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Computational Difficulty of Computing the Density of States
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We study the computational difficulty of computing the ground state degeneracy and the density
of states for local Hamiltonians. We show that the difficulty of both problems is exactly captured by
a class which we call #BQP, which is the counting version of the quantum complexity class QMA.
We show that #BQP is not harder than its classical counting counterpart #P, which in turn implies
that computing the ground state degeneracy or the density of states for classical Hamiltonians is
just as hard as it is for quantum Hamiltonians.

Understanding the physical properties of correlated
quantum many-body systems is a problem of central im-
portance in condensed matter physics. The density of
states, defined as the number of energy eigenstates per
energy interval, plays a particularly crucial role in this
endeavor. It is a key ingredient when deriving many
thermodynamic properties from microscopic models, in-
cluding specific heat capacity, thermal conductivity, band
structure, and (near the Fermi energy) most electronic
properties of metals. Computing the density of states
can be a daunting task however, as it in principle involves
diagonalizing a Hamiltonian acting on an exponentially
large space, though other more efficient approaches which
might take advantage of the structure of a given problem
are not a priori ruled out.

In this work, we precisely quantify the difficulty of com-
puting the density of states by using the powerful tools of
quantum complexity theory. Quantum complexity aims
at generalizing the well-established field of classical com-
plexity theory to assess the difficulty of tasks related to
quantum mechanical problems, concerning both the clas-
sical difficulty of simulating quantum systems as well as
the fundamental limits to the power of quantum com-
puters. In particular, quantum complexity theory has
managed to explain the difficulty of computing ground
state properties of quantum spin systems in various set-
tings, such as two-dimensional lattices [1] and even one-
dimensional chains [2], as well as fermionic systems [3].

We will determine the computational difficulty of two
problems: First, computing the density of states of a local
Hamiltonian, and second, counting the ground state de-
generacy of a local gapped Hamiltonian. To this end, we
will introduce the quantum counting class #BQP (sharp
BQP), which constitutes the natural counting version of
the class QMA (Quantum Merlin Arthur) which itself
captures the difficulty of computing the ground state en-
ergy of a local Hamiltonian [4, 5]. Vaguely speaking,
#BQP counts the number of possible “quantum solu-
tions” to a quantum problem that can be verified using a
quantum computer. We show that both problems, com-
puting the density of states and counting the ground state
degeneracy, are complete problems for the class #BQP,

i.e., they are among the hardest problems in this class.
Having quantified the difficulty of computing the den-

sity of states and counting the number of ground states,
we proceed to relate the complexity class#BQP to known
classical counting complexity classes, and show the sur-
prising result that #BQP equals #P (under weakly par-
simonious reductions), where #P (sharp P) counts the
number of possible solutions to a classical problem. Thus,
counting solutions to quantum problems turns out to be
no harder than counting solutions to classical problems.
Phrased in terms of Hamiltonians, we show that comput-
ing the density of states and counting the ground state
degeneracy of a classical spin system is just as hard as
solving the same problem for a quantum Hamiltonian.
Quantum complexity classes.—Let us start by intro-

ducing the relevant complexity classes. The central role
in the following is taken by the verifier V , which veri-
fies “quantum solutions” (also called proofs) to a given
problem. More formally, a verifier checking an n-qubit
quantum proof (that is, a quantum state |ψ〉) consists of a
T = poly(n) length quantum circuit U = UT · · ·U1 (with
local gates Ut) acting onm = poly(n) qubits, which takes
the n-qubit quantum state |ψ〉I as an input, together
with m − n initialized ancillas, |0〉A ≡ |0 · · · 0〉A, applies
U , and finally measures the first qubit in the {|0〉1, |1〉1}
basis to return 1 (“proof accepted”) or 0 (“proof re-
jected”). Then, the class QMA contains all problems of
the form: “Decide whether there exists a |ψ〉 such that
pacc(V (ψ)) > a, or whether pacc(V (ψ)) < b for all |ψ〉,
for some chosen a− b > 1/poly(N), given that one is the
case”. Here, the acceptance probability of a state |ψ〉 is
pacc(V (ψ)) := 〈ψ|Ω|ψ〉, with

Ω = (1I ⊗ 〈0|A)U †(|1〉〈1|1 ⊗ 1)U(1I ⊗ |0〉A) , (1)

which we illustrate in Fig. 1.
The idea behind this definition is that QMA quanti-

fies the difficulty of computing the ground state energy
E0(H) of a local Hamiltonian H up to 1/poly(n) accu-
racy. Let the verifier be a circuit estimating 〈ψ|H |ψ〉;
then a black box solving QMA problems can be used
to compute E0(H) up to 1/poly(n) accuracy by binary
search using a single QMA query. Note also that QMA is
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FIG. 1: A QMA verifier consists of a sequence of T local uni-
tary gates acting on the “quantum proof” |ψ〉 and an ancillary
register initialized to |0〉. The final measurement on the first
qubit returns |1〉 or |0〉 to accept or reject the proof, respec-
tively. Transition probabilities can be computed by doing a
“path integral” over all intermediate configurations (ik)k.

the quantum version of the class NP, where one is given
an efficiently computable boolean function f(x) ∈ {0, 1}
and one needs to figure out if there is an x such that
f(x) = 1.

The class NP has a natural counting version, known
as #P. Here, the task is to determine the number rather
than the existence of satisfying inputs, i.e., to compute
∑

x f(x) = |{x : f(x) = 1}|. In the following, we will
analogously define #BQP, the counting version of QMA.
Consider the verifying map Ω of Eq. (1) for a QMA prob-
lem, with the additional promise that Ω does not have
eigenvalues between a and b, a−b > 1/poly(n). Then the
class#BQP consists of all problems of the form “compute
the dimension of the space spanned by all eigenvectors
with eigenvalues ≥ a” [17].

The promise we imposed on the spectrum of Ω is not
present in the definition of QMA (though similarly re-
stricted versions of QMA were defined in [6, 7]). Never-
theless, this promise emerges naturally when considering
the counting version: QMA captures the difficulty of de-
termining the existence of an input state with acceptance
probability above a, up to a “grace interval” of a − b in
which mistakes are tolerated. Correspondingly, #BQP

captures the difficulty of counting the number of (or-
thogonal) inputs with an acceptance probability above
a, again with a “grace interval” of a− b in which states
are allowed to be miscounted. Similarly, the Hamilto-
nian formulation of the problem which we will discuss
below asks for the existence (QMA) or number (#BQP)
of states in a certain energy interval, where states which
are in some small 1/poly(n) neighborhood of this interval
may be miscounted.

The class #BQP inherits the important property from
QMA of being stable under amplification, that is, the def-
inition of #BQP is not sensitive to the choice of the gap
a − b. In particular, any gap a − b > 1/poly(n) can be
efficiently amplified such that a′ = 1 − exp(−poly(n)),
b′ = exp(−poly(n)) without changing the proof |ψ〉, by
using a construction called strong amplification, which
essentially repeatedly applies the verifier Ω and performs

majority voting. The construction can be found in [8],
where it is also shown that the amplification acts on all
eigenvectors independently. In particular, any state in
the subspace with eigenvalues ≥ a can be amplified to
have eigenvalues ≥ 1 − exp(−poly(n)), and any state in
the other subspace to ≤ exp(−poly(n)). Using this am-
plification property, we will always choose a and b in the
following as close to 1 and 0 as needed.

Complexity of computing density of states.—Let us
now show why the class #BQP is relevant for physical
applications. In particular, we are going to show that
computing the density of states of a local n-spin Hamilto-
nian H =

∑

iHi with few-body terms Hi, up to accuracy
1/poly(n), is a problem which is complete for #BQP, i.e.,
it is as hard as any problem in #BQP can be. The same
holds true for the (a priori weaker) problem of counting
the ground state degeneracy of a local Hamiltonian, given
a 1/poly(n) spectral gap above [18].

Let us start by defining the problems more precisely.
The problem dos (density of states) is the following:
Given a local Hamiltonian H =

∑

iHi, compute the
number of orthogonal eigenstates with eigenvalues in an
interval [E1, E2] with E2 −E1 > 1/poly(n), where states
within a “grace interval” ∆ = 1/poly(n) ≪ E2 − E1

around E1 and E2 can additionally be counted. Second,
the problem #lh (sharp local Hamiltonian) corresponds
to counting the number of ground states of a local Hamil-
tonian which has a spectral gap ∆ = 1/poly(n) above the
ground state subspace, and where we allow for an expo-
nentially small splitting in the ground state energies.

Clearly, #lh is a special instance of dos, i.e., solv-
ing #lh can be reduced to solving dos. Let us now
show that the problem dos can be answered within the
class #BQP: This is, we need to design a quantum cir-
cuit which accepts any input state |ψ〉 with an average
energy 〈ψ|H |ψ〉 in the interval [E1, E2] with high prob-
ability, while it also rejects any state with energy out-
side [E1 − ∆, E2 + ∆] with high probability. This can
be accomplished by using a phase estimation circuit [9],
which maps any state |ψ〉 =

∑

i|φi〉 to
∑

i|ei + δi〉|φi〉.
Here, |φi〉 are eigenstates of Hi with energy ei, and
|δi| < ∆/2 is the error made by the phase estimation
algorithm. By (coherently) setting the output qubit
which signals acceptance of the input to 1 if and only
if E1 − ∆/2 ≤ ei + δi ≤ E2 + ∆/2, we obtain a ver-
ifying circuit which has as many independent satisfying
inputs as the original dos Hamiltonian had eigenvalues in
[E1, E2], up to the grace interval ∆. This shows that any
dos problem can be reduced to solving a#BQP problem.

Let us now conversely show that #lh is a hard prob-
lem for #BQP, that is, any problem in #BQP can be
reduced to counting the ground states of some gapped
local Hamiltonian [19]. As in turn #lh can be reduced
to dos, which is contained in #BQP, this proves that
both #lh and dos are complete problems for the com-
plexity class #BQP, i.e., they capture the full difficulty
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of this class. To this end, we need to start from an arbi-
trary QMA verifier circuit U = UT · · ·U1 and construct
a Hamiltonian which has as many ground states as the
circuit has accepting inputs (corresponding to the out-
come |1〉1 on the first qubit). Since we can amplify QMA,
we can assume that the acceptance and rejection prob-
abilities are a = 1 − ǫ and b = ǫ, with ǫ = exp(−cn)
for some c > 1. Let A and R be the eigenspaces of Ω
[Eq. (1)] with eigenvalues ≥ a and ≤ b, respectively. Let
U [A] := {U |ψ〉I |0〉A : |ψ〉I ∈ A}, and note that for any
|χ〉 ∈ U [A], 〈χ|(|1〉〈1|1 ⊗ 1)|χ〉 ≥ a = 1− ǫ.
We now follow Kitaev’s original construction for a

Hamiltonian encoding a QMA verifier circuit [4, 5], which
for any proof |ψ〉I ∈ A has the “proof history” |Φ〉 =
∑T

t=0 Ut · · ·U1|ψ〉I |0〉A|t〉T as its ground state, where
the third register is used as a clock. The Hamiltonian
H = Hinit +

∑T

t=1Hevol(t) + Hfinal has three types of
terms: Hinit = 1⊗ (1− |0〉〈0|A)⊗ |0〉〈0|T makes sure the
ancilla is initialized, Hevol(t) = −Ut ⊗ |t〉〈t − 1|T + h.c.
ensures proper evolution from t − 1 to t, and Hfinal =
(1 − ΠU [A]) ⊗ |T 〉〈T |T causes all states |Φ〉 built from
inputs |ψ〉I ∈ A to be frustration-free ground states of
H , while states from R, or those with wrongly initialized
ancillas or errorneous evolution, yield a higher energy.
Note that we have chosen Hfinal different from the usual
choice Hstd

final = |0〉〈0|1 ⊗ 1 ⊗ |T 〉〈T |T : This will simplify
the analysis, and we will switch back to Hstd

final later on.
Why did we choose Hfinal the way we did? This way,

H acts independently on the T+1-dimensional subspaces
spanned by {Ut · · ·U1|ψ〉I |x〉A|t〉T }t=0,...,T for any |ψ〉 ∈
A or |ψ〉 ∈ R, and any basis |x〉A of ancillas contain-
ing |0〉A. The restriction of H to any of these subspaces
describes a random walk, with only two distinct cases:
|ψ〉I ∈ R and |x〉A = |0〉A, or otherwise. Each of these
Hamiltonians can be easily shown to have a 1/poly(n)-
spaced spectrum, and moreover, the ground state en-
ergy in the second case is 1/poly(n) above the first case:
Thus, the total Hamiltonian H has a 1/poly(n)-spaced
spectrum, and in particular a 1/poly(n) spectral gap
above the ground state subspace. (A thorough discus-
sion on this can be found in [10].) In order to recover
Hstd

final (which is necessary as Hfinal is non-local), note
that Hstd

final ≥ Hfinal − δ1 with δ =
√
ǫ, i.e., the energy of

any excited state decreases by at most δ. On the other
hand, the energy of any “good” history state built from
|ψ〉I |0〉A, |ψ〉I ∈ A, and thus of the ground state sub-
space, increases by at most ǫ, using the lower bound on
the overlap of U [R] and |0〉〈0|1 ⊗ 1. Thus, we obtain
a Hamiltonian which has a ground state subspace with
splitting ≤ exp(−cn), a 1/poly(n) spectral gap above it,
and for which the dimension of the ground state subspace
equals dimA, which proves #BQP-hardness of #lh [20].
While we have presented the proof that #lh is #BQP-

hard for the case of the original Kitaev construction, in
which the Hamiltonian has terms which are few-body
but not spatially local, our argument applies equally to

other classes of Hamiltonians which have been shown to
be QMA-complete. For instance, it also holds for one-
dimensional chains with nearest-neighbor couplings [2],
where the same argument as above can be applied,
cf. [10]. On the other hand, it also holds for construc-
tions which use so-called perturbation gadgets to obtain
the Hamiltonian of the Kitaev construction given above
in some order of perturbation theory, such as for nearest-
neighbor Hamiltonians on a two-dimensional square lat-
tice of qubits [1], since the spectrum changes at most as
much as the neglected higher orders in the perturbation
expansion, which are supressed to order 1/poly(n). Note
that this means that the ground state splitting can now
be of order 1/poly(n); however, it can still be chosen to
be polynomially smaller than the spectral gap.
Quantum vs. classical counting complexity.—As we

have seen, the quantum counting class #BQP exactly
captures the difficulty of counting the degeneracy of
ground states and computing the density of states of local
quantum Hamiltonians. In the following, we will relate
#BQP to classical counting classes; in particular, we will
prove that #BQP is equal to #P, counting the number of
satisfying inputs to a boolean function [21]. In physical
terms, this shows that counting the number of ground
states or determining the density of states for a quantum
Hamiltonian is not harder than either problem is for a
classical Hamiltonian.
It is clear that#P is contained in#BQP: we can simply

choose our quantum verifier to compute the value of the
classical function encoding the #P problem. It remains
to be shown that any #BQP problem can be solved by
computing a #P function. We start from a verifier oper-
ator Ω, Eq. (1), and wish to show that the dimension of
its accepting subspace, i.e., the subspaceA with eigenval-
ues ≥ a, can be computed by counting satisfying inputs
of some efficiently computable boolean function. To this
end, we can again use strong amplification and choose
a = 1− 2−(n+2) and b = 2−(n+2). Then,

|dimA− tr Ω| ≤ 2n2−(n+2) = 1
4 ,

i.e., we need to compute tr Ω to accuracy 1
4 . This can

be done using a “path integral” method, which has been
used previously to show containments of quantum classes
in the classical classes PP and#P (see e.g. [11]). The idea
is to rewrite tr Ω as a sum over products of transition
probabilities along a path ζ ≡ (i0, . . . , iN , j1, . . . , jN ),
tr Ω =

∑

ζ f(ζ), where (see Fig. 1)

f(ζ) =〈i0|I〈0|AU †
1 |j1〉〈j1|U †

1 · · ·U †
T |jT 〉× (2)

〈iT |
[

|0〉〈0|1 ⊗ 1]|iT 〉〈iT |UT · · ·U1|i0〉I |0〉A .

Since any quantum circuit can be recast in terms of real
gates Ut at the cost of doubling the number of qubits [12],
f(ζ) can be assumed to be real. Computing

∑

ζ f(ζ) to

accuracy 1
4 can now be easily mapped to summing over
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a boolean function. First, in order to achieve the de-
sired accuracy it is sufficient to approximate any f up
to |ζ| + 2 digits, where |ζ| = poly(n) is the number of
bits in ζ. By letting g(ζ) := round

[

2|ζ|+2(f(ζ) + 1)
]

, we
obtain a positive and integer-valued function g(ζ) satis-

fying
∣

∣

∣

[

2−|ζ|−2
∑

ζ g(ζ)− 1
]

−∑

ζ f(ζ)
∣

∣

∣
≤ 1

4 . Finally, we

can write g(ζ) =
∑

ξ≥0 h(ζ, ξ) by defining a boolean in-
dicator function h(ζ, ξ) which is 1 if 0 ≤ ξ < g(ζ), and
0 otherwise. This shows that tr Ω can be approximated
to accuracy 1

4 , and thus dimA can be determined by
counting the number of satisfying assignments of a sin-
gle boolean function h(ζ, ξ) that can be efficiently con-
structed from Ω, i.e., by a single query to a black box
solving #P problems.

Summary and discussion.—In this work, we consid-
ered two problems: Computing the density of states
and computing the ground state degeneracy of a local
Hamiltonian of a spin system. In order to capture the
computational difficulty of these problems we introduced
the quantum complexity class #BQP, the counting ver-
sion of the class QMA. We proved that this complex-
ity class exactly captures the difficulty of our two prob-
lems, even when restricting to local Hamiltonians on
two-dimensional lattices of qubits or to one-dimensional
chains, since all these problems are complete problems
for the class #BQP.

We have further shown that #BQP is no harder than
its classical counterpart #P. In particular this implies
that computing the density of states is no harder for
quantum Hamiltonians than it is for classical ones. While
this quantum-classical equivalence is surprising at the
Hamiltonian level, it should be noted that the classes
#P and PP quite often form natural “upper bounds” for
many quantum and classical problems.

What about the problem of computing the density of
states for fermionic systems, such as many-electron sys-
tems? On the one hand, this problem will be still in
#BQP and thus #P, since any local fermionic Hamilto-
nian can be mapped via the Jordan-Wigner transform to
a (non-local) Hamiltonian on a spin system, whose energy
can still be estimated efficiently by a quantum circuit [13].
On the other hand, hardness of the problem for #BQP

can be shown e.g. by using the #BQP-hardness of #lh,
and encoding each spin using one fermion in two modes,
similar to [13]. Thus, computing the density of states for
fermionic systems is a #BQP-complete problem as well.
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Note added.—After completion of this work, we
learned that Shi and Zhang [14] have independently de-
fined #BQP and have proved the same result on the re-
lation of #P and #BQP using the same technique.
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