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Abstract

The quantum theoretical concepts of modular momentum and dynamical non-locality, which

were introduced four decades ago, have recently been used to explain single particle quantum

interference phenomena. Although the non-local exchange of modular momentum associated with

such phenomena cannot be directly observed, it has been suggested that effects induced by this

exchange can be measured experimentally using weak measurements of pre- and post-selected

ensembles of particles. This paper reports on such an optical experiment that yielded measured

weak values that were consistent with the theoretical prediction of an effect induced by a non-local

exchange of modular momentum.
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I. INTRODUCTION

Because it differs fundamentally from the interference phenomena of classical physics,

quantum interference has remained a continuing topic for discussion and debate since quan-

tum theory’s early days. The essence of this difference is exhibited by the two-slit experi-

ment. From both the classical and Schrödinger wave perspectives, the two slit interference

pattern is easily described in terms of the overlapping contributions of the wave which have

passed through each slit. The wave perspective also explains the disappearance of the in-

terference pattern when one of the slits is closed.

However, interference experiments using low intensity electron or photon beams in which

only one particle at a time passes through a two-slit apparatus have shown that the accumu-

lated effect when both slits are open is an interference pattern like that produced by higher

intensity ensembles and that the pattern likewise disappears when one slit is closed, e.g. [1].

This peculiar behavior necessitates an answer to the question ”how does a particle passing

through one slit sense that the other slit is open or closed?” when interference is considered

from the perspective of a single quantum particle.

Although this question concerning single particle behaviour has been answered and ex-

plained theoretically in terms of a non-local exchange of modular momentum [2, 3], there

have been no direct experimental observations of such an exchange to support this explana-

tion. This lack of observations is due to the fact that the conditions required to observe a

non-local exchange of modular momentum are precisely those that make the associated mod-

ular variable completely uncertain and unobservable. Recently, however, it was suggested

that an experimental methodology using weak measurements performed on a pre- and post-

selected ensemble of particles could be exploited in order to observe an effect induced by a

non-local exchange of modular momentum. This methodology was illustrated by a gedanken

experiment which used a twin Mach-Zehnder interferometer to duplicate relevant aspects of

the two-slit interference experiment [4].

This paper reports the results of an optical twin Mach-Zehnder interferometer experi-

ment similar to that described in the above gedanken experiment. This experiment yielded

measured weak values that were consistent with the associated theoretical prediction de-

scribing the effect induced by a non-local exchange of modular momentum. The remainder

of this paper is organized as follows: in the next section the theories of modular momentum,
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dynamical non-locality, weak measurements, and weak values are briefly summarized. A

description of the experimental apparatus and an overview of the experiment are presented

in section III. The experimental results are discussed in section IV. Concluding remarks

comprise the final section of this paper.

II. SUMMARY OF THE THEORIES

A. Modular Momentum and Dynamical Non-locality

Consider a quantum particle propagating in the positive y-direction perpendicular to the

plane of two symmetric slits which are separated by a distance ℓ in the x-direction (the slit

at x − ℓ will be referred to as the left slit). At time t after the particle passes through the

slits its wavefunction is the superposition

ψ (x, y, z, t) =
1√
2

{
ϕ (x− ℓ, y, z, t) + eiαϕ (x, y, z, t)

}
, (1)

where the ϕ’s are assumed to be identical ”wave packets” which do not overlap at t = 0 and

α is their relative phase. Although information about α can be obtained from the spatial

interference pattern |ψ (x, d, z, τ)|2 produced by an ensemble of such particles on a screen

parallel to and at an appropriate distance d from the plane of the slits at time τ > 0, there

are no local measurements using operators of the form x̂j p̂kx, where j and k are non-negative

integers, that can be performed upon the initial non-overlapping wave packets that will

determine α. The relative phase α is thus a non-local feature of quantum mechanics.

The induced momentum uncertainty and the Heisenberg uncertainty principle are tradi-

tionally used to explain the loss of the interference pattern when one slit is closed. However,

measuring which slit the particle passes through does not necessarily increase the momentum

uncertainty. This - along with the fact that position and momentum observables and their

moments are not sensitive to relative phase (prior to wave packet overlap) - suggests that

these observables, as well as the Heisenberg uncertainty principle, are not the appropriate

physical concepts for describing quantum interference phenomena.

The (modular) operator e−
i
~
p̂xℓ and its modular property, however, do provide an al-

ternative physical basis for the rational description of quantum interference. Unlike the

operators x̂j p̂kx, the expectation value of the operator e−
i
~
p̂xℓ with respect to ψ (x, y, z, t)

is sensitive to α - even when the two wavepackets don’t overlap. This sensitivity results
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from the action of e−
i
~
p̂xℓ upon ϕ (x, y, z, t) which overlaps the two wavepackets in eq. (1)

by translating ϕ (x, y, z, t) to ϕ (x− ℓ, y, z, t). Also, since e−
i
~
p̂xℓ is invariant under the re-

placement p̂x → p̂x − nh
ℓ
, n = 0,±1,±2, · · · , (because e− i

~
(−nh

ℓ )ℓ = e2inπ = 1), it depends

upon values of the modular momentum pxmod
(
nh
ℓ

)
≡ px,mod ∈ I ≡ [0, h

ℓ
) instead of those of

px. This modular property establishes a fundamental relationship between modular momen-

tum uncertainty and quantum interference via the complete uncertainty principle: ”p̂x,mod

is completely uncertain (i.e. all its values are uniformly distributed over I) if and only if〈
e−

i
~
np̂x

ℓ
h

〉
= 0 for every positive integer n”. When this principle is applied to the two slit

case, it is found that while the required expectation value with respect to ψ (x, y, z, t) does

not vanish for n = 1, it does vanish for every n when the expectation value is with respect

to ϕ (x, y, z, t). Thus, when the left slit is closed, i.e. it is known that the particle passed

through the right slit, then p̂x,mod becomes completely uncertain so that all knowledge about

px,mod is lost and the interference pattern vanishes.

The Heisenberg equation of motion provides the formalism for describing and understand-

ing the notion of dynamical non-locality. Within the context of two slits, the Heisenberg

equation of motion for e−
i
~
p̂xℓ is given by

d

dt
e−

i
~
p̂xℓ =

i

~

[
Ĥ, e−

i
~
p̂xℓ

]
=
i

~

(
V̂ (x)− V̂ (x− ℓ)

)
e−

i
~
p̂xℓ, (2)

where Ĥ = p̂2x
2m

+ V̂ (x) is the system Hamiltonian and V̂ (x) ( V̂ (x− ℓ) ) is the potential

operator for the right (left) slit. This is a non-local equation of motion and therefore has no

classical analogue: only the potential at each slit is involved in the rate of change of e−
i
~
p̂xℓ

- i.e. there are no forces involved - and the potential at the left slit influences this rate of

change even if ψ (x, y, z, 0) = ϕ (x, y, z, 0) - i.e. when the particle is initially localized at

the right slit. Consequently, the effect of closing the left slit produces non-locally a change

in modular momentum while leaving the expectation values of the associated moments of

momentum unchanged. More specifically, the modular operator is conserved when both

slits are open since V̂ (x) = V̂ (x− ℓ) so that d
dt
e−

i
~
p̂xℓ = 0. However, if the left slit is closed

and the particle is localized at the right slit, then
(
V̂ (x)− V̂ (x− ℓ)

)
6= 0 6= d

dt
e−

i
~
p̂xℓ and

the modular momentum is changed non-locally as a result of the change in the potential

at the left slit. Interference is destroyed and the modular momentum becomes completely

uncertain - thereby rendering it unobservable. In fact, it is in this manner that the complete

uncertainty principle also reconciles dynamical non-locality with causality.
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For additional details concerning the theory of modular momentum and dynamical non-

locality the reader is invited to consult references [2–5].

B. Weak Measurements and Weak Values

Although the exchange of modular momentum is not directly observable, it has been

suggested that dynamical non-locality induces effects which can be observed using weak

measurements of pre- and post-selected ensembles of particles. Weak measurements arise in

the von Neumann description of a quantum measurement at time t0 of a time-independent

observable Â that describes a quantum system in an initial fixed pre-selected state |ψi〉 =
∑

J cj |aj〉 at t0, where the set J indexes the eigenstates |aj〉 of Â. In this description

the Hamiltonian for the interaction between the measurement apparatus and the quantum

system is

Ĥ = γ(t)Âp̂.

Here γ (t) = γδ (t− t0) defines the strength of the impulsive measurement interaction at t0

and p̂ is the momentum operator for the pointer of the measurement apparatus which is

in the initial state |φ〉. Let q̂ be the pointer’s position operator that is conjugate to p̂ and

assume that 〈q| φ〉 ≡ φ (q) is real valued with 〈q〉 ≡ 〈φ| q̂ |φ〉 = 0.

Prior to the measurement the pre-selected system and the pointer are in the tensor

product state |ψi〉 |φ〉. Immediately following the measurement the combined system is in

the state

|Φ〉 = e−
i
~

∫
Ĥdt |ψi〉 |φ〉 =

∑
J
cje

− i
~
γaj p̂ |aj〉 |φ〉 ,

where use has been made of the fact that
∫
Ĥdt = γÂp̂. The exponential factor in this

equation is the translation operator Ŝ (γaj) for |φ〉 in its q-representation. It is defined

by the action 〈q| Ŝ (γaj) |φ〉 = 〈q − γaj | φ〉 ≡ φ (q − γaj) which translates the pointer’s

wavefunction over a distance γaj parallel to the q-axis. The q-representation of the combined

system and pointer state is

〈q| Φ〉 =
∑

J
cj 〈q| Ŝ (γaj) |φ〉 |aj〉 .

When the measurement interaction is strong, the quantum system is appreciably dis-

turbed and its state ”collapses” to an eigenstate |an〉 leaving the pointer in the state

〈q| Ŝ (γan) |φ〉 with probability |cn|2. Strong measurements of an ensemble of identically
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prepared systems yield γ 〈A〉 ≡ γ 〈ψi| Â |ψi〉 as the centroid of the pointer probability dis-

tribution

|〈q| Φ〉|2 =
∑

J
|cj|2

∣∣∣〈q| Ŝ (γaj) |φ〉
∣∣∣
2

(3)

with 〈A〉 as the measured value of Â.

A weak measurement of Â occurs when the interaction strength γ is sufficiently small

so that the system is essentially undisturbed and the uncertainty ∆q is much larger than

Â’s eigenvalue separation. In this case, eq.(3) is the superposition of broad overlapping∣∣∣〈q| Ŝ (γaj) |φ〉
∣∣∣
2

terms. Although a single measurement provides little information about Â,

many repetitions allow the centroid of eq.(3) to be determined to any desired accuracy.

If a system state is post-selected after a weak measurement is performed, then the result-

ing pointer state is

|Ψ〉 = 〈ψf | Φ〉 =
∑

J
c′∗j cjŜ (γaj) |φ〉 ,

where |ψf 〉 =
∑

J
c′j |aj〉, 〈ψf | ψi〉 6= 0, is the post-selected state at t0. Since

Ŝ (γaj) =
∞∑

m=0

[−iγaj p̂/~]m
m!

,

then

|Ψ〉 =
∑

J
c′∗j cj

{
1− i

~
γAwp̂+

∞∑

m=2

[−iγp̂/~]m
m!

(Am)w

}
|φ〉 ≈

{∑
J
c′∗j cj

}
e−

i
~
γAw p̂ |φ〉

in which case

|Ψ〉 ≈ 〈ψf | ψi〉 Ŝ (γAw) |φ〉 (4)

so that

|〈q| Ψ〉|2 ≈ |〈ψf | ψi〉|2
∣∣∣〈q| Ŝ (γ ReAw) |φ〉

∣∣∣
2

or

|Ψ (q)|2 ≈ |〈ψf | ψi〉|2 |φ (q − γ ReAw)|2 . (5)

Here

(Am)w =

∑
J
c′∗j cja

m
j∑

J
c′∗j cj

=
〈ψf | Âm |ψi〉
〈ψf | ψi〉

,

with the weak value Aw of Â defined by

Aw ≡
(
A1

)
w
=

〈ψf | Â |ψi〉
〈ψf | ψi〉

. (6)
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From this expression it is obvious that Aw is - in general - a complex valued quantity that

can be calculated directly from theory. Since φ (q) is real valued, then eq.(5) corresponds to

a broad pointer position distribution with a single peak at 〈q〉 = γReAw with ReAw as the

measured value of Â. This condition occurs when both of the following inequalities relating

γ and the pointer momentum uncertainty ∆p are satisfied [7, 10] :

∆p≪ ~

γ
|Aw|−1 and ∆p≪ min

(m=2,3,··· )

~

γ

∣∣∣∣
Aw

(Am)w

∣∣∣∣
1

m−1

. (7)

It is important to keep in mind that although the weak measurement of Â occurs at time

t0 so that |ψi〉 and |ψf 〉 are states at t0, these states result from states that are pre-selected

and post-selected at times ti < t0 and tf > t0, respectively. Therefore it is necessary to

propagate the pre-selected state forward in time from ti to t0 and the post-selected state

backward in time from tf to t0 in order to calculate Aw at t0.

The reader is invited to consult references [4–12] for additional details concerning the

theoretical and experimental aspects of weak measurements and weak values.

III. THE EXPERIMENT

A. Apparatus

As mentioned above, the setup for this experiment follows that of the optical gedanken

experiment discussed in [4] where a twin Mach-Zehnder interferometer is used to replicate

aspects of the two-slit interference experiment. A schematic of the apparatus used in this

experiment is shown in figure 1. Here the paths followed by photons have been labeled

using the traditional ”right” (R) and ”left” (L) notation R1, R2, · · · , R6, L2, L3, · · · , L6.
For future reference an overlay of the ”metaphorical” two slits emulated by the twin Mach-

Zehnder interferometer is also provided in this figure. Note that paths R4 and L4 correspond

to photon paths through the right and left slits, respectively. Thus, blocking path L4

corresponds to closing the left slit.

Since photons do not interact with one another, it is not necessary to perform the ex-

periment in such a manner that only one photon at a time traverses the interferometer.

Accordingly, large ensembles of photons of wavelength 637.2 nm produced by a classically

intense laser diode source were used in this experiment. A 150 µm diameter pinhole spa-
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tially filtered the photon beam into a smooth Gaussian-like shape. The exiting beam had

an optical power of 24.5 µW (∼ 7.9 × 1013 photons/s) and was collimated with a 200 mm

focal length lens. A mirror launched the collimated beam into the interferometer via the

input path R1. Three identical non-polarizing cube 50/50 beam-splitters - labeled BS1,

BS2, BS3 in figure 1 - along with four identical mirrors - labeled M1, M2, M3, M4 in figure

1 - formed the basic architecture of the interferometer (the collection BS1, M1, M2, and

BS2 (BS2, M3, M4, and BS3) is hereafter referred to as ”the first (second) Mach-Zehnder”).

The beam emerging along path R6 was neutral density filtered before reaching a 640× 480

pixel resolution machine vision camera which recorded the beam’s two dimensional intensity

distribution. The optical power of the beam reaching the camera was approximately four to

five orders of magnitude smaller than that exiting the pinhole. Each camera pixel had a size

7.4 µm × 7.4 µm and a 0− 255 digital intensity range. The pixel saturation level exceeded

the measured maximum pixel intensity level of the images obtained from this experiment.

The gedanken experiment utilized slightly tilted thin glass plates placed at locations

in paths R2 and L2 to perform weak measurements of the projection operators |R2〉 〈R2|
and |L2〉 〈L2| by producing transverse spatial shifts in the photon paths that were small

relative to the uncertainty in the transverse position of a photon. The theoretically predicted

change in the weak values of these operators when path L4 is blocked was interpreted as

an observable effect induced in the first Mach-Zehnder by an associated non-local exchange

of modular momentum produced by blocking path L4 in the second Mach-Zehnder (direct

measurement of the modular momentum exchange is not possible because blocking path

L4 in the second Mach-Zehnder makes the modular variable completely uncertain - thereby

destroying all information about the modular momentum).

In this experiment, however, a piezoelectrically driven computer controlled stage was

used instead to produce small changes in the location of mirror M1 (in the direction shown

in figure 1) in order to produce a series of transverse spatial shifts in the photon beam

that could be made small compared to the uncertainty in a photon’s transverse position.

This approach proved more efficient than the tilted plate method and was equivalent to

performing weak measurements of the projection operator |L2〉 〈L2| located in path L2. As

shown - both theoretically and experimentally - below, the weak value of |L2〉 〈L2| changes
in accordance with the gedanken experiment when path L4 is blocked. This change can also

be interpreted as a dynamical non-locality induced effect.
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By avoiding the use of micro-positioners as much as possible, the setup was passively

stable for several tens of minutes. The entire apparatus was also enclosed in a 1 m × 1 m

covered box to provide additional isolation from the environment. In order that the box not

have to be uncovered during a measurement data run, electromagnetic shutters were used as

much as possible to block and unblock photon paths and the piezoelectric stage and camera

were computer controlled using data collected by the camera. Because of these features, all

required measurement data were collected before opto-mechanical instability occurred using

only one initial fine alignment. A data analysis and graphing software tool was developed

and used to automatically process the camera images.

B. Overview

The essence of this experiment involved comparing the measured weak values of the

operator |L2〉 〈L2| ≡ N̂ for two distinct (data) classes of weak measurements. For each of

these weak measurement classes the pre-selected state prior to the time of N̂ ’s measurement

was the spatial mode |R1〉 and the post-selected state after N̂ ’s measurement time was

the spatial mode |R6〉. Also, for each of these classes the path lengths in the first Mach-

Zehnder were arranged so that photons effectively only emerged from BS2 along path R4

in spatial mode − |R4〉. Thus, paths R4 and L4 will be referred to as the ”bright” and

”dark” paths, respectively. Arranging the first Mach-Zehnder in this way corresponded to

localizing a photon at the right slit of a two slit screen prior to its traversing the screen.

Weak measurements of N̂ for both measurement classes were made while the apparatus was

in this configuration - except that a shutter blocked path L4 for the second measurement

class. Blocking path L4 in this manner corresponded to closing the left slit in a two slit

screen while the photon is localized at the right slit.

If Nw,1 and Nw,2 correspond to the weak values of N̂ for the first and second measurement

classes, respectively, then - since L4 is a dark path - it might be expected that blocking path

L4 should have no effect upon the weak measurement of N̂ in L2, in which case Nw,1 = Nw,2.

However, when eq.(6) is used to calculate these weak values it is found that for the first

measurement class (which corresponds to both slits being open) Nw,1 = +1 and for the

second measurement class (which corresponds to closing the left slit) Nw,2 = +1
2
. More

specifically, for the first measurement class, forward propagation of the pre-selected state
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|R1〉 and backward propagation of the post-selected state |R6〉 through the interferometer

to where N̂ is measured yields the states 1√
2
(i |L2〉+ |R2〉) and i |L2〉, respectively, so that

Nw,1 =
[−i 〈L2|] N̂

[
1√
2
(i |L2〉+ |R2〉)

]

[−i 〈L2|]
[

1√
2
(i |L2〉+ |R2〉)

] = +1

(note that the theoretical weak value of |R2〉 〈R2| is 0). Similarly, for the second measure-

ment class - with the dark path L4 blocked - forward propagation of the pre-selected state

|R1〉 and backward propagation of the post-selected state |R6〉 through the interferometer to

where N̂ is measured yields the states 1√
2
(i |L2〉+ |R2〉) and 1

2
(i |L2〉+ |R2〉), respectively,

so that

Nw,2 =

[
1
2
(−i 〈L2|+ 〈R2|)

]
N̂

[
1√
2
(i |L2〉+ |R2〉)

]

[
1
2
(−i 〈L2|+ 〈R2|)

] [
1√
2
(i |L2〉 + |R2〉)

] = +
1

2

(note that the theoretical weak value of |R2〉 〈R2| is also +1
2
).

Thus, Nw,1 6= Nw,2 so that - similar to the gedanken experiment - weak value theory

applied to this experiment predicts that blocking path L4 produces a dramatic observable

change in the weak value of N̂ when there are effectively no photons along path L4. Following

[4] and using the two-slit case along with eq.(2) as guides, Nw,1 6= Nw,2 has an interpretation

as being an effect induced in the first Mach-Zehnder by the non-local exchange of modular

momentum that results from a change in the potential associated with blocking the dark L4

path in the second Mach-Zehnder.

A third class of weak measurements of N̂ designated by the weak value Nw,0 was used

for the purpose of order compliance. For this measurement class the configuration of the

first Mach-Zehnder was the same as for the other two classes so that forward propagation

of the pre-selected state |R1〉 through the first Mach-Zehnder yielded the state − |R4〉.
Here, however, a relative (to the other two classes) phase shift of π rad was introduced into

path R5 so that backward propagation of the post-selected state |R6〉 backwards through

the interferometer gives |R2〉 as the state where the measurement is made. Again using

1√
2
(i |L2〉+ |R2〉) as the forward propagated pre-selected state yields the weak value

Nw,0 =
[〈R2|] N̂

[
1√
2
(i |L2〉+ |R2〉)

]

[〈R2|]
[

1√
2
(i |L2〉+ |R2〉)

] = 0

(note that the theoretical weak value of |R2〉 〈R2| is +1). This class of measurements served

as a data consistency check by demonstrating that the weak values Nw,0, Nw,1, and Nw,2
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measured by this experiment were compliant with the theoretical ordering requirement

Nw,0 < Nw,2 < Nw,1. (8)

IV. RESULTS

In order to experimentally demonstrate this induced Nw,1 6= Nw,2 effect, three sequences

of weak measurements of N̂ - one sequence for each of the Nw,0, Nw,1, and Nw,2 measure-

ment classes - were generated following the configuration prescriptions outlined in the above

overview of the experiment. Different interaction strength (γ) values were produced for each

sequence by varying the M1 position via controlling that of the piezoelectric stage. The

photon beam intensity served as the measurement pointer for the apparatus and its image

was recorded by the machine vision camera for each M1 position used in the measurement

sequences. As indicated on figure 1, the associated movement of the pointer in the image

plane was horizontal (i.e. in the plane of the apparatus). For each M1 position x, the anal-

ysis software tool used the associated pointer image to locate the pointer position as the

intensity averaged horizontal pixel number y. Each such measurement was represented as

the pair (x, y). Let Si be the set of such measurement pairs for the Nw,i measurement class,

i = 0, 1, 2.

To calibrate the experimental data, a fourth sequence of measurements was made to relate

M1 positions to pointer pixel positions. Here, paths L3 and R4 were blocked by shutters and

a sequence of M1 positions were used to sweep the beam emerging along path R6 across the

image plane of the camera. As was the case for the previous sequences of measurements, the

beam’s intensity averaged horizontal pixel number was determined from each M1 position

image and represented as an ordered pair (x, y). Let S3 be the set of these ordered pairs of

calibration measurements.

Fourteen M1 positions equally spaced over a 1300 µm range were used to generate fourteen

ordered pairs of measurements in each set Sk, k ∈ K ≡ {0, 1, 2, 3}. These M1 positions were

identical for each of the four measurement sequences (i.e. for every (x, y) ∈ Sk, k ∈ K, there

is exactly one (x′, y′) ∈ Sj , j ∈ K−{k}, such that x = x′). Examination of the measurement

pairs in S1 and S2 revealed the existence of a data crossing point located between the middle

two M1 positions x7 and x8. The pair (x0, y0) defined by the intersection of the line containing

the middle two measurement pairs in S1 with that containing the middle two measurement
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pairs in S2 was selected as the estimate of this crossing point.

Recall from eq.(5) that in the weak measurement regime defined by inequalities (7) the

ordinates in each data pair in the sets Si effectively record the measured quantity γNw,i,

i = 0, 1, 2. Thus, at the crossing point the condition γNw,1 = γNw,2 must hold true. Since

Nw,1 = +1 and Nw,2 = +1
2
, this condition can only be satisfied if γ = 0. This identified

(x0, y0) as the point where the interaction strength γ vanishes and defined it as the origin

of the Cartesian reference frame F which has as its abscissa axis M1 displacements in µm

referenced to x0 and as its ordinate axis pointer pixel displacements referenced to y0. Let

(x′, y′) ∈ S ′
k be (x, y) ∈ Sk, k ∈ {0, 1, 2}, transformed into F according to x′ = x − x0 and

y′ = y − y0.

As anticipated - the calibration measurement pairs in S3 were linear. The associated slope

which relates pointer pixel positions to M1 positions in µm was −0.198. This slope defined

the calibration line y′ = −0.198x′ in F . Multiplying the slope of this equation by the pixel

size 7.4 µm (the camera rated distance between consecutive pixels) yielded the equation

γ (x′) = −1.5x′ in which both γ and x′ are in µm. The ordinate y′ is relabeled as γ (x′) in

this equation because it now directly relates the interaction strengths of measurements to

the displacement of M1 (inspection of the argument of the operator Ŝ in eq.(4) reveals that

γ is a distance since Nw,i is a dimensionless quantity). Thus - for this experiment - the

”ideal” pointer displacements ρi (x
′) ≡ γ (x′)Nw,i in µm as functions of M1 displacements

in µm and Nw,i values are represented by the lines

ρi (x
′) = −1.5x′Nw,i, i = 0, 1, 2. (9)

This result is useful for estimating the boundaries of the weak measurement regime for

this experiment in terms of x′. Since N̂ is a projection operator then N̂m = N̂ , m ≥ 1,

so that (Nm)w,i = Nw,i and inequalities (7) become ∆p ≪ ~
γNw,i

, i 6= 0, and ∆p ≪ ~
γ
.

Application of the uncertainty relation ∆q ·∆p ≥ ~

2
yields γ ≪ 2∆q

Nw,i
, i 6= 0, and γ ≪ 2∆q.

Both of these inequalities are satisfied by γ ≪ 2∆q when i = 1, 2. Using the pinhole diameter

as the uncertainty in a photon’s tranverse position, i.e. ∆q ≈ 150 µm, defines |γ| ≪ 300 µm

as the estimated weak measurement regime for the interaction strength (|γ| is used since in

this experiment γ can be a positive or a negative distance). Using this range in eq.(9) with

Nw,1 = +1 gives ρ1 (x
′) = γ (x′) and yields

|x′| ≪ 200 µm (10)
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as the estimated weak measurement regime for M1 displacement.

A plot of the measurement pairs in sets S ′
i, i = 0, 1, 2 is presented in figure 2. Here the

ordinate of each measurement pair has been scaled by the pixel distance of 7.4 µm in order

to express the pointer displacements in µm. Also shown as dashed lines are graphs of the

three ideal pointer displacement lines ρi (x
′), i = 0, 1, 2, given by eq.(9) and as a boxed

region the estimated weak measurement regime defined by inequality (10). Inspection of

figure 2 (where γNw,i data points are labeled ”γN class i” and ρi is labeled ”ρ class i”)

reveals good agreement within (and slightly outside) the weak measurement regime between

the measured pointer displacements γNw,1 (corresponding to the measurement pairs in set

S ′
1) and ρ1 and between the measured pointer displacements γNw,2 (corresponding to the

measurement pairs in set S ′
2) and ρ2. It is also clear that - except at x′8 - the measured

quantities within the weak measurement regime are compliant with the theoretical ordering

requirement (8). It is noted that the ∼ 75 µm − 100 µm offsets of the measured pointer

displacements γNw,0 (corresponding to the measurement pairs in set S ′
0) from ρ0 in the weak

measurement regime are likely due to complicated intensity profile inversions introduced by

the phase window during this sequence of measurements. Interestingly, if these offsets are

treated as a constant bias, then removal of the bias from the measurement pairs in S ′
0

not only produces complete compliance with (8) in the weak measurement regime - but it

also provides more overall symmetry in the data, as well as good agreement between the

measured pointer displacements γNw,0 and ρ0 in the weak measurement regime.

As expected, the further the M1 displacement is outside the weak measurement regime

the ”stronger” the measurement becomes and the greater the discrepancy between the S ′
0

data and ρ0 and between the S ′
1 data and ρ1. However, except for the data asymmetry

associated with negative M1 displacements (likely introduced by the complicated optical

properties of the apparatus), the agreement between the S ′
2 data and ρ2 remains good over

the entire range of M1 displacements while the S ′
0 and S ′

1 data converge to ρ2. This feature

in the data is completely consistent with the fact that in the limit of ”strong collapsing”

measurements, the measurement pointer is displaced by γ 〈N〉 = 1
2
γ since

〈N〉 = 1√
2
[−i 〈L2|+ 〈R2|] N̂ [i |L2〉+ |R2〉] 1√

2
= +

1

2

(refer to the discussion surrounding eq.(3)).
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V. CONCLUDING REMARKS

This experiment used weak measurements of pre- and post-selected ensembles of photons

in a twin Mach-Zehnder interferometer to observe an effect theoretically predicted to be in-

duced in the first Mach-Zehnder by the non-local exchange of modular momentum produced

by blocking the dark path in the second Mach-Zehnder (it is intended that a second ”follow

up” paper be written which will detail the novel aspects of the apparatus and techniques

used in this experiment). This effect is manifested as a dramatic change in the associated

weak values. The attendant weak values measured by this experiment changed in complete

accordance with the theoretical predictions. Consequently, the results of this experiment

support both the existence of such an effect and the authenticity of dynamical non-locality

as its cause.

Before closing, it is noted that - although this experiment was specifically designed for

the purpose of confirming or denying the Nw,1 6= Nw,2 effect - it was observed that - for the

weakest measurements with abscissa x8 ≃ 37 µm - the ratio of the number of camera pixels

excited by the associated S ′
2 measurement to that excited by the associated S ′

1 measurement

was 0.6. The drop in this excitation ratio was 4 to 5 times greater than expected based

upon the alignment contrast ratios for the apparatus. This informal observation provides

additional credence to dynamical non-locality as inducing theNw,1 6= Nw,2 effect and suggests

a future experiment that could further examine dynamical non-locality from this perspective.
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· · · · · · · · · · · · · · · · · · · Phase
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... L6
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M3 � · · · R5 · · · � −→ R6 −→ l Camera
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... BS3 ↑ with directions

L4 L5 for pointer

տց ... � ↑ movement

M1 � −→ R3 −→ � −→ R4 −→ � M4

↑ BS2 ↑ � · · · · · · · · · · · · Metaphorical
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beam BS1

(Figure 1. Apparatus, best available diagram for electronic publishing)
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