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Analyzing the spin-bath model without simulations
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On the basis of a lemma designed to decide whether a discrete system decoheres or not with no
need of computer simulations, in this paper we analyze the well-known spin-bath model. The lemma
allows us to predict the decoherence of the system by analytical means.

I. INTRODUCTION

In previous papers we have developed a general theoretical framework for decoherence ([1], [2], [3], [4]), which can be
applied to open and closed systems. The conceptually relevant step in this framework is the selection of the relevant
observables, relative to which the question about decoherence is posed. Then, decoherence can be explained in three
steps:

1. First step: The space OR of relevant observables is defined.

2. Second step: The expectation value 〈OR〉ρ(t), for any OR ∈ OR, is obtained.

3. Third step: It is proved that 〈OR〉ρ(t) = 〈OR〉ρR(t) reaches a final equilibrium value:

lim
t→∞

〈OR〉ρ(t) = lim
t→∞

〈OR〉ρR(t) = 〈OR〉ρ∗ = 〈OR〉ρR∗
∀OR ∈ OR (1)

As it is explained in another paper of this issue ([5]), this general framework strictly applies when the limit of
eq. (1) exists, and this happens when the Riemann-Lebesgue theorem is valid. But the Riemann-Lebesgue theorem
strictly applies only in cases of continuous energy spectrum. Nevertheless, it can be shown that the validity conditions
of the discrete analogue of the Riemann-Lebesgue theorem are expressed by the following lemma:

Lemma 1 Let {xi} be a set of points uniformly distributed, and f(xi) : R → R be a discrete function defined over

{xi}, such that:

• i ∈ [0, N ] and N ≫ 1.

• ∃G ∈ N, ∃P ∈ N such that P ≫ 1 and {xi} =
⋃G
k=1

{

x(k−1)(P+1)+1, ..., xk(P+1)

}

=
⋃G
k=1Xk. In this case we

will say that the set {xi} is quasi-continuous of class 1.

• ∀Xk, f(xrk)
∼= Ck, with xrk ∈ Xk. In this case we will say that f(xi) ∈ L1 .

then,

lim
t−→tP /2

N
∑

i=0

1

N
f (xi) e

ixit ∼= 0 (2)

where tP is the recurrence or Poincaré time.

The general aim of this paper is to apply this lemma to the spin-bath model, in order to show that this method allows
us to predict decoherence by analytical means. For this purpose, the paper is organized as follows. In Section 2 we
will explain how the general framework for decoherence applies to open systems, in particular, to models traditionally
treated by means of the environment-induced decoherence (EID) approach ([6]-[11]). In Section 3 we will present the
spin-bath model, showing which the relevant observables are in this case and how the expectation values have to be
computed. Section 4 will be devoted to compare two methods for analyzing the model: the standard method, based
on computer simulations, and the analytical method, based on our lemma. Finally, in Section 5 we will draw our
conclusions.

http://arxiv.org/abs/1010.3254v1
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II. EID FROM THE GENERAL FRAMEWORK

In the case of the EID approach, the three steps of the general framework for decoherence are usually not explicit
in the formalism. However, the theory can be rephrased in such a way that it can be analyzed from that framework.
In this section we will undertake this task in order to apply our just introduced lemma in a following section.

1. First step: Let us consider a closed system U that can be decomposed into a proper system S and its
environment E. Let the Hilbert space of U be H = HS⊗ HE , where HS is the Hilbert space of S and HE the Hilbert
space of E. The corresponding von Neumann-Liouville space of U is L = H⊗H = LS⊗ LE , where LS = HS⊗ HS

and LE = HE⊗ HE . A generic observable belonging to L reads

O =
∑

I

O
(I)
S ⊗O

(I)
E ∈ L, with O

(I)
S ∈ LS and O

(I)
E ∈ LE (3)

i.e. O is an observable with coordinates (O
(I)
iαjβ) = (

∑

I O
(I)
ij O

(I)
αβ ), where i, j, ... are the indices corresponding to HS ,

and α, β, ... are the indices corresponding to HE . The relevant observables are those having the following form:

OR = OS ⊗ IE ∈ OR, with coordinates (Oijδαβ) (4)

where IE is the identity operator in LE . Therefore, OR ⊂ L is the subspace of the relevant observables, in this EID
case those essentially corresponding to the proper system S.

2. Second step: The expectation value of any observable OR ∈ OR in the state ρ of U reads

〈OR〉ρ = Tr (ρOR) =
∑

ijαβ

ρ∗iαjβ Oij δαβ =
∑

ij

Oij
∑

αβ

ρ∗iαjβ δαβ =
∑

ij

Oij
∑

α

ρ∗iαjα (5)

The reduced density operator ρR is defined by tracing over the environmental degrees of freedom,

ρS = TrE ρ ∈ L′
S , with coordinates

(

∑

α

ρiαjα

)

= (ρij) (6)

where L′
S is the dual space of LS . Therefore, the expectation value 〈OR〉ρ(t) can be expressed as

〈OR〉ρ(t) = Tr (ρ(t)OR) = Tr (ρ(t)(OS ⊗ IE)) = Tr (ρS(t)OS) = 〈OS〉ρS(t) (7)

3. Third step: The EID approach studies the time evolution of the reduced density operator ρS(t) governed by
an effective master equation. For many physical models where the space OR has a finite number of dimensions, this
approach shows that, for t→ ∞, ρS(t) reaches an equilibrium state ρS∗:

ρS(t) −→ ρS∗ (8)

Since ρS∗ is obviously diagonal in its eigenbasis, the system S decoheres in the eigenbasis of ρS∗, which turns out to
be the final decoherence basis. But if we take into account the definition of ρS as a partial trace (see eq. (6)), we can
obtain the limit of the expectation values of eq. (7) as

lim
t→∞

〈OS〉ρS(t) = lim
t→∞

〈OR〉ρ(t) = 〈OS〉ρS∗
= 〈OR〉ρ∗ (9)

where ρ∗ is such that ρS∗ results from the projection of ρ∗ onto OR. Therefore, for any observable OR ⊂ OR,

lim
t→∞

〈OR〉ρ(t) = 〈OR〉ρ∗ (10)

This result can also be expressed as a weak limit

W − lim
t→∞

ρ(t) = ρ∗ (11)

If the just obtained eq. (10) is compared with eq. (1), it turns out to be clear that the EID approach can also be
formulated from the viewpoint of the closed composite system U and, from this perspective, it can be explained in
the context of the general framework introduced in the Introduction. In other words, the split of the closed system
into a proper open system and an environment is just a way of selecting the relevant observables of the closed system.
The limit of eqs. (8) and (9) can be computed by means of two different strategies:
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. By solving the unitary evolution equation for ρ(t), computing Tr (ρ(t)OR) and finding the limit.

. By solving the non-unitary evolution equation for ρS(t) = TrE (ρ(t)), computing Tr (ρS(t)OS) and finding the limit.

Of course, the two strategies give the same result: although the second is the usual method in the EID literature,
the first may lead to a simpler solution, as in the model developed in the next section.

III. THE SPIN-BATH MODEL FROM THE GENERAL FRAMEWORK

The spin-bath model is a very simple model that has been exactly solved in previous papers (see [8]). Here we will
study it from the general framework applied to the EID approach, as presented in the previous section. This task will
allow us to compare the method traditionally used in the literature for solving the model with the method based on
our lemma.
Let us consider a closed system U = P ∪P1∪ . . .∪PN = P ∪ (∪Ni=1Pi), where (i) P is a spin-1/2 particle represented

in the Hilbert space HP , and (ii) each Pi is a spin-1/2 particle represented in its Hilbert space Hi. The Hilbert space
of the composite system U is, then,

H = HP ⊗

(

N
⊗

i=1

Hi

)

(12)

In the particle P , the two eigenstates of the spin operator SP,−→v in direction −→v are |⇑〉 , |⇓〉:

SP,−→v |⇑〉 =
1

2
|⇑〉 SP,−→v |⇓〉 = −

1

2
|⇓〉 (13)

In each particle Pi, the two eigenstates of the corresponding spin operator Si,−→v in direction −→v are |↑i〉 , |↓i〉:

Si,−→v |↑i〉 =
1

2
|↑i〉 Si,−→v |↓i〉 = −

1

2
|↓i〉 (14)

Therefore, a pure initial state of U reads

|ψ0〉 = (a |⇑〉+ b |⇓〉)⊗

(

N
⊗

i=1

(αi| ↑i〉+ βi| ↓i〉)

)

(15)

where |a|
2
+ |b|

2
= 1 and |αi|

2
+ |βi|

2
= 1 (for a generalization with M spins {⇑,⇓} and N spins {↑, ↓}, see [2]). If

the self-Hamiltonians HP of P and Hi of Pi are taken to be zero, and there is no interaction among the Pi, then the
total Hamiltonian H of the composite system U is given by the interaction between the particle P and each particle
Pi (see [8], [12]):

H =
1

2
(|⇑〉 〈⇑| − |⇓〉 〈⇓|)⊗

N
∑

i=1



gi (|↑i〉 〈↑i| − |↓i〉 〈↓i|)⊗





N
⊗

j 6=i

Ij







 (16)

where Ij = |↑j〉 〈↑j| + |↓j〉 〈↓j | is the identity operator on the subspace Hj . Under the action of H , the state |ψ0〉
evolves into

|ψ(t)〉 = a |⇑〉 |E⇑(t)〉 + b |⇓〉 |E⇓(t)〉 (17)

where

|E⇑(t)〉 = |E⇓(−t)〉 =

N
⊗

i=1

(

αi e
−igit/2 |↑i〉+ βi e

igit/2 |↓i〉
)

(18)
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A. Computing the expectation values

The space O of the observables of the composite system U can be obtained as O = OP ⊗ (⊗Ni=1Oi), where OP is
the space of the observables of the particle P and Oi is the space of the observables of the particle Pi. Then, an
observable O ∈ O = H⊗H can be expressed as

O = OP ⊗ (

N
⊗

i=1

Oi) (19)

where

OP = s⇑⇑ |⇑〉 〈⇑|+ s⇑⇓ |⇑〉 〈⇓|+ s⇓⇑ |⇓〉 〈⇑|+ s⇓⇓ |⇓〉 〈⇓| ∈ OP (20)

Oi = ǫ
(i)
↑↑ | ↑i〉〈↑i |+ ǫ

(i)
↓↓ | ↓i〉〈↓i |+ ǫ

(i)
↓↑ | ↓i〉〈↑i |+ ǫ

(i)
↑↓ | ↑i〉〈↓i | ∈ Oi (21)

Since the operators OP and Oi are Hermitian, the diagonal components s⇑⇑, s⇓⇓, ǫ
(i)
↑↑ , ǫ

(i)
↓↓ are real numbers, and the

off-diagonal components are complex numbers satisfying s⇑⇓ = s∗⇓⇑, ǫ
(i)
↑↓ = ǫ

(i)∗
↓↑ . Then, the expectation value of the

observable O in the state |ψ(t)〉 of eq. (17) can be computed as

〈O〉ψ(t) = (|a|2s⇑⇑ + |b|2s⇓⇓) Γ0(t) + 2Re [ab∗ s⇓⇑ Γ1(t)] (22)

where (see [12])

Γ0(t) =

N
∏

i=1

[

|αi|
2ǫ

(i)
↑↑ + |βi|

2ǫ
(i)
↓↓ + 2Re(αi β

∗
i ǫ

(i)
↓↑e

igit)
]

(23)

Γ1(t) =

N
∏

i=1

[

|αi|
2ǫ

(i)
↑↑e

igit + |βi|
2ǫ

(i)
↓↓ e

−igit + 2Re(αi β
∗
i ǫ

(i)
↓↑ )
]

(24)

B. Selecting the relevant observables

In the typical situation studied by the EID approach, the open system S is the particle P , and the remaining
particles Pi play the role of the environment E: S = P and E = ∪Ni=1Pi. Therefore, the relevant observables OR of
the closed system U are those corresponding to the particle P , and they are obtained from eqs. (19), (20) and (21),

by making ǫ
(i)
↑↑ = ǫ

(i)
↓↓ = 1 and ǫ

(i)
↑↓ = 0:

OR = OS ⊗ IE =





∑

s,s′=⇑,⇓

sss′ |s〉〈s
′|



⊗

(

N
⊗

i=1

Ii

)

(25)

The expectation value of these observables in the state |ψ(t)〉 of eq. (17) is given by

〈OR〉ψ(t) = |a|2 s⇑⇑ + |b|2 s⇓⇓ + 2Re[ab∗ s⇓⇑ r(t)] (26)

where

r(t) = 〈E⇓(t)〉|E⇑(t)〉 =
N
∏

i=1

(

|αi|
2 e−igit + |βi|

2 eigit
)

(27)

This means that, in eq. (22), Γ0(t) = 1 and Γ1(t) = r(t).

IV. SIMULATION VERSUS PREDICTION

A. Simulation: the usual method

In order to know the time-behavior of the expectation value of eq. (26), the time-behavior of r(t) has to be
computed. From eq. (26) |r(t)|2 results

|r(t)|2 =

N
∏

i=1

(|αi|
4 + |βi|

4 + 2|αi|
2|βi|

2 cos 2git) (28)
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If |αi|
2
and |βi|

2
are taken as random numbers in the closed interval [0, 1], such that |αi|

2 + |βi|
2 = 1, then

max
t

(|αi|
4 + |βi|

4 + 2|αi|
2|βi|

2 cos 2git) =
(

(

|αi|
2 + |βi|

2
)2
)

= 1

min
t

(

|αi|
4
+ |βi|

4
+ 2 |αi|

2
|βi|

2
cos (2git)

)

=
(

(

|αi|
2 − |βi|

2
)2
)

=
(

2 |αi|
2
− 1
)2

(29)

Therefore, (|αi|
4 + |βi|

4 + 2|αi|
2|βi|

2 cos 2git) is a random number which, if t 6= 0, fluctuates between 1 and
(

2 |αi|
2
− 1
)2

.

In order to obtain the limit of r(t) for t → ∞, different numerical simulations are performed and presented in

the literature, where the aleatory numbers |αi|
2
and |βi|

2
are obtained from a generator of aleatory numbers: the

generator fixed the value of |αi|
2
, and the |βi|

2
is computed as |βi|

2
= 1 − |αi|

2
. The value of the gi and the time

interval [0, t0] for the computations is usually stipulated. In general, the model is studied and the conclusions about
decoherence are drawn by means of this kind of numerical simulations ([8], [3], [12], [4]).

B. Prediction: using the lemma

The first step for applying the lemma is to express the expectation values in the energy eigenbasis. In this model the
energy eigenbasis coincides with the eigenbasis of the spin in direction z, which is obtained in terms of the tensorial
product of the eigenstates of the spin in direction z for all the particles. In other words, the eigenvectors of H , which
form a basis of H, are

|⇑〉 |↑1〉 ... |↑k〉 ... |↑N−1〉 |↑N 〉

|⇑〉 |↑1〉 ... |↑k〉 ... |↑N−1〉 |↓N 〉

...

|⇓〉 |↓1〉 ... |↓k〉 ... |↓N−1〉 |↓N 〉 (30)

Then, it is easy to see that in eq. (16) H is written in its diagonal form, and that the expectation value of eq. (26)
is expressed in the energy eigenbasis.
In order to simplify the expressions, we will introduce a particular arrangement into the set of those eigenvectors

by calling them |Ai〉: the set {|Ai〉} is an eigenbasis of H with 2N+1 elements. The |Ai〉 will be ordered in terms of
their eigenvalues, which depend on the number of particles of E having spin |↓〉 in any state. Then, we have:

• Two states where all the particles of E have spin |↑〉:

|A1〉 = |⇑, ↑, ..., ↑, ↑〉 =⇒ H |A1〉 =
1

2

(

∑N
i=1gi

)

|A1〉

|A−1〉 = |⇓, ↑, ..., ↑, ↑〉 =⇒ H |A−1〉 = −
1

2

(

∑N
i=1gi

)

|A−1〉 (31)

• 2N states where only one particle of E has spin |↓〉:

|Aj〉 = |⇑, ↑, ..., ↑, ↓, ↑, ..., ↑, ↑〉 =⇒ H |Aj〉 =
1

2

(

∑N
i=1gi − gk

)

|Aj〉

|A−j〉 = |⇓, ↑, ..., ↑, ↓, ↑, ..., ↑, ↑〉 =⇒ H |A−j〉 = −
1

2

(

∑N
i=1gi − gk

)

|A−j〉

with j = 2, 3, ..., N + 1 and k = 1, 2, ..., N (32)

• (N − 1)N states where two particles have spin |↓〉:

|Aj〉 = |⇑, ↑, , ..., ↑, ↓, ↑, , ..., ↑, ↓, ↑, ..., ↑, ↑〉=⇒ H |Aj〉 =
1

2

(

∑N
i=1gi − gk − gl

)

|Aj〉

|A−j〉 = |⇑, ↑, , ..., ↑, ↓, ↑, , ..., ↑, ↓, ↑, ..., ↑, ↑〉=⇒ H |A−j〉 = −
1

2

(

∑N
i=1gi − gk − gl

)

|A−j〉

with j = N + 2, N + 3, ..., N + 1 +
(N − 1)N

2
and k, l = 1, 2, ..., N (33)
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• For the remaining particles with more spins |↓〉, the procedure is analogous.

Let us consider the two extreme cases. If the coupling coefficients gi are random numbers, in principle all eigenvectors
are different. If the coupling coefficients are gi = g, then there are

2 eigenvectors with eigenvalue
N

2
g

2N eigenvectors with eigenvalue
N − 2

2
g

...

2
N !

(N − l)!l!
eigenvectors with eigenvalue

N − 2l

2
g (34)

with l = 0, 1, ...N . In this case, H is degenerate: it has 2N+1 eigenvectors but only 2N different eigenvalues. In both
cases, random gi or equal gi, the number of different possible energies is large when N is large enough.
On the other hand, eq. (26) can be written as

〈OR〉ψ(t) =
∑

i

ρiOi +
∑

ν

ρ∗νOν e
iωνt (35)

where
∑

i

ρiOi = |a|2 s⇑⇑ + |b|2 s⇓⇓ (36)

∑

ν

ρ∗νOν e
iωνt = 2Re[ab∗ s⇓⇑

N
∏

i=1

(

|αi|
2 e−igit + |βi|

2 eigit
)

] (37)

The r.h.s. of this last expression includes a binomial product which can be rewritten as a sum by means of the
following strategy. First we define the index ν that establishes the number of the term of the sum: since in eq. (37)
there are 2N terms, then ν = 0, 1, · · ·2N − 1. Then we define the number pν,i as the i digit of the number ν written
in the binary system. Moreover, each term of the sum is a product of N exponentials of the form e−igit, which can
be grouped into a single exponential eiωνt. The ων are all possible additions and subtractions between the coefficients
gi; so, a generic ων can be computed as

ων =
(

∑N
i=1 (−1)pν,i gi

)

(38)

Precisely

ν = 0 = 0 · · · 000b −→ ω0 =
(

∑N
i=1gi

)

ν = 1 = 0 · · · 001b −→ ω1 =
(

∑N−1
i=1 gi − gN

)

ν = 2 = 0 · · · 010b −→ ω2 =
(

∑N−2
i=1 gi − gN−1 + gN

)

ν = 3 = 0 · · · 011b −→, ω3 =
(

∑N−2
i=1 gi − gN−1 − gN

)

ν = 4 = 0 · · · 100b −→ ω4 =
(

∑N−2
i=1 gi − gN−2 + gN−1 + gN

)

...

ν = 2N − 1 = 1 · · · 1b −→ ω2N =
(

−
∑N
i=1gi

)

(39)

On the basis of this strategy, we can define the discrete function fd(ων) as

fd(ων) =

N
∏

k=1

|γν,k|
2 (40)
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where γν,k = (αk − βk) pν,k + βk, which is equal to αk if pν,k = 1 and is equal to βk if pν,k = 0. Then, the binomial
product of eq. (37) results

N
∏

i=1

(

|αi|
2 e−igit + |βi|

2 eigit
)

=

2N−1
∑

ν=0

fd(ων)e
−iωνt (41)

then,

〈OR〉ψ(t) =
∑

i

ρiOi + 2Re[ab∗ s⇓⇑

2N−1
∑

ν=0

fd(ων) e
−iωνt] (42)

In order to apply our lemma to eq. (42), it is necessary that fd(ων) ∈ L1. On the one hand, since {ων} has 2N

elements, then for N ≫ 1 the set {ων} is quasi-continuous of class 1. On the other hand, since fd(ων) is defined in
eq. (40), where 0 < |γν,k|

2 < 1, then fd(ων) is the product of N numbers lower than 1. Therefore, if N ≫ 1,

|γν,k|
2 < 1 ⇒ fd(ων) =

N
∏

k=1

|γν,k|
2 ≪ 1 if N ≫ 1 ⇒ 0 < fd(ων) < ε≪ 1

⇒ max
µ,ν

(|fd(ωµ)− fd(ων)|) ≪ 1 (43)

But this is precisely the condition for fd(ων) ∈ L1. As a consequence, according to the lemma,

∑

ν

ρ∗νOν e
iωνt → 0 =⇒ 〈OR〉ψ(t) →

∑

i

ρiOi (44)

and we can conclude, with no need of computer simulations, that the system decoheres.

V. CONCLUSIONS

In another paper of this issue, a discrete analogue of the Riemann-Lebesgue theorem is presented and, on this basis,
a lemma relevant for discrete models is introduced: such a lemma provides a criterion for deciding whether or not
the system decoheres with no need of numerical simulations. In order to present an example of how these results can
be usefully exploited for the study of decoherence in discrete models, in this paper we have applied that lemma to
the well-known spin-bath model, and we have shown that the conclusion drawn from that application agrees with the
results obtained by means of computer simulations in the previous literature.
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