)7,
(A8)
Sps = 1 ( I, —1p ) , (A2) whereSs(ry) = Sgs LS(r4,—r4) is the symplectic trans-
V212 I» formation associated with>(r) defined in Eq.[{ll). By per-

forming the calculation one finds' = o, and, since Gaus-

wherel, is a2 x 2 identity matrix. The covariance matrix of sian states are completely characterized by their covagian
the outgoing Gaussian state in the schemel[Rig. 1 (a) [for thg P y y

sake of simplicity we used¥ (r/2)S(s) — S(—s) and we do matrix (and first moments), one can conclude that the final
. g X ; states are the same.
not write explicitly the symplectic transformation of thiegse

shift]: Appendix B: No unambiguous detection of sameness of two
states
[Wout(r,5))) = UssS(r) @ 5(—s)0), (A3)
is, thus, given by: In this Appendix we show that the no-error condition given
in Eq. (8b), together with continuity of the involved mapgén
Oout = Sps LS(r,—s) a9 LS(r, —s)T 5%;87 (A4) imply that we cannot unambiguously detect the sameness of
two states. Let us consider a stdfe) = S(re'?)[0) ®
whereo = 114, S(se'?)]0) € S§ with r # s. The no-error conditior{{9b)
demand that:
([ S(r) 0
LS(r,—s) = < 0 S(—s) > ) (A5) Tr(Ils [®) (D) = 0, Vr £ s. (1)
represents the two local squeezing operatib§%r, —s) = Let us now take the limit — r. Thanks to continuity of the
S(r) ® S(—s). The explicit form of [A4) reads: trace and the chosen parameterization of the set of stages, w
conclude that/r:
f(r,—s) 0 g(r,—s) 0
—— 0 f(=rs) 0 g(=rs) (0] ST(re’?) @5t (re?) g S (re’¥) @S (re'?) |0) = 0. (B2)
2 g(T, _S) 0 f(’l’, _S) 0 ’
0 g(=rs) 0  f(-rs) It follows that Eq.[B1) has to hold for arbitraryands. Since
IIs is a positive operator, it should be zero on the relevant
(A6) i iti it should b he rel
where: part of the Hilbert space spanned 5% ® S¢, i.e., all the
020 4 o2y 20 _ 2 possible pairs of the compared states. Hence, without loss o
flz,y) = and g(z,y) = . (A7)  generality, we can choo$&s = 0 on the whole Hilbert space.
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