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Abstract

Based on a canonical approach and functional-integration techniques, a series expansion of Green’s

function of a scalar field, in the presence of a medium, is obtained. A series expansion for Lifshitz-

energy, in finite-temperature, in terms of the susceptibility of the medium is derived and the whole

formalism is generalized to the case of electromagnetic field in the presence of some dielectrics. A

covariant formulation of the problem is presented.
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I. INTRODUCTION

Quantum field theory is the quantum mechanics of continuous systems and fully developed

in quantum electrodynamics which is the most successful theory in physics [1]. Quantum

field theory trough path-integrals bridge to statistical mechanics and its applications include

many branches of physics like, particle physics, condensed-matter physics, atomic physics,

astrophysics and even economics [2]. Usually we are interested in a quantum field which

has to be considered in the presence of a matter field described by some bosonic fields. For

example, in quantum optics there are situations where the electromagnetic field quantiza-

tion should be achieved in the presence of a general magnetodielectric medium [3–5] or in

calculating the effect of matter fields on Casimir forces [6, 7]. In these cases the matter

field should be included directly into the process of quantization. Unfortunately there are

very few problems where the interested physical quantities, like for example, the Casimir

force, can be determined analytically and so finding an effective approximation method

is necessary. A fundamental quantity in a quantum field theory is the propagator or the

Green’s function [8] from which many physical quantities may be extracted. Here, using

path-integrals, and based on a microscopic approach, we begin from a Lagrangian and ob-

tain an expansion for the two-point correlation function i.e., the Green’s function in terms

of the susceptibility function of the medium for both scalar and electromagnetic fields in the

presence of an arbitrary linear magnetodielectric medium. As an example of applications of

these expansions for the case of a real scalar field we have introduced an expansion for the

free energy or Lifshitz energy in the presence of some arbitrary dielectrics [9, 10]. Also we

have considered the covariant formulation of the electromagnetic field in the presence of a

linear magnetodielectric [11] which may have applications in quantum optics or dynamical

Casimir effects [12].

II. SCALAR FIELD

Let us start the section with a simple but efficient field theory which have a wide range of

applications in many branches of physics, i.e., the Lagrangian of a real Klein-Gordon field

in 3+1-dimensional space-time (x = (x, x0) ∈ R3+1), with the following Lagrangian density

Ls =
1

2
∂µϕ(x)∂

µϕ(x)− 1

2
m2ϕ2(x), (1)
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and let the medium be modeled by a continuum of harmonic oscillators which is usually

called the Hopfield model of a reservoir [13]

Lm =
1

2

∫ ∞

0

dω
(

Ẏ 2
ω (x)− ω2Y 2

ω (x)
)

, (2)

the interaction between the scalar field and its medium is assumed to be linear and described

by

Lint =

∫ ∞

0

dω f(ω,x)Ẏω(x)ϕ(x). (3)

Having the total Lagrangian we can quantize the system using path-integral techniques. An

important quantity in any field theory is the generating functional from which n-point cor-

relation functions can be obtained from successive functional derivatives. Here our purpose

is to find two-point correlation functions or Green’s functions in terms of the susceptibility

of the medium. For this purpose let us first find the free generating functional which can be

written as

W0[J, {Jω}] =

∫

Dϕe
ı

~

∫
d4 x {− 1

2
ϕ[�+m2]ϕ+Jϕ}

∫

∏

ω

DYω e
ı

~

∫
d4x

∫
∞

0 dω{− 1
2
Yω [∂2

t
+ω2]Yω+JωYω}

=

∫

Dϕe−
1
2
〈ϕ|Â|ϕ〉+〈J |ϕ〉

∫

∏

ω

DYωe
− 1

2

∫
∞

0
{〈Yω |B̂ω |Yω〉+〈Jω |Yω〉}

(4)

where we have defined

Â =
ı

~
(�+m2), B̂ω =

ı

~
(∂2

t + ω2),

ρ(x) =
ı

~
J(x), ρω(x) =

ı

~
Jω(x). (5)

Now using the following formula
∫

Dϕ(x)e−
1
2
〈ϕ|Â|ϕ〉+〈ρ|ϕ〉 = (detÂ)−

1
2 e

1
2
〈ρ|Â−1|ρ〉 (6)

Eq. (4) can be rewritten as

W0[J, {Jω}] = Ne
1
2
〈ρ|Â−1|ρ〉e

1
2

∫
∞

0 dω 〈ρω |B̂
−1
ω |ρω〉 (7)

where N = (detÂ)−
1
2

∏

ω(detB̂ω)
− 1

2 is a renormalization factor. Also from the following

definitions

ı

~
(�+m2)G0(x, x′) = δ4(x− x′)

ı

~
(∂2

t + ω2)G0
ω(x, x

′) = δ4(x− x′) (8)
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we will find

Â−1 = G0(x, x′) = ı~

∫

d4k

(2π)4
eık·(x−x′)

k2 −m2

B̂−1
ω = G0

ω(x, x
′) = ı~δ3(x− x′)

∫

d k0

2π

eık
0(x0−x′0)

(k0)2 − ω2
(9)

with the following Fourier transforms

G̃0(k) =
ı~

k2 −m2
,

G̃0
ω(k

0) =
ı~

(k0)2 − ω2
. (10)

respectively. The free generating functional can now be written as

W0[J, {Jω}] = Ne−
1

2~2

∫
d4x

∫
d4x′J(x)G0(x−x′)J(x′)e−

1
2~2

∫
d4x

∫
d4x′

∫
∞

0
Jω(x)G0

ω(x−x′)Jω(x′), (11)

and the interacting generating functional can be obtained from the free generating functional

using the following formula [8]

W [J, {Jω}] = e
ı

~

∫
d4x

∫
∞

0 dω f(ω,x)( ~

ı

δ

δJ(x))
∂

∂x0
( ~

ı

δ

δJω(x))W0[J, {Jω}]

= N e−ı~
∫
∞

0
dω

∫
d4x f(ω,x) δ

δJ(x)
∂

∂x0
δ

δJω(x)

× e−
1

2~2

∫
d4x

∫
d4x′J(x)G0(x−x′)J(x′)e−

1
2~2

∫
d4x

∫
d4x′

∫
∞

0 dω Jω(x)G0
ω(x−x′)Jω(x′)

(12)

Having the generating functional, the two-point function, i.e. the Green’s function can be

obtained as

G(x, x′) = (
~

ı
)2

δ2

δJ(x)δJ(x′)
W [J, {Jω}]

∣

∣

∣

∣

j,{jω}=0

. (13)

Now let us assume that the coupling function between the Klein-Gordon field and its medium

is weak-one can also assume that the susceptibility of the medium is not far from vacuum-

such that it can be considered as an expansion parameter which can be used to find a series

solution for the Green’s function or the correlation function. Using Eq.(12) and after some

straightforward calculations, we find the following expansion for the Green’s function in

frequency domain

G(x− x′, ω) = G 0(x− x′, ω) +

∫

Ω

d 3z1G
0(x− z1, ω)[ω

2χ̃(ω, z1)]G
0(z1 − x′, ω) +

∫

Ω

∫

Ω

d 3z1d
3z2 G

0(x− z1, ω)[ω
2χ̃(ω, z1)]G

0(z1 − z2, ω)[ω
2χ̃(ω, z2)]G

0(z2 − x′, ω) + · · ·

(14)

4



and it can be easily shown that it satisfies the Green’s function equation which we will find

in the next section. Note that since χ̃(ω,x) = 0, for x /∈ Ω, so we can rewrite the expansion

(14) in a more compact or matrix form as fallows

G(ω) = G 0(ω) +G 0(ω) [ω2 χ̃(ω)]G 0(ω) +G 0(ω) [ω2 χ̃(ω)]G 0(ω)[ω2 χ̃(ω)]G 0(ω) + · · ·

= G 0(ω) [I− ω2χ̃(ω)G 0(ω)]−1. (15)

A. Equations of motion

In this section we find the equations of motion for the fields and in particular we obtain a

Langevin type equation for the scalar field

∂µ
∂L

∂(∂µϕ)
=

∂L
∂ϕ

=⇒ (�+m2)ϕ =

∫ ∞

0

dω f(ω,x)Ẏω(x), (16)

∂µ(
δL
δµYω

) =
δL
δYω

=⇒ Ÿω + ω2Yω = −f(ω,x) ϕ̇(x). (17)

By solving Eq.(17) and inserting it into Eq.(13), we find a Langevin equation for the Klein-

Gordon field

(�+m2)ϕ(x) +
∂

∂t

∫ t

−∞

dt′ χ(t− t′,x)
∂

∂t′
ϕ(x, t′) = ξ(x), (18)

where χ(τ,x) is the susceptibility function or the memory of the medium with the following

Fourier transform

χ̃(ω,x) =

∫ ∞

0

dω′ f 2(ω′,x)

ω′2 − ω2 + ı0+
. (19)

The source field ξ(x) is defined by

ξ(x) =

∫ ∞

0

dω f(ω,x)Ẏ N
ω (x) (20)

where

Y N
ω (x, t) = cos(ωt)Yω(x, 0) +

sin(ωt)

ω
Ẏω(x, 0). (21)

From Eqs.(20,21), we see that the source field depends on initial values of the reservoir fields

so it can be considered as a noise field. The Green’s function of Eq.(18) satisfies

(�+m2)G(x−x′, t−t′)+
∂

∂t

∫ t

−∞

dt′′ χ(t−t′′,x)
∂

∂t′′
G(x−x′, t′′−t′) = δ(x−x′, t−t′). (22)
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In a homogeneous medium, where the memory function is position independent, Eq.(22) can

be solved easily in reciprocal space

G̃(k, ω) =
1

k2 − ω2 +m2 − ω2χ̃(ω)
=

1

k2 − ω2 +m2 −
∫

dω′ ω2 f2(ω′)
ω′2−ω2+ı0+

=
1

k2 − ω2ǫ(ω) +m2
(23)

where ǫ(ω) = 1 + χ̃(ω) can be considered as the dielectric function corresponding to the

medium. From Eq.(23) it is clear that the Green’s function in the presence of a homogeneous

medium can be obtained from the Green’s function of the free space simply by substituting

ω2 with ω2ǫ(ω). Eq.(18) in frequency-space can be written as

(−∇2 − ω2ǫ(ω,x) +m2)G(x− x′, ω) = δ(x− x′) (24)

In some simple geometries the dielectric function ǫ(ω,x) depends on x as follows

ǫ(ω,x) =







ǫ(ω) if x ∈ Ω

1 if x /∈ Ω
(25)

where Ω is a region or the union of regions where the space is filled with a homogeneous

but frequency dependent medium with the dielectric function ǫ(ω). In this case the Green’s

function can be found in some regular geometries [6] but for an arbitrary dielectric function

it is quite complicated and in this case we find a series solution in terms of free Green’s

function and susceptibility of the medium. Note that in some geometries, electromagnetic

field can be considered as two massless Klein-Gordon fields, and the scalar formalism can

help for example in obtaining Lifshitz energies or Casimir forces in such geometries [7].

B. Partition function

Having the expansion (14) let us find the partition function in the presence of some dielectrics

defined by the dielectric function ǫ(ω,x) which as a special case may be given by (25). The

partition function of a real scalar field in the presence of a medium according to the modified

Green’s function given by (24) can be written as

Ξ =

∫

Dϕe
ı

~
S =

∫

Dϕe
ı

~

∫
d4xL (26)

6



where L is given by (1). The partition function in frequency domain can be written as [14]

Ξ =

∫

Dϕe−
ı

2~

∫
dω

2π

∫
d3x ϕ̃(x,−ω)[−ω2ǫ(ω,x)−∇2+m2]ϕ̃(x,ω). (27)

If we make a Wick rotation ω = ıν in frequency domain the action will be Euclidean and

the free energy can be determined from E = − ~

τ
ln Ξ, where τ is the duration of interaction

which is taken to be sufficiently large. Using standard path-integral techniques we will find

the free energy in finite temperature T as

E = kBT

∞ ′
∑

l=0

ln det[K̂(νl;x,x
′] (28)

where νl = 2πlkbT/~ is the Matsubara frequency, kB is the Boltzman constant and the

prime over the summation means that the term corresponding to l = 0, should be given

a half weight. The kernel K̂(νl; r, r
′) = [ν2

l ǫ(ıνl, r) − ∇2]δ3(r − r′). Using the identity,

ln det[K̂] = tr ln[K̂] and the fact that K̂(νl; r, r
′) = G−1(ıνl; r, r

′) we find

E = −kBT

∞ ′
∑

l=0

tr ln[G(ıνl; r, r
′] (29)

now using the expansion (14), we find the following expansion for free energy in terms of

the susceptibility

E = kBT

∞ ′
∑

l=0

∞
∑

n=1

(−1)n+1

n

∫

d3r1 · · ·d3rnG0(ıνl; r1−r2) · · · G0(ıνl; rn−r1)χ(ıνl, r1) · · ·χ(ıνl, rn)

(30)

where G0(r− r′; ıνl) is given by

G0(ıνl; r− r′) =
1

4π

e−
√

m2+ν2
l
|r−r

′|

|r− r′| (31)

which corresponds to a Yukawa potential with the modified mass
√

m2 + ν2
l .

III. ELECTROMAGNETIC FIELD

In this section we use the Coulomb gauge i.e. ∇·A = 0, A0 = 0 and find a similar expansion

for the Green’s function of the electromagnetic field in the presence of some arbitrary regions

of matter which as an example can have applications in calculating the Casimir forces. For

this purpose let us take the total Lagrangian density as follows [15]

L =
1

2
ǫ0(E

2 − 1

µ0

B2) +
1

2

∫ ∞

0

dω(Ẏω

2
(x)− ω2Yω

2(x)) +

∫

dωf(ω,x)A · Ẏω (32)

7



The interacting generating functional can be written in terms of the vector potential and

the medium fields as

W =

∫

D[A]
∏

ω

D[Yω] exp
ı

~

∫

d4x

{

− 1

2
AiK̂ijAj −

∫ ∞

0

1

2
Yω, i(∂

2
t + ω2) δij Yω,j

+

∫ ∞

0

dωf(ω,x)AiẎω,i + JiAi +

∫ ∞

0

dω Jω, iYω, i

}

(33)

where summation over repeated indices is assumed and the kernel K̂ij is defined by

K̂ij =

[

ǫ0∂
2
0 −

1

µ0
∇2

]

δij +
1

µ0
∂i∂j (34)

Now from the equation

Gij(x, x
′) = (

~

ı
)2

δ2

δJi(x)δJj(x′)
W [J, {Jω}]

∣

∣

∣

∣

j,{jω}=0

. (35)

and similar calculations we will find the following expansion for the Green’s function in

frequency domain

Gij(x− x′, ω) = G 0
ij(x− x′, ω) +

∫

Ω

d3 z1G
0
il(x− z1, ω)[ω

2χ̃(ω, z1)]G
0
lj(z1 − x′, ω) +

∫

Ω

∫

Ω

d3z1d
3z2G

0
il(x− z1, ω)[ω

2χ̃(ω, z1)]G
0
lm(z1 − z2, ω)[ω

2χ̃(ω, z2)]G
0
mj(z2 − x′, ω) + · · ·

(36)

which in matrix form can be written as

G(ω) = G
0(ω) +G

0(ω)[ω2 χ̃(ω)]G 0(ω) +G
0(ω)[ω2 χ̃(ω)]G 0(ω)[ω2 χ̃(ω)]G 0(ω) + · · ·

= G
0(ω)

[

I− ω2 χ̃(ω)G 0(ω)
]−1

. (37)

A. Equations of motion

From Lagrangian density (2) we find the following equations

K̂ijAj =

∫ ∞

0

dω f(ω,x)Ẏω,i (38)

Ÿω,i + ω2Yω,i = −f(ω,x)Ȧi (39)

Solving Eq.(39) and inserting the solution into Eq.(38) we find

K̂ijAj +
∂

∂t

∫ ∞

0

dω f 2(ω,x)

∫

dt′ Gω(t− t′)
∂

∂t′
Ai(t

′) =

∫ ∞

0

dω f(ω,x)Ẏ N
ω,i (40)

8



where

Gω(t− t′) =

∫

dω′

2π

eıω
′(t−t′)

ω2 − ω′2
(41)

and Y N
ω,i is the homogeneous solution of Eq.(39) which depends on the initial values of the

medium fields and can be considered as a noise or fluctuating field which does not affect the

Green’s function. Using Eqs.(20) and (41) we can rewrite Eq.(28) as

K̂ijAj +
∂

∂t

∫ ∞

0

dω′

2π
χ̃(ω′,x)

∫

dt′ eıω
′(t−t′) ∂

∂t′
Ai(t

′) =

∫ ∞

0

dω f(ω,x)Ẏ N
ω,i (42)

which in frequency-domain can be written as

[

(−ǫ0ω
2 − 1

µ0

∇2) δij +
1

µ0

∂i∂j

]

Ãj(x, ω)− ω2χ̃(ω,x)Ãi(ω,x) =

∫ ∞

0

dω ıω f(ω,x)Ỹ N
ω,i(ω,x)

(43)

The Green’s function of Eq.(43) satisfies

[

(−ǫ0(1 + χ̃(ω,x)ω2 δij)−
1

µ0
∇2) δij +

1

µ0
∂i∂j

]

Gjk(x,x
′, ω) =

1

µ0
δ3(x− x′)δij (44)

which using the definitions ǫ(ω,x) = ǫ0[1 + χ̃(ω,x] and c−2 = ǫ0µ0 can be written as

[

−ω2

c2
ǫ(ω,x)δij −∇2δij + ∂i∂j

]

Gjk(x,x
′, ω) = δ3(x− x′)δik, (45)

and it can be easily shown that the Green’s function (36) satisfies Eq.(45).

A similar approach can be followed to find the partition function in terms of the suscep-

tibility of the medium as follows

E = kBT
∞ ′
∑

l=0

∞
∑

n=1

(−1)n+1

n

∫

d3x1 · · ·
∫

d3xnG
0
i1i2

(x1 − x2; ıνl) · · · G0
ini1

(xn − x1; ıνl)

× χ(ıνl,x1) · · ·χ(ıνl,xn), (46)

where the free Green’s function G0
ij(x−x′; ıνl) satisfies Eq.(45) with ǫ(ω,x) = 1 and ω = ıνl.

By defining r = x− x′, we find

G0
ij(r; ıνl) =

ν2
l

c2
e−

νlr

c

4πr

[

δij(1 +
c

νlr
+

c2

ν2
l r|2

)− rirj
r2

(1 +
3c

νlr
+

3c2

ν2
l r

2
)

]

+
1

3
δijδ

3(r). (47)

In zero temperature, the summation over the positive integer l is replaced by an integral

according to the rule ~

∫ ∞

0

dν

2π
f(ιν) → kBT

∞′
∑

l=0

f(ινl). For a nice discussion of Casimir-

Lifshitz interaction between dielectrics of arbitrary geometry see [10].
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B. Covariant formulation

In reference [11] electromagnetic field quantization in a moving medium has been investigated

by considering the medium to be modeled by a continuum of tensor fields. But the medium

can also be modeled by a continuum of scalar fields, i.e., Klein-Gordon fields which we will

follow here. So we consider the electromagnetic field interacting with a moving medium,

a situation which can have applications in dynamic Casimir effects. For this purpose we

consider the following Lorentz invariant Lagrangian density

L(x) = 1

2
∂µAν∂

µAν +
1

2

∫ ∞

0

dω [∂µYω∂
µYω − ω2Y 2

ω ] +

∫ ∞

0

dω fµν(ω,x) Yω∂µAν . (48)

where fµν(ω,x) is an antisymmetric coupling tensor which couples the electromagnetic field

to its medium and is related to the susceptibility of the medium trough Eq.(52). From

Euler-Lagrange equations we find

�Aν = −∂µK
µν(x), (49)

(�+ ω2) Yω(x) = fµν(ω, x)∂µAν(x) (50)

where � = ∂ 2
t − ∇2, and the antisymmetric tensor Kµν(x) =

∫ ∞

0

dω fµν(ω, x)Yω can be

considered as the polarization tensor of the medium. By solving Eq.(50) and inserting it

into Eq.(49) we find

�Aµ(x)−
∫

d4x′ ∂ν ∂
′
α χ

νµαβ(x, x′)Aβ(x
′) = −∂ηK

N,ηµ (51)

where KN,µν =
∫∞

0
dω fµν(ω, x)Y N

ω , and Y N
ω is the homogeneous solution of Eq.(50) which

can be considered as a noise field. The susceptibility tensor χνµαβ(x, x′) is defined by

χ νµαβ(x, x′) =

∫ ∞

0

dω fµν(ω, x)G0
ω(x− x′)fαβ(ω, x′) (52)

where G0
ω(x−x′) is given by Eq.(9). The Green’s function in this case satisfies the following

equation

�Gµν(x− x′)−
∫

d 4x′′ gµδ ∂γ ∂
′′

α χ
γδαβ(x, x′′)Gβν(x

′′ − x) = gµν δ
4(x− x′) (53)

and for the Green’s function we find the following expansion in terms of the susceptibility

tensor

Gµν(x, x
′) = G0

µν(x− x′) +

∫

d 4z1 d
4z2G

0
µν1

(x− z1) Γ
ν1ν2(z1, z2)G

0
ν2ν

(z2 − x′) +
∫

d 4z1 · · · d 4z4G
0
µν1

(x− z1) Γ
ν1ν2(z1, z2)G

0
ν2ν3

(z2 − z3) Γ
ν3ν4(z3, z4)G

0
ν4ν

(z4 − x′) + · · ·

10



where for simplicity we have defined Γν1ν2(z1, z2) = ∂µ1∂µ2χ
µ1ν1µ2ν2(z1, z2). So given the

susceptibility tensor of the medium, one can find the Green’s function perturbatively in

terms of the susceptibility. Having the Green’s function-at least perturbatively- we can

investigate for example the dynamical energy configurations, which is closely related to the

problems of dynamical Casimir effect, which is under consideration.

IV. CONCLUSION

Based on a Lagrangian approach, scalar and vector field theory in the presence of a medium,

modeled by a continuum of Klein-Gordon fields, considered and a series expansion for the

Green’s function of the theory in terms of the susceptibility of the medium obtained. From

the partition function of the scalar field, an expression for the free energy in terms of the

susceptibility of the medium obtained and the formalism generalized to the case of elec-

tromagnetic field in the presence of some dielectrics. Also, the covariant form of the elec-

tromagnetic field in the presence of moving media investigated and an expression for the

Green’s function in terms of the susceptibility tensor obtained which can have applications

in dynamical Casimir effects.
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