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Quantum Equilibration under Constraints and Transport Balance

Gernot Schaller∗

Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany

For open quantum systems coupled to a thermal bath at inverse temperature β, it is well known
that under the Born-, Markov-, and secular approximations the system density matrix will approach
the thermal Gibbs state with the bath inverse temperature β. We generalize this to systems where
there exists a conserved quantity (e.g., the total particle number), where for a bath characterized by
inverse temperature β and chemical potential µ we find equilibration of both temperature and chem-
ical potential. For couplings to multiple baths held at different temperatures and different chemical
potentials, we identify a class of systems – providing only a single allowed transition frequency –
that equilibrate in a Gibbs state with average temperature and average chemical potential. These
results are illustrated by several examples.

PACS numbers: 03.65.Yz, 05.60.Gg

Thermalization is a classical phenomenon: Coupling
two materials at different temperature will lead to equi-
libration at some intermediate temperature – depending
on the heat capacities of the constituents. Especially
when one piece is significantly larger than the other, the
temperature of the larger piece will hardly change, such
that it may be understood as a heat bath. In contrast,
the temperature of the smaller piece will simply approach
the bath temperature in that limit.

The dynamics of open quantum systems that are cou-
pled to a thermal bath is however more difficile [1, 2]. A
powerful tool to describe the evolution of such systems
in various limits is the quantum master equation [3, 4]:
A first order differential equation – typically with con-
stant coefficients – describing the evolution of the sys-
tem part of the density matrix. As the derivation of an
exact master equation is impossible in most cases, one
has to rely on perturbative schemes. In such schemes, it
is often already a challenge to preserve the fundamental
properties of the density matrix such as its trace, its self-
adjointness, and its positive semidefiniteness. Starting
from microscopic models, especially the last property is
often hard to fulfill, as for master equations with con-
stant coefficients, preservation of positivity requires the
dissipator to be of Lindblad [5] form. Such Lindblad
form dissipators are generically derived in the singular
coupling limit [6], the weak-coupling limit – also termed
Born-Markov-secular [7] (BMS) approximation – and in
coarse-graining schemes [8]. Within the BMS approxi-
mation, thermalization of the system and equilibration
of the systems temperature with that of the bath have
been proven [9]. However, some baths are not only de-
scribed by a temperature, but may also equilibrate under
further side constraints – typically modeled by a chem-
ical potential. When we consider couplings to multiple
baths held at different temperatures [7, 10] and/or dif-
ferent chemical potentials [11, 12], we have the generic
situation for transport [13] from one reservoir through
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the system to another reservoir, which may be used to
generate interesting nonequilibrium stationary states in
the system.

This paper is organized as follows: Having introduced
the terminology in Sec. I we show how conserved quanti-
ties lead to additional properties of the dampening coef-
ficients in Sec. II. The case of a single bath is discussed
in Sec. II A, followed by a discussion of multiple baths in
Sec. II B. Finally, the results are demonstrated with a
number of examples in Sec. III.

I. PRELIMINARIES

We will consider a large closed quantum system with
the total Hamiltonian

H = HS +HB +HSB , (1)

where HS and HB act only on the system and bath parts,
respectively, and HSB mediates a coupling. The latter
may generally be decomposed as [3]

HSB =
M
∑

α=1

Aα ⊗ Bα (2)

with M hermitian system (Aα = A†
α) and bath (Bα =

B†
α) coupling operators. By convention, the system cou-

pling operators may be chosen traceless and orthonormal
Tr {AαAβ} = δαβ . For example, for an N -dimensional
system Hilbert space one may use the M = N2 − 1 gen-
erators of the SU(N).

Under the Born, Markov, and secular (BMS) approx-
imations [3], and assuming that the bath is kept in an
equilibrium state ρ̄B with the properties TrB {Bαρ̄B} = 0
as well as [HB, ρ̄B] = 0, one derives a master equa-
tion of Lindblad form. In the system energy eigenbasis
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HS |a〉 ≡ Ea |a〉, the master equation has the form [14]

ρ̇S = −i

[

HS +
∑

ab

σ̃ab |a〉 〈b| , ρS(t)
]

+
∑

abcd

γ̃ab,cd

[(

|a〉 〈b|
)

ρS(t)
(

|c〉 〈d|
)†

−1

2

{

(

|c〉 〈d|
)†(

|a〉 〈b|
)

, ρS(t)

}

]

, (3)

where σ̃ab = σ∗
ba denotes the Lamb-shift and γab,cd in-

cludes the dissipative terms. These coefficients may van-
ish when some transition frequencies are not matched

σ̃ab =
1

2i

∑

c

∑

αβ

σαβ(Ea − Ec)δEb,Ea
×

×〈c|Aα |a〉∗ 〈c|Aβ |b〉 ,
γ̃ab,cd =

∑

αβ

γαβ(Eb − Ea)δEd−Ec,Eb−Ea
×

×〈a|Aβ |b〉 〈c|Aα |d〉∗ , (4)

which is formally expressed by the Kronecker-δ symbols.
In these dampening coefficients, the functions

γαβ(ω) ≡
+∞
∫

−∞

Cαβ(τ)e
+iωτdτ ,

σαβ(ω) ≡
+∞
∫

−∞

Cαβ(τ)sgn (τ) e
+iωτdτ (5)

are even (γαβ) and odd (σαβ) Fourier transforms of the
bath correlation functions

Cαβ(τ) ≡ TrB
{

e+iτHBBαe
−iτHBBβ ρ̄B

}

. (6)

The bath correlation functions have many interesting an-
alytic properties [3]. For example, when the bath is held
at a thermal equilibrium state

ρ̄B =
e−βHB

TrB {e−βHB} , (7)

one can easily verify [3] the Kubo-Martin-Schwinger [15–
17] (KMS) condition Cαβ(τ) = Cβα(−τ − iβ). When the
bath correlation functions are analytic in the lower com-
plex half plane, the Fourier transform of the KMS con-
dition reads

γαβ(−ω) = e−βωγβα(+ω) , (8)

and can be used to prove [9] that the equilibrated Gibbs
state

ρ̄S =
e−βHS

Tr {e−βHS} (9)

is a stationary state of Eq. (3).

II. CONSERVED QUANTITIES

Now assume that there exists a conserved quantity
N = NS + NB, where NS and NB act only on sys-
tem and bath, respectively. That is, we assume that
[HS, NS] = 0, [HB, NB] = 0, and [HSB, NS +NB] = 0,
such that nontrivial evolution arises via [HSB, NS ] 6= 0.
Then, the invariance of HSB with respect to global
pseudo-rotations around the conserved axis HSB =
e+κ(NS+NB)HSBe

−κ(NS+NB) leads to the identity

∑

α

(

e+κNSAαe
−κNS

)

⊗Bα =

∑

α

Aα ⊗
(

e−κNBBαe
+κNB

)

, (10)

which effectively transfers a pseudo-rotation of system
operators into a pseudo-rotation of bath operators. We
will show in the following, that this identity leads to addi-
tional properties of the dampening coefficients in Eq. (3),
when the bath density matrix is assumed to be in the
shifted equilibrium state with chemical potential µ

ρ̄B =
e−β(HB−µNB)

TrB
{

e−β(HB−µNB)
} . (11)

Note that normalizability of ρ̄B may impose constraints
on the chemical potential, compare Sec. III B, Sec. III C,
and Sec. III D. Evidently, as [HS, NS ] = 0, we may also
choose |a〉 to be the common eigenbasis of the two oper-
ators, such that HS |a〉 = Ea |a〉 and NS |a〉 = Na |a〉.
When we multiply the Lamb-shift coefficients σ̃ij by a

factor of the form e+βµ(Ni−Nj), we may use Eq. (4) to re-
place the eigenvalues by operators, such that the system
operators in Eq. (4) are rotated. Then, the identity (10)
with Eq. (5) can be used to transfer the pseudo-rotation
to the bath correlation functions. Finally, we may use
the invariance of the trace over the bath degrees of free-
dom under cyclic permutations and [NB, ρ̄B] = 0 to see
that

σ̃ije
+βµ(Ni−Nj) = σ̃ij , (12)

i.e., the Lamb shift only acts on states with both degen-
erate energy and particle number. An analog calculation
for the dissipative coefficients γ̃ab,cd reveals the identity

γ̃aj,aie
+βµ(Ni−Nj) = γ̃aj,ai. (13)

When we consider additional thermal Boltzmann factors,
one needs to change the integration path in the Fourier
transform (5) – using that the bath correlation functions
are analytic – to show that the balance relation

γ̃ia,jae
−β(Ea−Ei)e+βµ(Na−Nj) = γ̃aj,ai (14)

holds. This fluctuation theorem [18] generalizes the KMS
condition (µ = 0) in Eq. (8) to systems with a conserved
quantity.
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A. Stationary state

The matrix elements of the generalized Gibbs state
read

〈i| ρ̄S |j〉 =
〈i| e−β(HS−µNS) |j〉

Z
=

δije
−β(Ei−µNi)

Z
, (15)

where Z = Tr
{

e−β(HS−µNS)
}

denotes the normalization.
For such a diagonal density matrix, the time-evolution
of off-diagonal matrix elements is still influenced by the
diagonals, as Eq. (3) reduces to

ρ̇ij |ρ̄S
= −iσ̃ij (ρjj − ρii) +

∑

a

γ̃ia,jaρaa

−1

2

∑

a

γ̃aj,ai (ρii + ρjj) . (16)

To show stationarity of the Gibbs state (15), it is conve-
nient to distinguish some different cases:

a. Trivially, when i 6= j and also Ei 6= Ej in Eq. (16),
we have ρ̇ij |ρ̄S

= 0, since all coefficients simply

vanish, cf. Eq. (4).

b. When i = j and evidently also Ei = Ej , Eq. (16)
reduces to the rate equation system

ρ̇ii|ρ̄S
= +

∑

a

γ̃ia,iaρaa −
∑

a

γ̃ai,aiρii , (17)

which vanishes due to the detailed balance rela-
tion (14), evaluated for i = j.

c. For degenerate energy levels we have the additional
possibility that i 6= j but Ei = Ej . Cancellation of
the Lamb-shift terms in (16) results from Eq. (12).
Showing that the remaining dissipative terms also
vanish amounts to

0 =
∑

a

γ̃ia,jae
−β(Ea−Ei)e+βµ(Na−Nj)

−1

2

∑

a

γaj,ai

[

e+βµ(Ni−Nj) + 1
]

, (18)

which is directly evident from relations (13)
and (14).

To summarize, we have shown that the state (15) is a
stationary state of the master equation (3), when the
reservoir density matrix is of the form (11). Generally of
course, the existence of further stationary states is pos-
sible, but for an ergodic [3] evolution the BMS approx-
imation scheme leads to equilibration of both tempera-

ture and chemical potential between system and reservoir.
This generalizes previous findings for the BMS approxi-
mation [19, 20] and for rate equations [21], but has also
be observed for local equilibration [22].

B. Multiple Reservoirs

When the system of interest is is not only coupled to
a single, but multiple (K) reservoirs

HSB =
∑

α

Aα ⊗
K
∑

k=1

B(k)
α , HB =

K
∑

k=1

H
(k)
B , (19)

where varying coupling strengths are absorbed in the

B
(k)
α operators and the reservoirs are characterized by

different inverse temperatures β(k) and different chemi-
cal potentials µ(k)

ρ̄B =

K
⊗

k=1

e
−β(k)

(

H
(k)
B −µ(k)N

(k)
B

)

Tr
(k)
B

{

e
−β(k)

(

H
(k)
B −µ(k)N

(k)
B

)
} , (20)

much less is known about the resulting stationary
state [23]. We assume that some interaction Hamilto-

nians may obey a conserved quantity N (k) ≡ NS +N
(k)
B ,

where
[

N
(k)
B , H

(k)
B

]

= 0 =
[

NS +N
(k)
B ,

∑

α Aα ⊗B
(k)
α

]

A decomposition of the interaction Hamiltonian in the
form of Eq. (19) with identical system coupling opera-
tors for each bath is always possible, as we have chosen
the Aα operators to form a complete basis set for her-
mitian operators in the system Hilbert space. Evidently,
the form of Eq. (3) remains invariant with

γ̃ab,cd =

K
∑

k=1

γ̃
(k)
ab,cd , σ̃ab =

K
∑

k=1

σ̃
(k)
ab , (21)

where γ̃
(k)
ab,cd and σ̃

(k)
ab describe the dissipation and Lamb-

shift, respectively, due to the k-th bath only. Accord-
ingly, each bath yields separate detailed balance condi-
tions of the form of Eqns. (12), (13), and (14).
The question which we seek to answer is whether these

K local balance conditions can be compatible with a sin-
gle global balance condition, eventually leading to ther-
malization in a Gibbs state with average temperature β̄
and average chemical potential µ̄.
An affirmative answer can be given for a class of sys-

tems that fulfill

a. HS = ∆ǫNS , i.e., non-interacting models with an
equidistant spectrum,

b. the system coupling operators act identically on en-
ergetically degenerate states 〈j|Aα |a〉 = 〈i|Aα |a〉
for Ei = Ej ,

c. the structure of the dampening coefficients al-
lows only the single transition frequency ±∆ǫ (and
hence particle number difference ±1).

Due to the first condition, relations (12) and (13) are au-
tomatically fulfilled, as for the nonvanishing coefficients

σ̃
(k)
ij and γ̃

(k)
aj,ai we have Ei = Ej and consequently also
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Ni = Nj . The second condition implies that γ̃
(k)
ia,ja =

γ̃
(k)
ia,ia ≡ γ̃

(k)
ia and analogously γ̃

(k)
aj,ai = γ̃

(k)
ai,ai ≡ γ̃

(k)
ai .

Finally, the third condition implies that relations (14)
only have to be fulfilled at a single transition frequency
Ea − Ei = ±∆ǫ and Na −Ni = ±1. Performing a sum-
mation over k with Eq. (14) we then obtain

∑

k

γ̃
(k)
ai =

∑

k

γ̃
(k)
ia e−β(k)(Ea−Ei)e+β(k)µ(k)(Na−Ni)

!
= e∓β̄(∆ǫ−µ̄)

∑

k

γ̃
(k)
ia : Ea = Ei ±∆ǫ .(22)

In order to make this a valid definition for a generalized
Boltzmann factor, it is necessary that

e−β̄(∆ǫ−µ̄) (Ea=Ei+∆ǫ)≡
∑

k γ̃
(k)
ia e−β(k)(∆ǫ−µ(k))

∑

k γ̃
(k)
ia

> 0 . (23)

In addition, common sense suggests that the average
Boltzmann factor should be a convex combination of the
K bath Boltzmann factors. Both conditions are fulfilled
due to

γ
(k)
ia =

∑

αβ

〈i|Aα |a〉∗ γ(k)
αβ (Ea − Ei) 〈i|Aβ |a〉 ≥ 0 , (24)

since γ
(k)
αβ (ω) is a positive semidefinite matrix, which fol-

lows from Bochners theorem [3, 24]. In consequence, we
obtain thermalization at an average temperature and av-
erage chemical potential for this class of systems, where
average temperature and chemical potential are defined
by Eq. (23).

III. EXAMPLES

For a single reservoir the equilibration of both temper-
ature and chemical potential has been observed even for
interacting systems [19]. Therefore, we only give exam-
ples to illustrate the results in Sec. II B. Naturally, in
case of only a single coupling bath, the non-interacting
case of Sec. II A is also reproduced here.

A. Non-Interacting Electronic Nanostructure

Consider a nanostructure with N sites for non-
interacting electrons HS = ∆ǫ

∑N

i=1 d
†
idi, at first coupled

to a single lead HB =
∑

k ǫkc
†
kck at temperature β and

chemical potential µ via the tunneling Hamiltonian [27]

HSB = D⊗∑

k gkc
†
k+D†⊗∑

k g
∗
kck, where D ≡ ∑N

i=1 di,
gk represents a frequency-dependent coupling constant,
and ck are fermionic annihilation operators acting on the
lead Hilbert space. The conserved quantity is composed

from NS =
∑N

i=1 d
†
idi and NB =

∑

k c
†
kck. We may write

the interaction Hamiltonian also as HSB = A1 ⊗ B1 +

A2 ⊗ B2, with the hermitian and trace-orthogonal (not-
normalized) system coupling operators A1 =

(

D† +D
)

and A2 = i
(

D† −D
)

, and the associated bath cou-

pling operators B1 =
∑

k

(

gkc
†
k + g∗kck

)

/2 and B2 =

i
∑

k

(

gkc
†
k − g∗kck

)

/2. For a single bath in thermal equi-

librium β and with chemical potential µ, such that ρ̄B =
e−β(HB−µNB)/Z, we obtain for Fourier transforms (5)
of the bath correlation functions γ11(ω) = γ22(ω) =
Γ(+ω) [1− f(+ω)] /4 + Γ(−ω)f(−ω)/4 and γ12(ω) =
γ∗
21(ω) = iΓ(+ω) [1− f(+ω)] /4− iΓ(−ω)f(−ω)/4, where

Γ(ω) ≡ 2π
∑

k |gk|
2
δ(ω−ǫk) is the tunneling rate and the

Fermi function f(ω) ≡ 1/(eβ(ω−µ) + 1) encodes the bath
properties β and µ. Obviously, the Fourier-transformma-
trix of bath correlation functions has non-negative eigen-
values. In addition, for N = 1 we recover the single
resonant level [25].

For N > 1, the spectrum of the Hamiltonian
is degenerate, but the permutational symmetry sug-
gests to use the symmetrized basis |N,m+ 1〉 ≡

1√
(N−m)(m+1)

D† |N,m〉 with 0 ≤ m ≤ N , where |N, 0〉 =
|0, . . . , 0〉 represents the N particle Fock space vacuum.
Clearly, it is an eigenbasis of HS and NS . We obtain for
the nonvanishing coefficients

γ̃m,m+1 = (N −m)(m+ 1)Γ(+∆ǫ) [1− f(+∆ǫ)] ,

γ̃m+1,m = (N −m)(m+ 1)Γ(+∆ǫ)f(+∆ǫ) . (25)

The generalized KMS condition (14) therefore simply re-
duces to f(+∆ǫ) = e−β(∆ǫ−µ) [1− f(+∆ǫ)], which is a
general property of the Fermi functions. The correspond-
ing rate equation reads with ρm ≡ 〈N,m| ρS |N,m〉

ρ̇m = γ̃m,m−1ρm−1 + γ̃m,m+1ρm+1

− [γ̃m−1,m + γ̃m+1,m] ρm , (26)

where it becomes visible that in the chosen basis, the
Lamb-shift terms are irrelevant.

Now we consider tunnel couplings to multiple baths
with factorizing density matrices as in Eq. (20). The
form of Eq. (26) remains invariant, and we simply have

γ̃m,m±1 =
∑

k γ̃
(k)
m,m±1, with different temperatures β(k)

and chemical potentials µ(k) entering the rates as in
Eq. (25). In this case, one may check explicitly that the
stationary state of Eq. (26) is a thermal one with average
Boltzmann factor

e−β̄(∆ǫ−µ̄) =

∑

k Γ
(k)(∆ǫ)f(k)(∆ǫ)

∑

k Γ
(k)(∆ǫ)

[

1− f(k)(∆ǫ)
] (27)

which is consistent with Eq. (23). The same factor
would be obtained when the system was coupled to a
hypothetical single bath with average Fermi function
f̄(∆ǫ) = [

∑

k Γ
(k)(∆ǫ)f(k)(∆ǫ)]/[

∑

k Γ
(k)(∆ǫ)].
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B. Coupled oscillators

We consider a harmonic oscillator HS = Ωb†b cou-
pled to many others HB =

∑

k ωkb
†
kbk with positive

eigenfrequencies ωk > 0 via quasi-particle tunneling

HSB = b⊗∑

k hkb
†
k + b† ⊗∑

k h
∗
kbk. The conserved

quantity is composed from NS = b†b and NB =
∑

k b
†
kbk.

Rewriting the interaction Hamiltonian in terms of her-
mitian operators, we obtain A1 = (b†+b), A2 = i(b†−b),

B1 =
∑

k(hkb
†
k+h∗

kbk)/2, and B2 = i
∑

k(hkb
†
k−h∗

kbk)/2.
The matrix elements of the Fourier transforms (5) of the
bath correlation functions equate to γ11(ω) = γ22(ω) =
1/4 [+Θ(+ω)[1 + n(+ω)]Γ(+ω) + Θ(−ω)n(−ω)Γ(−ω)]
and γ∗

21(ω) = γ12(ω) =
i/4 [+Θ(+ω)[1 + n(+ω)]Γ(+ω)−Θ(−ω)n(−ω)Γ(−ω)],
where Θ(ω) denotes the Heavyside step function,

Γ(ω) = 2π
∑

k |hk|2δ(ω − ωk) the quasi-particle tunnel-

ing rate, and n(ω) ≡ 1/(eβ(ω−µ)− 1) denotes the bosonic
occupation number. The condition that µ < mink(ωk)
grants positivity of all bath occupations. In addition,
it implies that Γ(Ω)|Ω<µ = 0, such that we assume
also Ω > µ throughout. Accordingly, the Fourier
transform matrix of the bath correlation functions is
positive semidefinite at all frequencies. In the Fock space
basis (where b† |n〉 =

√
n+ 1 |n+ 1〉), we obtain a rate

equation of the form (26), where 0 ≤ n < ∞. However,
since the eigenstates are non-degenerate, the dampening
coefficients equate (with Ω > 0) to

γ̃n,n+1 = (n+ 1) [1 + n(Ω)] Γ(Ω) ,

γ̃n+1,n = (n+ 1)n(Ω)Γ(Ω) . (28)

The resulting system is infinitely large, one may however,
introduce a cutoff size Ncut and solve for the station-
ary state of the rate equations for finite Ncut. The ratio
ρn+1/ρn of two successive populations yields the desired
Boltzmann factor, which even happens to be independent
of Ncut.
For multiple baths, we obtain equilibration in an aver-

age thermal state with the average Boltzmann factor

e−β̄(Ω−µ̄) =

∑

k Γ
(k)(Ω)n(k)(Ω)

∑

k Γ
(k)(Ω)

[

1 + n(k)(Ω)
] , (29)

consistent with Eq. (23). This Boltzmann factor is the
same that one would obtain for contact with a hypo-
thetical single bath at an average occupation n̄(Ω) =
[
∑

k Γ
(k)(Ω)n(k)(Ω)]/[

∑

k Γ
(k)(Ω)], which in the classical

(high-temperature and µ(k) → 0) limit reduces to the av-
erage temperature T̄ ≈ [

∑

k Γ
(k)(Ω)T (k)]/[

∑

k Γ
(k)(Ω)],

which coincides well with classical expectations and pre-
vious results [10].

C. Spin-Boson Model

A variant of the spin-boson model coupled to a sin-
gle bath has already been provided in Ref. [26], such

that we here only generalize to K ≥ 2 baths and non-
vanishing chemical potentials. We consider a large spin
system HS = Ω/2Jz with Ω > 0, coupled to a bath of

harmonic oscillators HB =
∑

k ωkb
†
kbk with ωk > 0 via

HSB = Jx ⊗ ∑

k

[

hkb
†
k + hkbk

]

, where Jα ≡ ∑N

i=1 σ
α
i ,

and where the coupling operators are hermitian already.
At first sight, the total Hamiltonian does not obey a
conserved quantity of the discussed type. However,
within the BMS approximation, the model is identical
to one with the modified interaction Hamiltonian H∗

SB =

J+⊗∑

k hkb
†
k +J− ⊗∑

k hkbk with the conserved quan-

tity NS+NB = −Jz/2+
∑

k b
†
kbk and where J± ≡ (Jx±

iJy)/2. We impose the same conditions on the chemical
potential(s) as before: µ < mink(ωk) and µ < Ω. From
the previous section, the Fourier transform (5) of the bath
correlation function is evidently γ(ω) = +Θ(+ω)[1 +
n(+ω)]Γ(+ω) + Θ(−ω)n(−ω)Γ(−ω). In order to calcu-
late the dampening coefficients, permutational symmetry
suggests to use the angular momentum basis |N/2,m〉
with −N/2 ≤ m ≤ +N/2. Using that Jx = J+ + J−

with J± |j,m〉 =
√

j(j + 1)−m(m± 1) |j,m〉, we ob-
tain a rate equation of the form (26) with the coefficients
γ̃m,m+1 = Γ(Ω) [1 + n(Ω)] [N/2(N/2 + 1)−m(m+ 1)]
and γ̃m+1,m = Γ(Ω)n(Ω) [N/2(N/2 + 1)−m(m + 1)].
Solving this rate equation with multiple baths for its

steady state yields a thermal bath with the same average
Boltzmann factor as Eq. (29), as predicted by Eq. (23).

D. Mixed Spin Model

We consider a spin-1/2 system HS = Ω/2σz that is

firstly coupled to a bosonic bath H
(1)
B =

∑

k ωkb
†
kbk via

the dissipative coupling H
(1)
SB = σx ⊗∑

k

[

hkb
†
k + h∗

kbk

]

,

and secondly to a fermionic bath H
(2)
B =

∑

k ǫkc
†
kck via

the coupling H
(2)
SB = σ+ ⊗ ∑

k gkc
†
k + σ− ⊗ ∑

k g
∗
kck.

The second interaction Hamiltonian explicitly obeys
the conserved quantity constructed from NS = −σz/2

and N
(2)
B =

∑

k c
†
kck, and under the BMS approxi-

mation the first interaction Hamiltonian is equivalent

to H
∗(1)
SB = σ+ ⊗ ∑

k hkb
†
k + σ− ⊗ ∑

k h
∗
kbk. Note

that H
(2)
SB does not conserve the number of fermions,

but such a model may represent scattering processes
with a further fermionic bath. As before, we re-
quire that µ(1) < Ω and µ(1) < mink(ωk). Choos-
ing the system coupling operators as A1 = σx and

A2 = σy, we obtain B
(1)
1 =

∑

k

(

hkb
†
k + h∗

kbk

)

, B
(1)
2 =

0, and B
(2)
1 = 1/2

∑

k

(

gkc
†
k + g∗kck

)

with B
(2)
2 =

i/2
∑

k

(

gkc
†
k − g∗kck

)

. The Fourier transform of the bath

correlation function for the first bath corresponds to
Sec. III C, whereas the Fourier transform matrix for the
second bath is identical to that of Sec. III A. Accord-
ingly, we obtain in the σz-eigenbasis σz |a〉 = (−1)a |a〉
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with a ∈ {0, 1} and ρa ≡ 〈a| ρS |a〉 the master equation

ρ0 = −
[

γ̃
(1)
1,0 + γ

(2)
1,0

]

ρ0 +
[

γ̃
(1)
0,1 + γ

(2)
0,1

]

ρ1 ,

ρ1 = +
[

γ̃
(1)
1,0 + γ

(2)
1,0

]

ρ0 −
[

γ̃
(1)
0,1 + γ

(2)
0,1

]

ρ1 (30)

with the dampening coefficients γ̃
(1)
0,1 = Γ1(Ω) [1 + n(Ω)],

γ̃
(1)
1,0 = Γ1(Ω)n(Ω), γ̃

(2)
0,1 = Γ2(Ω) [1− f(Ω)], and γ̃

(2)
1,0 =

Γ2(Ω)f(Ω), where f(ω) and n(ω) have been defined in
Sec. III A and Sec. III B, respectively, and Γ1(ω) =

2π
∑

k |hk|2δ(ω −ωk) with Γ2(ω) = 2π
∑

k |gk|
2δ(ω− ǫk)

represent the coupling strengths to the two baths, respec-
tively. The stationary state of Eq. (30) is a thermal one
with average Boltzmann factor

e−β̄(Ω−µ̄) =
Γ1(Ω)n(Ω) + Γ2(Ω)f(Ω)

Γ1(Ω) [1 + n(Ω)] + Γ2(Ω) [1− f(Ω)]
, (31)

which is consistent with Eq. (23).

IV. CONCLUSIONS

Under the Born, Markov, and secular approximations,
quantum systems coupled to a single bath described by
inverse temperature β and chemical potential µ do not
only equilibrate their temperature, but – when the total
Hamiltonian conserves a (quasi-)particle number – also
their chemical potential with that of the bath. As long as

only a single bath is involved, this holds for interacting
and non-interacting systems.
When the system is coupled to multiple baths, equili-

bration in an average thermal state may still occur when
there exists only a single transition frequency, as e.g. in
two-level systems. However, also for higher-dimensional
systems, an average equilibration may occur when rigid
symmetry assumptions are imposed. When the coupling
baths have the same character (e.g., fermionic), the re-
sulting stationary state is the same as the one reached
by interaction with a hypothetical average bath.
There are several interesting consequences: Firstly, by

using equilibration under side constraints one should be
able to prepare not only the ground state of a system
Hamiltonian by dissipative means but also an energy
eigenstate with a desired particle number when bath tem-
perature and chemical potential are tuned accordingly.
Secondly, in order to generate interesting non-equilibrium
stationary states via coupling to multiple baths, it is nec-
essary (though not sufficient) to consider systems with
more than a single allowed transition frequency. Finally,
when the focus is on particle or thermal transport, ana-
lytic knowledge of the flow equilibrium state in the non-
interacting limit as presented here may aid the corre-
sponding calculations.
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