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Abstract: This paper is concerned with constructing an optimal controller in the coherent quantum
Linear Quadratic Gaussian problem. A coherent quantum controller is itself a quantum system and is
required to be physically realizable. The use of coherent control avoids the need for classical mea-
surements which inherently entail the loss of quantum information. Physical realizability corresponds
to the equivalence of the controller to an open quantum harmonic oscillator and relates its state-space
matrices to the Hamiltonian, coupling and scattering operators of the quantum harmonic oscillator. The
Hamiltonian parameterization of the controller is combined with Frechet differentiation of the LQG cost
with respect to the state-space matrices to obtain equations for the optimal controller. A quasi-separation
principle for the gain matrices of the quantum controller isestablished, and a Newton-like iterative
scheme for numerical solution of the equations is outlined.
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1. INTRODUCTION

Sensitivity to observation is an inherent feature of quantum
mechanical systems whose state is affected by interaction with
a macroscopic measuring device. This motivates the use of co-
herent quantum controllers to replace the classical observation-
actuation control loop by a measurement-free feedback which
is organized as an interconnection of the quantum plant with
another quantum system.

If such a controller is implemented using quantum-optical com-
ponents (for example, optical cavities and beam splitters)me-
diated by light fields (Gardiner & Zoller (2004)), then it is
dynamically equivalent to an open quantum harmonic oscil-
lator which constitutes a building block of quantum systems
described by linear quantum stochastic differential equations
(QSDEs) (Parthasarathy (1992); Petersen (2010)).

This leads to the notion of physical realizability which im-
poses quadratic constraints on the state-space matrices ofthe
controller (James et al. (2008); Nurdin et al. (2009); Shaiju &
Petersen (2009)), thus complicating the solution of quantum
control problems which are otherwise reduced to appropriate
unconstrained problems for an equivalent classical system. The
links between classical control problems and their quantum
analogues are known, for example, for Linear Quadratic Gaus-
sian (LQG) andH∞-control.

The Coherent Quantum LQG (CQLQG) problem seeks a phys-
ically realizable quantum controller to minimize the average
output “energy” of the closed-loop system per unit time. This
problem has been addressed in (Nurdin et al. (2009)) where
a numerical procedure was proposed for findingsuboptimal
controllers to ensure a given upper bound on the LQG cost.
Instead, the present paper focusses on necessary conditions for
optimality and second order conditions for local strict opti-
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mality of a physically realizable controller and computation of
the optimal controller. Both approaches make use of the fact
that the CQLQG problem is equivalent to a constrained LQG
problem for a classical plant, with the LQG cost computed as
the squaredH2-norm of the system in terms of the controllabil-
ity and observability Gramians satisfying algebraic Lyapunov
equations.

We utilize a Hamiltonian parameterization that relates thestate-
space matrices of a physically realizable controller to thefree
Hamiltonian, coupling and scattering operators of an open
quantum harmonic oscillator (Edwards & Belavkin (2005)). To
obtain equations for the optimal quantum controller, we employ
an algebraic approach, based on the Frechet differentiation of
the LQG cost with respect to the state-space matrices from
(Vladimirov & Petersen (2010)) and similar to (Skelton et al.
(1998)). The resulting equations for the optimal controller
involve the inverse of special self-adjoint operators on matrices
that requires the use of vectorization (Magnus (1988)). Their
spectral properties play an important role in the present study.

Although the optimal CQLQG controller does not inherit the
control/filtering separation principle of the classical LQG con-
trol problem, a partial decoupling of equations for the gain
matrices still holds. Thisquasi-separationproperty leads to a
Newton-like scheme for numerical computation of the quantum
controller that involves the second order Frechet derivative of
the LQG cost which is related to the perturbation of solutions
to algebraic Lyapunov equations.

2. QUANTUM PLANT

We consider a quantum plant with ann-dimensional state
vectorxt, a p-dimensional outputyt and inputswt andηt of
dimensionsm1 andm2. The state and the output are governed
by the QSDEs:
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dxt =Axtdt+B1dwt +B2dηt, (1)

dyt = ztdt+Ddwt, (2)

zt =Cxt. (3)

Here,A ∈ R
n×n, Bk ∈ R

n×mk , C ∈ R
p×n, D ∈ R

p×m1

are constant matrices, andzt is a “signal part” ofyt. The state
dimensionn and the input dimensionsm1 andm2 are even:
n = 2ν, mk = 2µk. The plant state vectorxt is formed by
self-adjoint operators (similar to the position and momentum
operators) and, in the Heisenberg picture of quantum mechan-
ics, evolves in timet. The entries of them1-dimensional vector
wt are self-adjoint quantum Wiener processes (Parthasarathy
(1992)) whose infinitesimal increments compose with each
other according to the Ito table

dwtdw
T
t = Fdt. (4)

Here,F is a complex positive semi-definite Hermitian matrix
which, on the right-hand side of (4), is a shorthand notationfor
F ⊗ I, with I the identity operator on the underlying boson
Fock space and⊗ the tensor product. We assume that vectors
are organized as columns unless indicated otherwise, and the
transpose(·)T acts on vectors and matrices with operator-
valued entries as if the latter were scalars. Also,(·)† := ((·)#)T

denotes the transpose of the entry-wise adjoint(·)#. Associated
with the Hermitian matrixF from (4) are real matrices
S := (F + F )/2 = ReF, T := (F − F )/(2i) = ImF,

where i :=
√
−1 is the imaginary unit, and(·), Re(·) and

Im(·) are the entry-wise complex conjugate, real and imaginary
parts. The symmetric matrixS contributes to the evolution of
the covariance matrix of the plant state vectorxt, whilst T is
antisymmetric and affects the cross-commutations betweenthe
entries ofxt through

[dwt, dw
T
t ] :=dwtdw

T
t − (dwtdw

T
t )

T=(F −FT)dt=2iTdt.

Here, the commutator[α, β] := αβ − βα applies entry-wise,
and the relationFT = F is ensured byF = F ∗. In what
follows, it is assumed thatS = Im1

, andT is canonical in the
sense that

T := Iµ1
⊗ J, J :=

[
0 1
−1 0

]

, (5)

whereIr is the identity matrix of orderr. That is,T is a block
diagonal matrix withµ1 copies ofJ over the diagonal. By
permuting the rows and columns, the matrixT from (5) can
be brought to an equivalent canonical form

T = J⊗ Iµ1
=

[
0µ1

Iµ1

−Iµ1
0µ1

]

, (6)

where0r denotes the(r × r)-matrix of zeros. The canonical
antisymmetric matrixJ of any order satisfiesJ2 = −I. Quan-
tum Wiener processes will be assumed to have the canonical Ito
matrixF = I + iJ .

3. COHERENT QUANTUM CONTROLLER

A measurement-free coherent quantum controller is another
quantum system with an-dimensional state vectorξt with self-
adjoint operator-valued entries whose interconnection with the
plant (1)–(3) is described by QSDEs

dξt = aξtdt+ b1dωt + b2dyt, (7)

dηt = ζtdt+ dωt, (8)

ζt = cξt. (9)

Here,a ∈ R
n×n, b1 ∈ R

n×m2 , b2 ∈ R
n×p, c ∈ R

m2×n, and
ωt is am2-dimensional vector of self-adjoint quantum Wiener
processes which commute with the plant noisewt in (1) and (2).
The combined set of equations (1)–(3) and (7)–(9) describes
the fully quantum closed-loop system in Fig. 1, whose output
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Fig. 1. The quantum closed-loop system described by (1)–(3)
and (7)–(9), where the plant and controller noisesw andω
are commuting quantum Wiener processes.

observables form ap0-dimensional process
Zt = C0xt +D0ζt, (10)

whereC0 ∈ R
p0×n andD0 ∈ R

p0×m2 are given matrices. The
2n-dimensional combined state vectorXt := [xTt ξ

T
t ]

T and the
outputZt of the closed-loop system are therefore governed by
the QSDEs

dXt = AXtdt+ BdWt, Zt = CXt. (11)
Here, the QSDEs are driven by the combined quantum Wiener
processWt := [wT

t ωT
t ]

T with a block diagonal Ito table. The
matricesA, B, C of the closed-loop system (11) are given by

[
A B
C 0

]

=





A B2c B1 B2

b2C a b2D b1
C0 D0c 0 0



 =





A B2c B
bC a bD
C0 D0c 0



 , (12)

where

b := [b1 b2] , B := [B1 B2] , C :=

[
0
C

]

, D :=

[
0 I
D 0

]

. (13)

The dependence ofA, B, C on the controller matricesa, b, c is
equivalently described by

Γ :=

[
A B
C 0

]

= Γ0 + Γ1γΓ2, γ :=

[
a b
c 0

]

. (14)

The affine mapγ 7→ Γ is completely specified by the plant (1)–
(3) through the matrices

Γ0 :=

[
A 0 B
0 0n 0
C0 0 0

]

, Γ1 :=

[
0 B2

In 0
0 D0

]

, Γ2 :=

[
0 In 0
C 0 D

]

. (15)

Using the terminology which will be formally introduced in
Section 7, the mapγ 7→ Γ1γΓ2 in (14) is a grade one linear
operator[[[Γ1,Γ2]]].

4. PHYSICAL REALIZABILITY

A controller (7)–(9) is calledphysically realizable(PR) (James
et al. (2008); Nurdin et al. (2009)), if its state-space matrices
satisfy

aJ0 + J0a
T + bJbT = 0, b1 = J0c

TJ2. (16)
Here,J is a block-diagonal matrix, partitioned in conformance
with the matrixb from (13) as

J := D

[
J1 0
0 J2

]

D
T =

[
J2 0
0 DJ1D

T

]

, (17)

and J0, J1, J2 are fixed real antisymmetric matrices of or-
dersn, m1, m2, which specify the commutation relations for



the controller state variablesξt and the plant and controller
noisesw and ω. For convenience,J0, J1, J2 are assumed
to have the canonical form (5) or (6). The relations (16) de-
scribe the equivalence of the controller to an open quantum
harmonic oscillator and the possibility of its quantum optical
implementation (Gardiner & Zoller (2004)). The first of these
equations is the condition for preservation of the canonical
commutation relations for the state variables of the quantum
harmonic oscillator. The second PR condition, which relates
the matricesb1 andc by a linear bijection, describes the unitary
transformation of the quantum Wiener process at the input of
the quantum harmonic oscillator. The first of the PR conditions
(16), which is a linear equation with respect toa, determinesa
as a quadratic function ofb up to the subspace of Hamiltonian
matrices{a ∈ R

n×n : aJ0 + J0a
T = 0} = J0Sn = SnJ0,

with Sn the subspace of real symmetric matrices of ordern:

a = J0R
︸︷︷︸

Hamiltonian matrix

+ bJbTJ0/2.
︸ ︷︷ ︸

particular solution

(18)

Here,R ∈ Sn specifies the free Hamiltonian operatorH =
ξTt Rξt/2 of the quantum harmonic oscillator (Edwards &
Belavkin, 2005, Eqs. (20)–(22) on pp. 8–9). Since the matrix
bJbT is antisymmetric,bJbTJ0 is skew-Hamiltonian. There-
fore, (18) describes an orthogonal decomposition of the matrix
a into projections onto the subspaces of Hamiltonian and skew-
Hamiltonian matrices in the sense of the Frobenius inner prod-
uct of real matrices〈X,Y 〉 := Tr(XTY ) = 〈XT, Y T〉, with
‖X‖ :=

√

〈X,X〉 the Frobenius norm. From the second PR
condition in (16) and the canonical structure ofJ0 andJ2, it
follows that the matrixc is related tob1 by

c = J2b
T
1 J0 = J2I

TbTJ0, I :=

[
I
0

]

, (19)

where, in view of (13), the matrixI “extracts” b1 from b as
b1 = bI. In combination with the decomposition (18), this
implies that, for a physically realizable quantum controller, the
matrixγ in (14) is completely parameterized by the matricesR
andb as

γ =

[
J0R+ bJbTJ0/2 b

J2I
TbTJ0 0

]

. (20)

In view of the physical meaning ofR, we will refer to (20)
as theHamiltonian parameterizationof the coherent quantum
controller, with theSn × R

n×(m2+p)-valued parameter[R b];
see Fig. 2. The PR conditions (16) are invariant under the
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Fig. 2. This directed acyclic graph describes the dependence of
the LQG costE of the closed-loop system on the matrices
R and b. An oriented edge©α→©β signifies “β depends
onα”. The dashed lines encircle the matrix triplesγ andΓ
defined by (14). The emergence ofR and the dependencies
indicated by double arrows represent the PR conditions
for the quantum controller, witha, b, c being otherwise
independent.

group of similarity transformations of the controller matrices

(a, b, c) 7→ (σaσ−1, σb, cσ−1), whereσ is any real symplectic
matrix of ordern (that is, σJ0σT = J0). This corresponds
to the canonical state transformationξt 7→ σξt; see also
(Simon, 2000, Eqs. (12)–(14)). Any such transformation of a
physically realizable controller leads to its equivalent state-
space representation, with the matrixR transformed asR 7→
σ−TRσ−1.

5. COHERENT QUANTUM LQG CONTROL PROBLEM

The Coherent Quantum LQG (CQLQG) control problem (Nur-
din et al. (2009)) consists in minimizing the average output
“energy” of the closed-loop system (11):

E := lim
t→+∞

(
1

t

∫ t

0

E(ZT
s Zs)ds

)

= Tr(CPCT) = Tr(BTQB)
= −2〈A, G〉 −→ min . (21)

The minimum is taken over then-dimensional controllers (7)–
(9) which make the matrixA in (12) Hurwitz and satisfy the
PR conditions (16). Here,EX := Tr(ρX) is the quantum
expectation over the underlying density operatorρ, andP :=
limt→+∞ ReE(XtXT

t ) is the steady-state covariance matrix of
the state vector of the closed-loop system. Also, we use the
shorthand notation

G := QP, (22)
with P andQ satisfying the algebraic Lyapunov equations

AP + PAT + BBT = 0, ATQ+QA+ CTC = 0, (23)
so that these matrices are the controllability and observability
Gramians of the state-space realization triple(A,B, C). The
fact thatE coincides with the squaredH2-norm of a classical
strictly proper linear time invariant system enables the CQLQG
problem (21) to be recast as a constrained LQG control problem
for an equivalent classical plant. We will employ the smooth
dependence of the costE on the matricesR and b which
govern the Hamiltonian parameterization (20) of a physically
realizable stabilizing controller. The conditions of optimality,
obtained in Section 8, utilize the Frechet differentiationof the
LQG cost with respect to the state-space realization matrices
(Vladimirov & Petersen (2010)) assembled into matrices with
a specific sparsity pattern and an auxiliary class of self-adjoint
operators introduced in Sections 6 and 7.

6. THEΓ SPARSITY STRUCTURE

The subsequent considerations involve Frechet differentiation
with respect to state-space realization matrices assembled into
matrices of the “Γ-shaped” sparsity structure (14). We denote
by

Γr,m,p :=

{[
ϕ σ
τ 0

]

: ϕ ∈ R
r×r, σ ∈ R

r×m, τ ∈ R
p×r

}

(24)

the Hilbert space of real(r + p) × (r + m)-matrices whose
bottom-right block of size(p ×m) is zero. The spaceΓr,m,p,
which is a subspace ofR(r+p)×(r+m), inherits the Frobenius
inner product of matrices. LetΠr,m,p denote the orthogonal
projection ontoΓr,m,p whose action on a(r + p) × (r + m)-
matrix consists in padding its bottom-right(p × m)-block ψ
with zeros:

Πr,m,p

([
ϕ σ
τ ψ

])

=

[
ϕ σ
τ 0

]

. (25)



The subscripts inΓr,m,p and Πr,m,p will often be omit-
ted for brevity. The Frechet derivative∂Xf of a smooth

function Γ ∋
[
ϕ σ

τ 0

]

=: X 7→ f(X) ∈ R is an element of the

same Hilbert space (24) and inherits the sparsity structure:

∂Xf =
[
∂ϕf ∂σf

∂τ f 0

]

.

7. SPECIAL SELF-ADJOINT OPERATORS

For the purposes of Section 8, we associate a linear operator
[[[α, β]]] : Rp×q → R

s×t with a pair of matricesα ∈ R
s×p and

β ∈ R
q×t, by

[[[α, β]]](X) := αXβ. (26)
The map(α, β) 7→ [[[α, β]]] from the direct product of the matrix
spaces to the space of linear operators on matrices is bilinear. If
s = p andt = q, then the spectrum of the operator[[[α, β]]] on
R

p×q consists of the pairwise productsλjµk of the eigenvalues
λ1, . . . , λp andµ1, . . . , µq of the matricesα andβ, so that their
spectral radii are related by

r([[[α, β]]]) = r(α)r(β). (27)
Furthermore, for any positive integerr and matricesα1, . . . , αr ∈
R

s×p andβ1, . . . , βr ∈ R
q×t, we define a linear operator

[[[α1, β1 : . . . : αr, βr]]] :=

r∑

k=1

[[[αk, βk]]], (28)

where the colons separate the pairs of matrices. Of importance
will be self-adjoint linear operators on the Hilbert spaceR

p×q

of the form (28) whereα1, . . . , αr ∈ R
p×p andβ1, . . . , βr ∈

R
q×q are such that for anyk = 1, . . . , r, the matricesαk and

βk are either both symmetric or both antisymmetric. Such an
operator (28) will be referred to as aself-adjoint operator of
grader. The self-adjointness is understood in the sense of the
Frobenius inner product onRp×q and follows from the property
that, in each of the cases(αT, βT) = (±α,±β), the adjoint
[[[α, β]]]† = [[[αT, βT]]] coincides with[[[α, β]]]. In these cases, as
for any self-adjoint operator, the eigenvalues of[[[α, β]]] are all
real.
Lemma 1.If α ∈ R

p×p andβ ∈ R
q×q are both antisymmetric,

then the spectrum of[[[α, β]]] is symmetric about the origin. If
α andβ are both symmetric and positive (semi-) definite, then
[[[α, β]]] is positive (semi-) definite, respectively.

Proof. If α andβ are both antisymmetric, then their eigenval-
uesλ1, . . . , λp andµ1, . . . , µq are all pure imaginary and sym-
metric about the origin (Horn & Johnson (2007)). Hence, the
eigenvaluesλjµk of [[[α, β]]] also form a set which is symmetric
about the origin. By a similar reasoning, ifα andβ are real
positive (semi-) definite symmetric matrices, then their eigen-
values are all real and (nonnegative) positive, and hence, so are
the eigenvalues of[[[α, β]]] which implies its positive (semi-) def-
initeness. Alternatively, the second assertion of the lemma also
follows from the relation[[[α, β]]] = [[[

√
α,

√
β]]]2 which holds

for any positive semi-definite symmetric matricesα ∈ R
p×p

andβ ∈ R
q×q, so that〈X,αXβ〉 = ‖√αX√

β‖2 > 0 for any
X ∈ R

p×q. �

Whilst the operator (26) with nonsingularα andβ is straight-
forwardly invertible:[[[α, β]]]−1 = [[[α−1, β−1]]], the inverse of
M := [[[α1, β1 : . . . : αr, βr]]] from (28) forr > 1 (except for
the case

∑

j,k[[[αj , βk]]] = [[[
∑

j αj ,
∑

k βk]]] which reduces to
a grade one operator, or special Lyapunov operators[[[α, I]]] +
[[[I, α]]] with α = αT which are treated by diagonalizing the ma-
trix α) can only be computed using the vectorization of matrices

(Magnus (1988)) asM−1(Y ) = vec−1(Ξ−1vec(Y )), provided
that the matrixΞ :=

∑r
k=1 β

T
k ⊗ αk is nonsingular. Here,

vec : Rp×q → R
pq is a linear bijection which maps a matrixX

to the vector obtained by writing the columnsX•1, . . . , X•q of
the matrix one underneath the other. The invertibility conditions
for grade two operators is discussed in Appendix A.

8. EQUATIONS FOR THE OPTIMAL CONTROLLER

The necessary conditions for optimality in the class ofn-
dimensional physically realizable stabilizing controllers are
obtained by equating the Frechet derivatives of the LQG costE
with respect toR andb to zero. In view of Fig. 2, the chain rule
allows the differentiation to be carried out in three steps.First,
the matricesA,B,C of the closed-loop system are considered to
be independent variables. Below is an adaptation of Lemma 7
from Appendix B of (Vladimirov & Petersen (2010)) whose
proof is given to make the exposition self-contained.

Lemma 2.Suppose the matrixA in (12) is Hurwitz. Then the
Frechet derivative of the LQG costE from (21) with respect to
the matrixΓ from (14) is

∂ΓE = 2

[
G QB
CP 0

]

. (29)

Here, the matrixG is defined by (22) using the GramiansP ,Q
from (23).

Proof. As discussed in Section 6, the Frechet derivative∂ΓE
inherits the block structure of the matrixΓ:

∂ΓE =

[
∂AE ∂BE
∂CE 0

]

. (30)

We will now compute the blocks of this matrix. To calculate
∂AE, let B andC be fixed. Then the first variation ofE with
respect toA is δE = 〈CTC, δP 〉 = −〈ATQ + QA, δP 〉 =
−〈Q,AδP + (δP )AT〉 = 〈Q, (δA)P + PδAT〉 = 2〈G, δA〉,
which implies that

∂AE = 2G. (31)
To compute∂BE, supposeA and C are fixed. Then the ob-
servability GramianQ, which is a function ofA and C, is
also constant, and the first variation ofE with respect toB is
δE = 〈Q, δ(BBT)〉 = 〈Q, (δB)BT + BδBT〉 = 2〈QB, δB〉,
and hence,

∂BE = 2QB. (32)
The derivative∂CE is calculated by a similar reasoning. As-
suming A and B (and so also the controllability Gramian
P ) to be fixed, the first variation ofE with respect toC is
δE = 〈P, δ(CTC)〉 = 〈P, (δC)TC+CTδC〉 = 2〈CP, δC〉, which
implies that

∂CE = 2CP. (33)
Now, substitution of (31)–(33) into (30) yields (29).�

We will now take into account the dependence of the closed-
loop system matricesA, B, C in (12) on the controller matri-
cesa, b, c, with the latter still considered to be independent
variables. In what follows, the GramiansP andQ in (23), and
the associated matrixG, defined by (22), inherit the four-block
structure of the matrixA from (12). Their blocks have size
(n× n) and are numbered as follows:

G :=

←n→←n→[
G11 G12

G21 G22

]
ln

ln
=
←n→←n→

[G•1 G•2]l2n =

←2n→[
G1•

G2•

]
ln

ln
. (34)



The block(·)11 is related to the state variables of the plant,
while (·)22 pertains to those of the controller. The blocks of the
matrixG in (34) are expressed in terms of the block rows ofQ
and block columns ofP asGjk = Qj•P•k.

Lemma 3.Suppose the matrixA in (12) is Hurwitz. Then the
Frechet derivative ofE from (21) with respect to the matrixγ
from (14) is

∂γE =

[
∂aE ∂bE
∂cE 0

]

= 2

[
G22 G21C

T +Q2•BDT

BT
2 G12 +DT

0 CP•2 0

]

, (35)

where the matricesΓ1, Γ2 are defined by (15);G, P , Q are
given by (22)–(23), and the notation (34) is used.

Proof. SinceE is a composite function ofa, b, c which enter
(21) through the closed-loop system matricesA,B, C, the chain
rule gives

∂γE = (∂γΓ)
†(∂ΓE) = Π(ΓT

1 ∂ΓEΓT
2 ). (36)

Here, (·)† is the adjoint in the sense of the Frobenius inner
product of matrices, andΠ is the orthogonal projection onto
the subspaceΓ defined by (24)–(25). Indeed, the first variation
of the affine mapγ 7→ Γ, defined by (14)–(15), is given by
δΓ = Γ1(δγ)Γ2, which implies that∂γΓ = [[[Γ1,Γ2]]]. Hence,

δE = 〈∂ΓE, δΓ〉 = 〈∂ΓE,Γ1δγΓ2〉
= 〈ΓT

1 ∂ΓEΓT
2 , δγ〉 = 〈Π(ΓT

1 ∂ΓEΓT
2 ), δγ〉,

which establishes (36). Substitution of the matricesΓ1 andΓ2

from (15) and∂ΓE from (29) into the right-hand side of (36)
yields

∂γE = 2Π





[
0 In 0
BT

2 0 DT
0

] [
G QB
CP 0

]




0 C
T

In 0
0 D

T









= 2

[
G22 G21C

T +Q2•BDT

BT
2 G12 +DT

0 CP•2 0

]

,

where Lemma 2 and the notation (34) are also used, which
proves (35).�

Finally, we will utilize the Hamiltonian parameterization(20)
which makesE a function of the matricesR andb; see Fig. 2.

Theorem 4.A physically realizable stabilizing controller, with
Hamiltonian parameterization (20), is a critical point of the
LQG costE from (21) if and only if there exists a real anti-
symmetric matrixΦ such that

G22 =−ΦJ0, (37)

M(b) +G21C
T +Q21BD

T

+J0(G
T
12B2 + P21C

T
0 D0)J2I

T = 0. (38)

Here,

M := [[[Φ, J : Q22,DD
T : J0P22J0, IJ2D

T
0 D0J2I

T]]] (39)

is a self-adjoint operator of grade three, and the notation (28) is
used.

Proof. In view of (20), the symmetric matrixR enters the
controller only througha. Hence,

∂RE = (−J0∂aE+(−J0∂aE)T)/2 = GT
22J0−J0G22, (40)

where the relation∂aE = 2G22 from Lemma 3 is used. Unlike
R, the matrixb both entersa and completely parameterizesc,
and hence,

dE/db= ((∂aE)J0 + J0(∂aE)T)bJ/2 + ∂bE

+J0(∂cE)TJ2I
T

= (G22J0 + J0G
T
22)bJ + 2(G21C

T +Q2•BDT)

+2J0(B
T
2 G12 +DT

0 CP•2)TJ2IT, (41)

where (35) of Lemma 3 is used again. By introducing a real
antisymmetric matrix

Φ := (G22J0 + J0G
T
22)/2, (42)

and recalling (12), (13) and (34), it follows from (41) that

(dE/db)/2 =ΦbJ +G21C
T +Q21BD

T +Q22bDD
T

+J0(G
T
12B2 + P21C

T
0 D0)J2I

T

+J0P22J0bIJ2D
T
0D0J2I

T

=G21C
T +Q21BD

T

+J0(G
T
12B2 + P21C

T
0 D0)J2I

T +M(b),

where (19) and (39) are also used. Therefore,dE/db = 0 is
equivalent to (38). The definition (42), which is consideredas
an equation with respect toG22, determines uniquely the skew-
Hamiltonian part−ΦJ0 ofG22, so thatG22 can be represented
as

G22 = (Ψ− Φ)J0, (43)
where

Ψ := (J0G
T
22 −G22J0)/2 (44)

is a real symmetric matrix of ordern. Direct comparison of (44)
with (40) yields

∂RE = −2J0ΨJ0. (45)
Hence,∂RE = 0 holds if and only ifΨ = 0, in which
case, (43) takes the form of (37). Therefore, the property that
the controller is a critical point ofE (that is,∂RE = 0 and
dE/db = 0) is indeed equivalent to the fulfillment of (37) and
(38) for a real antisymmetric matrixΦ of ordern. �

For a given matrixb in the Hamiltonian parameterization (20)
of the controller, (44) defines a mapR(b) ∋ R 7→ Ψ ∈ Sn on
the set

R(b) := {R ∈ Sn : A is Hurwitz}. (46)
In view of (45), the Frechet derivative of this map with respect
toR is expressed in terms of the second order Frechet derivative
of the LQG cost of the closed-loop system as

∂RΨ = −1

2
[[[J0, J0]]]∂

2
RE, (47)

where we have also used the property that[[[J0, J0]]] is involutory
since [[[J0, J0]]]2 = [[[J2

0 , J
2
0 ]]] = [[[−I,−I]]] = [[[I, I]]] is the

identity operator.

9. A QUASI-SEPARATION PRINCIPLE

The operatorM, which is defined by (39) and acts on the
controller gain matrixb from (13), can be partitioned as

M(b) = [M1(b1) M2(b2)] (48)

into two operators acting separately on the submatricesb1 and
b2. Here,



M1 := [[[Φ, J2 : Q22, I : J0P22J0, J2D
T
0 D0J2]]], (49)

M2 := [[[Φ, DJ1D
T : Q22, DD

T]]] (50)

are self-adjoint operators of grades three and two. This allows
the equation (38) fordE/db = 0 to be split into

M1(b1) +Q21B2 + J0(G
T
12B2 + P21C

T
0 D0)J2 = 0, (51)

M2(b2) +G21C
T +Q21B1D

T = 0, (52)

which are equivalent todE/db1 = 0 anddE/db2 = 0. Note
that (51) corresponds to the equation for the state-feedback
matrix of the standard LQG controller, while (52) corresponds
to the equation for the observation gain matrix, which, in the
conventional LQG control problem, are found by solving two
independent control and filtering algebraic Riccati equations.
The fact, that (51) and (52) are independent linear equations
with respect tob1 and b2, as well as the original partition
(48), can be interpreted as an analogue of the classical LQG
control/filtering separation principle for the CQLQG problem.
In turn, each of the operatorsMk from (49) and (50) can be split
into the sum of self-adjoint operatorsM⋄k andM+

k of grades
one and less one:

M1 :=

M
⋄

1

︷ ︸︸ ︷

[[[Φ, J2]]] +

M
+

1

︷ ︸︸ ︷

[[[Q22, I : J0P22J0, J2D
T
0 D0J2]]], (53)

M2 := [[[Φ, DJ1D
T]]]

︸ ︷︷ ︸

M⋄

2

+ [[[Q22, DD
T]]]

︸ ︷︷ ︸

M
+

2

. (54)

By applying Lemma 1, it follows that the spectrum ofM⋄k
is symmetric about the origin, whileM+

k < 0. Moreover, if
Q22 ≻ 0, or P22 ≻ 0 andD0 in (10) is of full column rank,
thenM+

1 ≻ 0. Indeed, the fulfillment of at least one of these
conditions implies positive definiteness of at least one of the
positive semi-definite operators on the right-hand side of the
representation

M
+
1 = [[[Q22, I]]] + [[[J0P22J

T
0 , J2D

T
0 D0J

T
2 ]]] (55)

which follows fromJ0 andJ2 being antisymmetric matrices.
Similarly, the conditions thatQ22 ≻ 0 andD is of full row
rank ensure thatM+

2 ≻ 0. In particular, by adapting Lemma 5
from Section VIII of (Vladimirov & Petersen (2010)), it follows
that if, in addition to the rank conditions onD0 andD, the
controller state-space realization is minimal, thenQ22 ≻ 0 and
P22 ≻ 0 and hence,M+

1 ≻ 0 andM+
2 ≻ 0. Therefore, in the

cases discussed above, the invertibility of the operatorsM1 and
M2 in (53)–(54) can only be destroyed by the presence of the
indefinite operatorsM⋄1 andM⋄2 if the matrixΦ is large enough
compared toQ22. This can be formulated in terms of the matrix

∆ := Q−122 Φ (56)
whose spectrum is pure imaginary and symmetric about the
origin.
Lemma 5.Suppose the matrixD in (2) is of full row rank and
Q22 ≻ 0. Also, suppose the spectral radius of the matrix∆
from (56) satisfiesr(∆) < 1. Then the operatorsM1 andM2

in (49) and (50) are positive definite.

Proof. Since[[[J0P22J0, J2D
T
0D0J2]]] < 0, and[[[Q22, I]]] ≻ 0

(in view of the assumptionQ22 ≻ 0), then (53) and (55) imply
that

M1 < M
⋄
1 + [[[Q22, I]]] < (1− r(∆))[[[Q22, I]]]. (57)

Here, use is made of the relationr([[[Q22, I]]]
−1

M
⋄
1) =

r(∆)r(J2) = r(∆) which follows from (27) and the property

that the eigenvalues of the canonical antisymmetric matrixJ2
are±i. Therefore, ifr(∆) < 1, then (57) implies thatM1 ≻ 0.
By a similar reasoning, under the additional assumption that
D is of full row rank (that is,DDT ≻ 0), it follows from
(54) and (56) thatM2 < (1 − r(∆))M+

2 ≻ 0. Indeed,
r((M+

2 )
−1

M
⋄
2) = r(∆)r(DJ1D

T(DDT)−1) 6 r(∆) since
−I 4 iJ1 4 I and all the eigenvalues of the Hermitian ma-
trix (DDT)−1/2D(iJ1)D

T(DDT)−1/2 belong to the interval
[−1, 1], so thatr(DJ1DT(DDT)−1) 6 1. �

Assuming invertibility of the operatorsM1 andM2 (for ex-
ample, the fulfillment of conditions of Lemma 5 that ensure
a stronger property – positive definiteness of these operators),
the equations (51) and (52) can be written more explicitly for
b1 andb2:

b1 =−M
−1
1 (Q21B2 + J0(G

T
12B2 + P21C

T
0 D0)J2), (58)

b2 =−M
−1
2 (G21C

T +Q21B1D
T). (59)

These two equations are, in principle, amenable to further
reduction (to be discussed elsewhere) and will be utilized as
assignment operators in the iterative procedure of Section11
for finding the optimal controller.

10. SECOND ORDER CONDITION FOR OPTIMALITY

A second order necessary condition for optimality of the con-
troller with respect to the matrixR of the Hamiltonian param-
eterization (20) is the positive semi-definiteness∂2RE < 0 of
the appropriate second Frechet derivative of the LQG cost (21).
Moreover, the positive definiteness∂2RE ≻ 0 is sufficient for
the local strict optimality. To compute the self-adjoint operator
∂2RE, which acts on the subspaceSn of real symmetric matrices
of ordern, we define a linear operatorJ : Rn×n → R

2n×2n

by

J := [[[

[
0
In

]

J0, [0 In]]]]. (60)

Since the matrixJ0 is antisymmetric, the adjoint ofJ is given

byJ † := −[[[J0 [0 In] ,
[
0

In

]

]]].

Lemma 6.Suppose the matrixA in (12) is Hurwitz. Then the
second Frechet derivative ofE from (21) with respect to the
matrixR from (20) is

∂2RE = 4J †(QLASP + PLATSQ)J . (61)
Here,LA andS are the inverse Lyapunov operator and sym-
metrizer from (B.1) and (B.2), andQ := [[[Q, I]]] andP :=
[[[I, P ]]] are grade one self-adjoint operators (see Section 7) of
the left and right multiplication by the observability and con-
trollability GramiansQ andP of the closed-loop system from
(23).

Proof. The matrixR only enters the costE through the matrix
A of the closed-loop system, withA depending affinely onR,
so that the Frechet derivative ofA with respect toR is described
by the constant operatorJ from (60) as∂RA = J . Hence, (61)
follows from∂2RE = J †∂2AEJ and Lemma 10 of Appendix C.
�

11. A NEWTON-LIKE SCHEME

The equations (58)–(59) can be combined with iterations for
solving the equationΨ = 0 for the matrixΨ from (44), which
is equivalent to the stationarity of the LQG costE with respect



to the matrixR of the Hamiltonian parameterization. The latter
part of the scheme, which finds a rootR ∈ R(b) of the equation
Ψ = 0 from the set (46), can be organized in the form of
Newton-Raphson iterations

R 7→ R− (∂RΨ)−1Ψ. (62)
Here,∂RΨ is a self-adjoint operator computed in (47) whose
inverse is given by

(∂RΨ)−1 = −2(∂2RE)−1[[[J0, J0]]], (63)
where we have again used the involutional property of the
operator[[[J0, J0]]], and the second order Frechet derivative∂2RE
is provided by Lemma 6. If the local strict optimality condition
∂2RE ≻ 0 is satisfied, this ensures well-posedness of the inverse
in (63). Thus the equations (58)–(59), considered as assignment
operators forb1 andb2, and (62) forR, constitute a Newton-
like iterative scheme for numerical computation of the state-
space realization matrices of the optimal CQLQG controller.
These three assignment operators are alternated with updating
the Gramians of the closed-loop system via the appropriate
Lyapunov equations in (23). The order of this alternation will
influence the overall convergence rate of the scheme and is an
important computational resource to be explored. A specific
feature of the algorithm (which is currently under development)
is that it requires the inversion of special self-adjoint operators
on matrices which, in general, can only be carried out via the
vectorization mentioned in Section 7.

12. CONCLUSION

We have obtained equations for the optimal controller in the
Coherent Quantum LQG problem by direct Frechet differen-
tiation of the LQG cost with respect to the pair of matrices
which govern the Hamiltonian parameterization of physically
realizable quantum controllers.

We have investigated spectral properties of special self-adjoint
operators whose inverse plays an important role in the equations
and can only be carried out by using matrix vectorization.

We have established a partial decoupling of these equations
with respect to the gain matrices of the optimal controller,
which can be interpreted as a quantum analogue of the standard
LQG control/filtering separation principle.

Using this quasi-separation property, we have outlined a
Newton-like iterative scheme for numerical computation ofthe
quantum controller. The scheme involves a yet-to-be-explored
freedom of choosing the order in which to perform iterations
with respect to the Hamiltonian and gain matrices of the con-
troller to optimize the convergence rate.

The existence and uniqueness of solutions to the equations for
the state-space realization matrices of the optimal CQLQG con-
troller also remains an open problem and so does their further
reducibility. This circle of questions is a subject of ongoing
research and will be tackled in subsequent publications.
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Appendix A. INVERTIBILITY OF GRADE TWO
SELF-ADJOINT OPERATORS

Lemma 7.Let r = 2 in (28), and let both matricesα1 andβ1
be nonsingular. Then the operatorM := [[[α1, β1 : α2, β2]]] is
invertible if and only if the eigenvaluesλ1, . . . , λp of α−11 α2

and the eigenvaluesµ1, . . . , µq of β2β
−1
1 satisfy

λjµk 6= −1 for all j = 1, . . . , p, k = 1, . . . , q. (A.1)

Proof. In the case of two terms, the operator (28) can be
represented asM := [[[α1, β1 : α2, β2]]] = M1M2, where
M1 := [[[α1, β1]]] andM2 := [[[I, I : α−11 α2, β2β

−1
1 ]]]. The

operatorM1 is invertible in view of the nonsingularity of the
matricesα1 and β1, with M−1

1 = [[[α−11 , β−11 ]]]. Hence, the
invertibility of M is equivalent to that ofM2. In turn, the
operatorM2 is invertible if and only if its spectrum{1 +
λjµk : 1 6 j 6 p, 1 6 k 6 q} does not contain0, which
is equivalent to (A.1).�

By Lemma 7, the nonsingularity of the matrix
∑2

k=1 β
T
k ⊗ αk

of orderpq reduces to a joint property of individual spectra of
two matrices of ordersp andq. This reduction does not hold for
r > 2.

Appendix B. PERTURBATION OF INVERSE LYAPUNOV
OPERATORS

We associate aninverse Lyapunov operatorLA with a Hurwitz
matrix A ∈ R

n×n, so thatLA maps a matrixM ∈ R
n×n

to the unique solutionN of the algebraic Lyapunov equation
AN +NAT +M = 0:

LA(M) :=

∫ +∞

0

eAtMeA
Ttdt. (B.1)



The adjoint ofLA in the Hilbert spaceRn×n with the Frobenius
inner product of matrices isL†A = LAT . SinceLA commutes
with the transpose, that is,LA(M

T) = (LA(M))T, then it also
commutes with asymmetrizerS defined by

S(M) := (M +MT)/2. (B.2)

The operatorS : Rn×n → Sn is the orthogonal projection onto
the subspace of real symmetric matrices of ordern.

Lemma 8.The Frechet derivatives of the controllability and
observability GramiansP andQ of an asymptotically stable

system(A,B,C) with respect to the matrixΓ :=
[
A B

C 0

]

are

expressed in terms of (B.1) and (B.2) as

∂ΓP = 2LAS[[[[I 0] ,

[
P
BT

]

]]], (B.3)

∂ΓQ= 2LATS[[[
[

Q CT
]
,

[
I
0

]

]]]. (B.4)

Proof. The Frechet differentiability ofP andQ is ensured
by the assumption thatA is Hurwitz. By considering the first
variation of the algebraic Lyapunov equationAP + PAT +
BBT = 0, it follows that

0 =AδP + (δA)P + (δP )AT + PδAT + (δB)BT +BδBT

=AδP + (δP )AT + [δA δB]

[
P
BT

]

+ [P B]

[
δAT

δBT

]

=AδP + (δP )AT + 2S
(

[δA δB]

[
P
BT

])

.

This is an algebraic Lyapunov equation with respect toδP
with the same matrixA, which yields (B.3) in view of the
identity [A B] = [I 0] Γ. The relation (B.4) can be obtained
by a similar reasoning from the first variation of the Lyapunov
equation for the observability GramianQ, or from (B.3) by
using the duality betweenP andQ. �

Appendix C. SECOND ORDER FRECHET DERIVATIVE
OF THE LQG COST

Lemma 9.The second Frechet derivative of the squaredH2-
normE := ‖(A,B,C)‖22 of an asymptotically stable system

with respect to the matrixΓ :=
[
A B

C 0

]

is computed as

∂2ΓE = 4[[[

[
I
0

]

, [P B]]]]LATS[[[
[

Q CT
]
,

[
I
0

]

]]]

+4[[[

[
Q
C

]

, [I 0]]]]LAS[[[[I 0] ,

[
P
BT

]

]]]

+2[[[

[
Q 0
0 I

]

,

[
0 0
0 I

]

:

[
0 0
0 I

]

,

[
P 0
0 I

]

]]]. (C.1)

Here,LA andS are the inverse Lyapunov operator and sym-
metrizer defined by (B.1), (B.2), andP = LA(BB

T) andQ =
LAT(CTC) are the controllability and observability Gramians
of the system.

Proof. Lemma 2 implies that the first variation of the Frechet
derivative∂ΓE is computed as

δ∂ΓE/2= δ

[
QP QB
CP 0

]

=

[
I
0

]

δQ [P B] +

[
Q
C

]

δP [I 0] +

[
0 QδB

(δC)P 0

]

.

(C.2)

The representation (C.1) can now be obtained from (C.2) by
using the Frechet derivatives of the Gramians from Lemma 8 of
Appendix B and the identity
[

0 QδB
(δC)P 0

]

=

[
Q 0
0 I

]

δΓ

[
0 0
0 I

]

+

[
0 0
0 I

]

δΓ

[
P 0
0 I

]

. �

Lemma 10.The second Frechet derivative of the squaredH2-
normE := ‖(A,B,C)‖22 of an asymptotically stable system
with respect toA is

∂2AE = 4R, R := QLASP + PLATSQ. (C.3)

Here,LA andS are the inverse Lyapunov operator and sym-
metrizer from (B.1) and (B.2), and

Q := [[[Q, I]]], P := [[[I, P ]]] (C.4)

are grade one self-adjoint operators (see Section 7) of the left
and right multiplication of a matrix by the observability and
controllability GramiansQ andP of the system.

Proof. Since∂AE = 2QP , then by using Lemma 8, it follows
that the first variation of the Frechet derivative∂AE with
respect toA is

δ∂AE = 2(QδP + (δQ)P )

= 4(QLAS((δA)P ) + LATS(Q(δA))P )

= 4(QLASP + PLATSQ)(δA),

which establishes (C.3). Alternatively, (C.3) can also be ob-
tained from (C.1) of Lemma 9.�

The linear operatorsQ andP defined by (C.4) are positive
semi-definite and commute with each other. At least some
eigenvalues of the self-adjoint operatorR in (C.3) are pos-
itive, sinceR(A) = −G and 〈A,R(A)〉 = −〈A,G〉 =
‖(A,B,C)‖22/2 > 0.


