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Abstract: This paper is concerned with constructing an optimal cdletran the coherent quantum
Linear Quadratic Gaussian problem. A coherent quantunralbetis itself a quantum system and is
required to be physically realizable. The use of coherentrobavoids the need for classical mea-
surements which inherently entail the loss of quantum méttion. Physical realizability corresponds
to the equivalence of the controller to an open quantum haitrascillator and relates its state-space
matrices to the Hamiltonian, coupling and scattering ajpesaof the quantum harmonic oscillator. The
Hamiltonian parameterization of the controller is combiméth Frechet differentiation of the LQG cost
with respect to the state-space matrices to obtain equsiothe optimal controller. A quasi-separation
principle for the gain matrices of the quantum controlleesablished, and a Newton-like iterative
scheme for numerical solution of the equations is outlined.
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1. INTRODUCTION mality of a physically realizable controller and computatof
the optimal controller. Both approaches make use of the fact

Sensitivity to observation is an inherent feature of quantuthat the CQLQG problem is equivalent to a constrained LQG
mechanical systems whose state is affected by interaciibn wproblem for a classical plant, with the LQG cost computed as
a macroscopic measuring device. This motivates the use-of dbe square@{»-norm of the system in terms of the controllabil-
herent quantum controllers to replace the classical ohtien ity and observability Gramians satisfying algebraic Lyapu
actuation control loop by a measurement-free feedbackiwhiequations.
is organized as an interconnection of the quantum plant wi

\W/e utilize a Hamiltonian parameterization that relatesstiaée-
another quantum system.

space matrices of a physically realizable controller toftke
If such a controller is implemented using quantum-opticahe Hamiltonian, coupling and scattering operators of an open
ponents (for example, optical cavities and beam splitters) quantum harmonic oscillator (Edwards & Belavkin (2005)). T
diated by light fields (Gardiner & Zoller (2004)), then it is obtain equations for the optimal quantum controller, we lepp
dynamically equivalent to an open quantum harmonic osciin algebraic approach, based on the Frechet differentiafio
lator which constitutes a building block of quantum system#ie LQG cost with respect to the state-space matrices from
described by linear quantum stochastic differential eiquat (Vladimirov & Petersen (2010)) and similar to (Skelton et al
(QSDEs) (Parthasarathy (1992); Petersen (2010)). (1998)). The resulting equations for the optimal controlle

. . ) L .. involve the inverse of special self-adjoint operators oirives
This leads to the notion of physical realizability which im-¢+ requires the use of vectorization (Magnus (1988)).ifThe

poses quadratic constraints on the state-space matrideg ofS ectral properties play an important role in the preseryst
controller (James et al. (2008); Nurdin et al. (2009); Sh&ij P prop pay P P

Petersen (2009)), thus complicating the solution of quantuAlthough the optimal CQLQG controller does not inherit the
control problems which are otherwise reduced to apprapriagontrolffiltering separation principle of the classical G@on-
unconstrained problems for an equivalent classical systér trol problem, a partial decoupling of equations for the gain
links between classical control problems and their quantumatrices still holds. Thigjuasi-separatiomproperty leads to a
analogues are known, for example, for Linear Quadratic Gaullewton-like scheme for numerical computation of the quantu
sian (LQG) andH .-control. controller that involves the second order Frechet dexigaif

the LQG cost which is related to the perturbation of solugion
The Coherent Quantum LQG (CQLQG) problem seeks a phygs algebraic Lyapunov equations.

ically realizable quantum controller to minimize the aw®a

output “energy” of the closed-loop system per unit time.sThi

problem has been addressed in (Nurdin et al. (2009)) where 2. QUANTUM PLANT

a numerical procedure was proposed for findgupoptimal

controllers to ensure a given upper bound on the LQG codife consider a quantum plant with andimensional state
Instead, the present paper focusses on necessary coaddron vector x;, a p-dimensional outpuy,; and inputsw; andn; of
optimality and second order conditions for local strictiopt dimensionsn, andms. The state and the output are governed
by the QSDEs:
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dz; = Az, dt + Bidw; + Bodmny, (1) Here,a € R™*™, by € R"*™2 by, € R*"P, ¢ € R™*" and

dy; = zdt + Ddw, 2) is am2-dim_ensi0nal vecto_r of self-adjoin_t q_uantum Wiener

‘ ’ processes which commute with the plant neigén (1) and (2).

zp = Cly. (3)  The combined set of equations (1)—(3) and (7)—(9) describes
Here,A € R™*", B, € R"™™m: (' e RP*"n, D ¢ Rpxm1  the fully quantum closed-loop system in Fig. 1, whose output
are constant matrices, angdis a “signal part” ofy,. The state v
dimensionn and the input dimensions,; andms are even: plant w
n = 2v, m, = 2u. The plant state vector; is formed by
self-adjoint operators (similar to the position and moroemt n controlle
operators) and, in the Heisenberg picture of quantum mechan

ics, evolves in time. The entries of then;-dimensional vector
wy are self-adjoint quantum Wiener processes (Parthasarathy

(1992)) who_se infinitesimal increments compose with eaqlaig. 1. The quantum closed-loop system described by (1)—(3)
other according to the lto table and (7)—(9), where the plant and controller noigeandw
dwtdw;F = Fdt. 4) are commuting quantum Wiener processes.

Here, I is a complex positive semi-definite Hermitian matrix,pservables form a,-dimensional process

which, on the right-hand side of (4), is a shorthand notafigon Z — Coz, 4+ D (10)

F ® T, with Z the identity operator on the underlying boson t = Coxe + DoGy, .

Fock space and the tensor product. We assume that vector&hereCo € R and Dy € RPo*™> are given matrices. The

are organized as columns unless indicated otherwise, @nd #f-dimensional combined state vecty := [z, ¢;]" and the

transpose(-)T acts on vectors and matrices with operatorOUtPutZ; of the closed-loop system are therefore governed by

valued entries as if the latter were scalars. Alsg, .= ((-)#)T  the QSDEs

denotes the transpose of the entry-wise adjpirt. Associated dXy = AXydt + BdWy, Zy = CA;. (11)

with the Hermitian matrix” from (4) are real matrices Here, the QSDEs are driven by the combined quantum Wiener
S:=(F+F)/2=ReF, T:=(F-TF)/(2i)=ImF, processV; := [wl wl]™ with a block diagonal Ito table. The

wherei = =T is the imaginary unit, ancﬂ, Re() and matricesA, B, C of the closed-loop system (11) are given by

Im(-) are the entry-wise complex conjugate, real and imaginary A B.e|B B A Boc| B
parts. The symmetric matrig contributes to the evolution of A|B — lwc 5 b lD b2 _ | ; D | | (12)
the covariance matrix of the plant state vecty whilst T" is Cl0 éo Doc| 20 01 Co Docl 0 )

antisymmetric and affects the cross-commutations betwhezn
entries ofz; through where

[dwy, dw] ] :=dw;dw} — (dwydw!) T = (F — FT)dt =2iTdt. bbbl BB Bl Coe 9] D 0 I 13
Here, the commutatdry, 8] := a3 — Sa applies entry-wise, =~ (b1 2], Bi=[B1 B], Ci= ||, D= D 0] (13)
and the relationF™ = F is ensured byF = F*. In what The dependence of, 3, C on the controller matrices, b, ¢ is
follows, it is assumed thaf = I,,,,, andT is canonical in the equivalently described by
sense that AB
I':= [

— Ty 4+ TiATs, — . @4
T, @7, J:_{O 1}7 5) CO} o +T17Is 0 [CO_ (14)

_ ) ) ) -0 ) ) The affine mapy — I' is completely specified by the plant (1)—
wherel, is the identity matrix of order. That s, T is a block  (3) through the matrices

diagonal matrix withyu; copies ofJ over the diagonal. By

a b

permuting the rows and columns, the matfixirom (5) can A 0B 0 Bs 07 0
be brought to an equivalent canonical form To:=100,0(,Ty:=1|I, 0], Ty:= (g N (15))
" ’ " ’ Co0D
T Jel — 0p I, : Co 00 0 Dy
=d O = —1,, 04 |7 6) Using the terminology which will be formally introduced in

where(, denotes ther x r)-matrix of zeros. The canonical Sectiotn 71;th1§ map — I'7T2 in (14) is a grade one linear
antisymmetric matrix/ of any order satisfieg? = —I. Quan- °P€rd o'y, 2]
tmuzrar:rYXi;nerIpfggsses will be assumed to have the canorocal It 4. PHYSICAL REALIZABILITY

= 1.

A controller (7)—(9) is calleghhysically realizabldPR) (James

3. COHERENT QUANTUM CONTROLLER et al. (2008); Nurdin et al. (2009)), if its state-space mas
satis
A measurement-free coherent quantum controller is another fy
quantum system with a-dimensional state vectgr with self- aJo + Joa™ +bJbT =0, by = Joct ;. (16)

adjoint operator-valued entries whose interconnectidh thie

plant (1)—(3) is described by QSDEs Here,J is a block-diagonal matrix, partitioned in conformance

with the matrixb from (13) as
J1 0 Jo 0
d¢; = a&dt + b1d badyy, 7 = L T —
& = a&dt + bydwy + bady; (7 J: D[O JQ]D {0 DJ1DT]’ (17)
dne = Gedt + duwr, (8) and Jy, J1, Jo are fixed real antisymmetric matrices of or-
(= c&;. (9) dersn, my, ma, which specify the commutation relations for



the controller state variables and the plant and controller (q,b,c) — (cac~t,ob,co™!), wheres is any real symplectic
noisesw and w. For convenience/y, Ji, Jo are assumed matrix of ordern (that is,cJooT = .Jp). This corresponds
to have the canonical form (5) or (6). The relations (16) deto the canonical state transformatign — o&;; see also
scribe the equivalence of the controller to an open quantu8imon, 2000, Egs. (12)—(14)). Any such transformation of a
harmonic oscillator and the possibility of its quantum ogti physically realizable controller leads to its equivaletstes-
implementation (Gardiner & Zoller (2004)). The first of tees space representation, with the matfixtransformed ast —
equations is the condition for preservation of the candnicag—TRs—1!,

commutation relations for the state variables of the quantu

harmonic oscillator. The second PR condition, which relate 5, COHERENT QUANTUM LQG CONTROL PROBLEM

the matrice$; andc by a linear bijection, describes the unitary

transformation of the quantum Wiener process at the input ¥he Coherent Quantum LQG (CQLQG) control problem (Nur-
the quantum harmonic oscillator. The first of the PR condiio din et al. (2009)) consists in minimizing the average output
(16), which is a linear equation with respecttodetermines:.  “energy” of the closed-loop system (11):

as a quadratic function @fup to the subspace of Hamiltonian

matrices{a € R"*" : aJy + Joat = 0} = JoS,, = SpJo, ) 1 /[t "
with S,, the subspace of real symmetric matrices of order E:= lim |- /0 E(Z; Z,)ds
_ T

Hamiltonian matrix  particular solution

Here, R € S, specifies the free Hamiltonian operatbr =
¢FR¢;/2 of the quantum harmonic oscillator (Edwards &
Belavkin, 2005, Eqgs. (20)—(22) on pp. 8-9). Since the matri
bJbT is antisymmetricpJbT J, is skew-Hamiltonian. There-

= —2(A,G) — min. (21)
The minimum is taken over the-dimensional controllers (7)—
9) which make the matrix4 in (12) Hurwitz and satisfy the
R conditions (16). HereEX := Tr(pX) is the quantum
expectation over the underlying density operatpand P :=
lim;_, oo ReE(X; ;1) is the steady-state covariance matrix of

L . . S Yhe state vector of the closed-loop system. Also, we use the
Hamiltonian matrices in the sense of the Frobenius 'nnedproshorthand notation

uct of real matrices X, Y) := Tr(XTY) = (XT,YT), with

_ G:=QP, (22)
1X]| == +/{X, X) the Frobenius norm. From the second PRy, p and() satisfying the algebraic Lyapunov equations
condition in (16) and the canonical structure fyf and .Js, it T T T T
follows that the matrix: is related toh, by AP+ PA" +BB =0, A'Q+QA+C C=0, (23)
I so that these matrices are the controllability and obsdityab
c = Jobl Jo = JoIT b1 Jp, I:= [O} , (19) Gramians of the state-space realization triflg B,C). The

o _ fact thatE coincides with the squaret,-norm of a classical
where, in view of (13), the matrif “extracts”b, from b as strictly proper linear time invariant system enables thd QG

by = bL In combination with the decomposition (18), thisproblem (21) to be recast as a constrained LQG control pnoble
implies that, for a physically realizable quantum contolthe  for an equivalent classical plant. We will employ the smooth
matrixy in (14) is completely parameterized by the matriées dependence of the codt on the matricesk and b which

andb as T govern the Hamiltonian parameterization (20) of a physical
_ |:J0R +2Jg Jo/2 b} . (20) realizable stabilizing controller. The conditions of apiity,
JI70"Jy 0 obtained in Section 8, utilize the Frechet differentiatadrihe

In view of the physical meaning aR, we will refer to (20) LQG cost with respect to the state-space realization nesric
as theHamiltonian parameterizatioof the coherent quantum (Vladimirov & Petersen (2010)) assembled into matricegiwit
controller, with theS,, x R™*(m2+P)_valued parametdi? b]; @ specific sparsity pattern and an auxiliary class of sqtfatl
see Fig. 2. The PR conditions (16) are invariant under th@perators introduced in Sections 6 and 7.

6. THET SPARSITY STRUCTURE

The subsequent considerations involve Frechet diffeatiali
with respect to state-space realization matrices assenniie
matrices of the I"-shaped” sparsity structure (14). We denote

by

I‘T,m,p = {[f g:| ) (S RTXT’ = Rrxm’ Te RPXT}(24)

Fig. 2. This directed acyclic graph describes the deperelehc i i
the LQG cost of the closed-loop system on the matriceshe Hilbert space of realr + p) x (r + m)-matrices whose
R andb. An oriented edgen)— @ signifies 3 depends bottom-right block of sizép x m) is zero. The spacE,., p,
ona”. The dashed lines encircle the matrix tripleandl” ~ Which is a subspace @& (" #)*("*+™) inherits the Frobenius
defined by (14). The emergence®find the dependencies inner product of matrices. Ldi, ,, , denote the orthogonal
indicated by double arrows represent the PR conditiorojection ontal’,.,, , whose action on & + p) x (r + m)-
for the quantum controller, witl, b, ¢ being otherwise Mmatrix consists in padding its bottom-righi x m)-block 1
independent. with zeros:

Lo . . II voly =179 (25)
group of similarity transformations of the controller meds mTP A T ) T 0"



The subscripts inl',,, , and IL, ,, , will often be omit- (Magnus (1988))agt~1(Y) = vec }(Z lvec(Y)), provided
ted for brevity. The Frechet derivativex f of a smooth that the matrix= := >_,_, B ® ax is nonsingular. Here,
functionT 3 | 7| =: X + f(X) € R is an element of the Vec: RP*? — RP? is a linear bijection which maps a matti

rto the vector obtained by writing the colur_mel,_ o, Xeg of
00 f O f the matrix one underneath the other. The invertibility doods
Oxf= [af'f 0 } for grade two operators is discussed in Appendix A.

same Hilbert space (24) and inherits the sparsity structu

7. SPECIAL SELF-ADJOINT OPERATORS 8. EQUATIONS FOR THE OPTIMAL CONTROLLER

For the purposes of Section 8, we associate a linear operaife necessary conditions for optimality in the classref

[o, 5] : Ry — R* with @ pair of matricesy € R**? and  dimensional physically realizable stabilizing contredleare

B € R, by obtained by equating the Frechet derivatives of the LQG Eost
[o, BI(X) == aXB. (26)  with respect tak andb to zero. In view of Fig. 2, the chain rule

The map(a, ) — [la, ] from the direct product of the matrix allows the differentiation to be carried out in three stéfist,

spaces to the space of linear operators on matrices isdlitie the matrices4, B, C of the closed-loop system are considered to

s = p andt = g, then the spectrum of the operaffr, 3] on  be independent variables. Below is an adaptation of Lemma 7

RP*? consists of the pairwise productsy, of the eigenvalues from Appendix B of (Vladimirov & Petersen (2010)) whose

A1y, Apandpuy, .. ., p, of the matricesy andgs, so that their - proofis given to make the exposition self-contained.
spectral radii are related by Lemma 2.Suppose the matrixd in (12) is Hurwitz. Then the
r([o, 8]) = r(a)r(B). (27)  Frechet derivative of the LQG cost from (21) with respect to
Furthermore, for any positive integeand matrices, . .., «,. € the matrixI” from (14) is
R**P andpy, ..., 3. € R?*t, we define a linear operator G OB
, 5rE=2[CPQO] (29)
oo B = , , 28 L . . .
o, 5 ar il ;mak bl (28) Here, the matrixG is defined by (22) using the GramiafRs @

where the colons separate the pairs of matrices. Of imp(I:IEtanfrom (23).

will be self-adjoint linear operators on the Hilbert spdtiec? Proof. As discussed in Section 6, the Frechet derivativé

of the form (28) wherex,, ..., o, & RP”? andBl_, --+»Br € inherits the block structure of the matiix

R?*%4¢ are such that for any = 1,...,r, the matricesy, and OAE OnE

B are either both symmetric or both antisymmetric. Such an OrE = {BAE % } . (30)
operator (28) will be referred to asself-adjoint operator of C

grader. The self-adjointness is understood in the sense of thie will now compute the blocks of this matrix. To calculate
Frobenius inner product dk?*? and follows from the property d4F, let B andC be fixed. Then the first variation df with
that, in each of the casda™, 5T) = (+a,+p), the adjoint respect tad is 6E = (CTC,0P) = —(ATQ + QA,5P) =
[, BIT = [[@™, BT] coincides with[[a, 5]. In these cases, as —(Q, AJP + (0P)AT) = (Q, (JA)P + PSAT) = 2(G,5A),
for any self-adjoint operator, the eigenvaluedjof 5] are all which implies that

real. OAE = 2G. (31)
Lemma 1.If o € RP*P andf € R?*? are both antisymmetric, To computedg E, supposed andC are fixed. Then the ob-
then the spectrum dfe, 5] is symmetric about the origin. If servability Gramian?, which is a function ofA andC, is

« andg are both symmetric and positive (semi-) definite, thealso constant, and the first variation Bfwith respect ta53 is

[, B] is positive (semi-) definite, respectively. SE = (Q,8(BBY)) = (Q, (6B)BT + BsBT) = 2(QB,iB),
and hence,

Proof. If oo andg are both antisymmetric, then their eigenval- osE = 20QB. (32)

uesAq, ..., Ap andus, ..., g are all pure imaginary and sym-

. br The derivativedc F is calculated by a similar reasoning. As-
metric about the origin (Horn & Johnson (2007)). Hence, thguming A and ;3 (and so also thye controllability Grgmian

eigenvalues,; i of [, A also form a set which is symmetric P) to be fixed, the first variation off with respect toC is
about the origin. By a similar reasoning,df and 5 are real 5E = (P §(CTé)) — (P, (5C)TC+CT5C) = 2(CP, 6C), which
positive (semi-) definite symmetric matrices, then thejreer implies t7hat ’ e
values are all real and (nonnegative) positive, and hecares O E — 2CP (33)
the eigenvalues dfo, 5] which implies its positive (semi-) def- . cm = e )

initeness. Alternatively, the second assertion of the leratao  NOW; substitution of (31)—(33) into (30) yields (2.

follows from the relationa, 3] = [V, v/B]* which holds
for any positive semi-definite symmetric matricese R?P*?P
andps € R?%9, so that{ X, aX ) = ||\/aX/B||? > 0 for any
X e RPN

We will now take into account the dependence of the closed-
loop system matricegl, 5, C in (12) on the controller matri-
cesa, b, ¢, with the latter still considered to be independent
variables. In what follows, the Gramiasand( in (23), and

Whilst the operator (26) with nonsingularand 3 is straight- the associated matrix, defined by (22), inherit the four-block
forwardly invertible:[[a, 8] ! = [ ', 3], the inverse of Structure of the matrix4 from (12). Their blocks have size

M :=[a,Bi : ... : a3, from (28) forr > 1 (except for (7 x n)and are numbered as follows:

the case)_; , [a;, Bk]] = [>2; ;. 32, Bl which reduces to s ns s

a grade one operator, or special Lyapunov operdiard] + G G Gi2|1" _ [“GngHngn _ |G|l (34)
[I,a] with o = o™ which are treated by diagonalizingthe ma- ~ ~ |Ga1 Ga2|]n ol Tre2 Gae|ln"

trix ) can only be computed using the vectorization of matrices



The block(-)1; is related to the state variables of the plantwhere the relatiod, E = 2G>, from Lemma 3 is used. Unlike
while (-)22 pertains to those of the controller. The blocks of the?, the matrixb both enters: and completely parameterizes
matrix G in (34) are expressed in terms of the block rowg)of and hence,

and block columns of asGji;, = Qje Pe.

Lemma 3.Suppose the matrixd in (12) is Hurwitz. Thenthe  dE/db= (3. E)Jo + Jo(0u E) )b.J/2 + O, E

Ez)enﬁrz(letél ;i;esrivative of’ from (21) with respect to the matrix (0 E)T 11T
= (GoaJy + JoGa)bJ 4 2(G21CT + Q2BDT)
0, = [gag BZE)E:| +2J0(BY Gra + DEYCPy) T JoI7, (41)
¢ T . where (35) of Lemma 3 is used again. By introducing a real
9 G2 G C7 + QoeBD 7| (35 antisymmetric matrix
B3 Giz + Dy CPe 0 ’

® = (GoaJo + JoGy)/2, (42)

where the matrice§,, I'; are defined by (15)7, P, Q@ are ., recalling (12), (13) and (34), it follows from (41) that

given by (22)—(23), and the notation (34) is used.
Proof. SinceF is a composite function af, b, ¢ which enter (dE/db)/2 = ®bJ + G21CT + Q21 BDT + Qo:bDD™

(22) through the closed-loop system matriges3, C, the chain +Jo(GLBy + Py CT Dy) JoIT

rule gives 12 . 0 "

Here, () is the adjoint in the sense of the Frobenius inner =GnC" +QuBD

product of matrices, anfll is the orthogonal projection onto +Jo(GTyBy + Po1 Cf Do) JoIT + M (b),

the subspact¥ defined by (24)—(25). Indeed, the first variatio
of the affine mapy — T, defined by (14)—(15), is given by
0T = T'1(07)I'2, which implies that,T" = [[I';, I's]]. Hence,

"Where (19) and (39) are also used. Therefd®/db = 0 is
equivalent to (38). The definition (42), which is consideasd
an equation with respect té2, determines uniquely the skew-
Hamiltonian part-®J, of G252, so thatGGy, can be represented

0E = (OrE,T) = (OrE,T109T) as
= (1O BTy, 6v) = (II(I'{ 9 BT ), 0v), G = (¥ — @)Jo, (43)
which establishes (36). Substitution of the matrifgsandl’,  Where
from (15) andor E from (29) into the right-hand side of (36) U= (JoGay — GazJo)/2 (44)
yields is a real symmetric matrix of order. Direct comparison of (44)

with (40) yields

KE=2T1pr o prilce o || Y, Hence,dzE — 0 holds if and only if¥ — 0, in which
0D case, (43) takes the form of (37). Therefore, the propedy th

Gas G21CT + Q2.BDT the controller is a critical point oF (that is,0rE = 0 and
=2 BTG,y + DYCP., 0 v dE/db = 0) is indeed equivalent to the fulfillment of (37) and
2 0 ) _(38) for a real antisymmetric matrik of ordern. B
where Lemma 2 and the notation (34) are also used, which

proves (35)H For a given matrix in the Hamiltonian parameterization (20)

. e L . of the controller, (44) definesa map(b) > R — ¥ € S,, on
Finally, we will utilize the Hamiltonian parameterizati¢20) ihe set (44) ()

which makesE a function of the matrice® andb; see Fig. 2.

Theorem 4.A physically realizable stabilizing controller, with
Hamiltonian parameterization (20), is a critical point bkt
LQG costFE from (21) if and only if there exists a real anti-
symmetric matrixp such that

R(b) :={R €S, : AisHurwitz}. (46)
In view of (45), the Frechet derivative of this map with respe

to R is expressed in terms of the second order Frechet derivative
of the LQG cost of the closed-loop system as

1
OrY = —=[Jo, J]OLE, (47)
Gy =—-2Jy, (37) 2 .
where we have also used the property fh&t Jo] is involutory

T T
M(b) + G21C* + Q21BD since [Jo, Jo]> = [J2,J3] = [-1.-1I] = [I.1] is the
+Jo(GL, By 4+ PoyCY Do) JoIT = 0. (38) identity operator.
Here,
M = [®,J : Quz, DDT : JoPysJo, 11s DI Dy JoIT]  (39) 9. A QUASI-SEPARATION PRINCIPLE
LISSZSeIf-adJomtoperatorofgradethree, and the nota8ji6 The operatom, which is defined by (39) and acts on the

controller gain matrix from (13), can be partitioned as
Proof. In view of (20), the symmetric matribxR enters the M(b) = [M1(b1) M2 (b2)] (48)

controller only througfa. Hence, into two operators acting separately on the submatficesd
ORE = (= Jo0,E+(=Jod.E)V) /2 = G, Jo — JoGaa, (40)  by. Here,



My = [®, Jo : Qao, T : JoPasJo, JoDT Do Jo]),  (49) that the eigenvalues of the canonical antisymmetric maksix
are=i. Therefore, ifr(A) < 1, then (57) implies tha®t;, > 0.

., T . T
My :=[@,D1D" : Q22, DD7]] (50) By a similar reasoning, under the additional assumption tha

are self-adjoint operators of grades three and two. Thisvall D is of full row rank (that is,DDT = 0), it follows from

the equation (38) fod £/db = 0 to be splitinto (54) and (56) thathly = (1 — r(A))9M5 = 0. Indeed,

r((O)7MS) = r(A)r(DJS DT (DDT)Y) < r(A) since
M1(b1) + Q21B2 + JO(GTQBQ + P21COTD0)J2 =0, (61) —I =x iJ1 < I and all the eigenvalues of the Hermitian ma-
T T _ trix (DDT)=/2D(iJ;)DT(DD™)~1/2 belong to the interval
_ - Malbe) + GO0+ QuBIDT =0, (52) [~1,1], so thatr(D.J; DT(DDT)"1) < 1. W
which are equivalent td£/db; = 0 anddE/dby; = 0. Note
that (51) corresponds to the equation for the state-feddbagssuming invertibility of the operator®t; and 9, (for ex-
matrix of the standard LQG controller, while (52) corresgen ample, the fulfillment of conditions of Lemma 5 that ensure
to the equation for the observation gain matrix, which, ie tha stronger property — positive definiteness of these opaato
conventional LQG control problem, are found by solving twahe equations (51) and (52) can be written more explicitly fo
independent control and filtering algebraic Riccati equreti b, andb,:
The fact, that (51) and (52) are independent linear equstion
with respect tob; and b2, as well as the original partition by = =M Y (Qa1 B + Jo(GyBa + PoyC3 Dyo)Js), (58)
(48), can be interpreted as an analogue of the classical LQG 1 T T
controlffiltering separation principle for the CQLQG prefl. by =—9My (G21C" + @uB1D7). (59)
In turn, each of the operato?®;, from (49) and (50) can be split These two equations are, in principle, amenable to further
into the sum of self-adjoint operato®; andt, of grades reduction (to be discussed elsewhere) and will be utilized a
one and less one: assignment operators in the iterative procedure of Sedtion

for finding the optimal controller.
e f

¢ > T
My =[P, o] + [Q22, I : JoPa2Jo, J2Dg DoJ2]], (53)

My :=[®, Dy D] + [Q22, DD . (54) A second order necessary condition for optimality of the-con
troller with respect to the matrik of the Hamiltonian param-
_ ) eterization (20) is the positive semi-definitené$st = 0 of
By applying Lemma 1, it follows that the spectrum Bt}  the appropriate second Frechet derivative of the LQG cdst (2
is symmetric about the origin, Whilﬁnz = 0. Moreover, if Moreover, the positive definitene8$, E > 0 is sufficient for
Q22 > 0, 0r Py > 0 and Dy in (10) is of full column rank, the local strict optimality. To compute the self-adjoinieogtor
then9; = 0. Indeed, the fulfillment of at least one of thesea]%iE, which acts on the subspa8g of real symmetric matrices
conditions implies positive definiteness of at least onehef t of ordern, we define a linear operatgf : R**" — R2nx2n
positive semi-definite operators on the right-hand sidehef t by
representation 0
= 0 I,]]. 60
My = [Qa2, I] + [JoPo2 Jg , J2Dg Do J3 ] (55) 7 M[In] P10 Tnll ©9
which follows from.J, and.J, being antisymmetric matrices. Since the matrix/, is antisymmetric, the adjoint of is given
Similarly, the conditions thafs> ~ 0 and D is of full row by 7 := —[Jy [0 1.], LO}]]].
rank ensure thabty > 0. In particular, by adapting Lemma 5 S . .
from Section VIII of (Vladimirov & Petersen (2010)), it favs  -€Mma 6.Suppose the matrix in (12) is Hurwitz. Then the
that if, in addition to the rank conditions oR, and D, the seco.nd Frechet dgnvatlve @ from (21) with respect to the
controller state-space realization is minimal, tii@n = 0 and Matrix &2 from (20) is
Py = 0 and hencei = 0 and9] = 0. Therefore, in the OLE = 4T (QLASP + PL4rSQ)J. (61)
cases discussed above, the invertibility of the operatdrand  Here, £, andS are the inverse Lyapunov operator and sym-
M in (53)—(54) can only be destroyed by the presence of thfetrizer from (B.1) and (B.2), an@ := [Q,I] andP :=
indefinite operatoray andMi; if the matrix® is large enough [[1, P] are grade one self-adjoint operators (see Section 7) of
compared t@)»>. This can be formulated in terms of the matrixthe left and right multiplication by the observability andne
A=Qy ® (56) trollability Gramians() and P of the closed-loop system from

whose spectrum is pure imaginary and symmetric about t#e3)-

origin. o ) Proof. The matrixR only enters the cost through the matrix
Lemma 5.Suppose the matri® in (2) is of full row rank and 4 of the closed-loop system, witd depending affinely ok,

(22 > 0. Also, suppose the spectral radius of the matkix s that the Frechet derivative dfwith respect taR is described
from (56) satisfiesr(A) < 1. Then the operator®l; and?l>  py the constant operatgf from (60) as)z.A = 7. Hence, (61)
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m3 om}

in (49) and (50) are positive definite. follows fromd% E = 7193 EJ and Lemma 10 of Appendix C.
Proof. SinCGﬂIJ()PgQJQ, JngDoJQ]H = 0, andl]IQgg,I]]] =0 .

(in view of the assumptiof)22 > 0), then (53) and (55) imply 11. A NEWTON-LIKE SCHEME

that '

My = MY + [Q22, 1] = (1 — r(A))[Q22, I]. (57)  The equations (58)-(59) can be combined with iterations for
Here, use is made of the relation([[Q22, I]~!9M$) =  solving the equatior = 0 for the matrix¥ from (44), which
r(A)r(J2) = r(A) which follows from (27) and the property is equivalent to the stationarity of the LQG cdstwith respect



to the matrixR of the Hamiltonian parameterization. The latterM.R.James, H.I.Nurdin, and I.R.Peterséft? control of linear
part of the scheme, which finds a rd®te R.(b) of the equation guantum stochastic system&EE Transactions on Auto-
¥ = 0 from the set (46), can be organized in the form of matic Contro| vol. 53, no. 8, 2008, pp. 1787—-1803.
Newton-Raphson iterations J.R.MagnuslLinear StructuresOxford University Press, New

R— R— (0rW)"'W. (62)  York, 1988.
Here, 0¥ is a self-adjoint operator computed in (47) WhOseH.I.Nurdln, M.R.James, and |.R.Petersen, Coherent quantu
inver’se is given by LQG controI,AutomatlcavoI_. 45, 2009, pp. 1837-1846.

. 5 1 K.R.Parthasarathyn Introduction to Quantum Stochastic Cal-

(OrY)™" = =2(0zE) " [[Jo, Jo, (63) culus Birkhauser, Basel, 1992.

where we have again used the involutional property of theR.Petersen, Quantum linear systems theory, Proc. 19th In
operatof.Jo, Jo], and the second order Frechet derivatiyes Symp. Math. Theor. Networks Syst., Budapest, Hungary,
is provided by Lemma 6. If the local strict optimality condit July 5-9, 2010, pp. 2173-2184.
0% F = 0 is satisfied, this ensures well-posedness of the invergeJ.Shaiju, and 1.R.Petersen, On the physical realizghbiif
in (63). Thus the equations (58)—(59), considered as assgh general linear guantum stochastic differential equatioitis
operators fob; andb,, and (62) forR, constitute a Newton-  complex coefficients, Proc. Joint 48th IEEE Conf. Decision
like iterative scheme for numerical computation of theestat Control & 28th Chinese Control Conf., Shanghai, P.R. China,
space realization matrices of the optimal CQLQG controller December 16-18, 2009, pp. 1422-1427.
These three assignment operators are alternated withingdatR.Simon, Peres-Horodecki separability criterion for amnbus
the Gramians of the closed-loop system via the appropriatevariable system$2hys. Rev. Lettvol. 84, no. 12, 2000, pp.
Lyapunov equations in (23). The order of this alternatiolh wi 2726-2729.
influence the overall convergence rate of the scheme and is RrE.Skelton, T.lwasaki, and K.M.Grigoriadis, Unified Alge-
important computational resource to be explored. A specific braic Approach to Linear Control Desigiaylor & Francis,
feature of the algorithm (which is currently under devel@pit) London, 1998.
is that it requires the inversion of special self-adjoine@ors 1.G.Vladimirov, and |.R.Petersen, Hardy-Schatten norris o
on matrices which, in general, can only be carried out via the systems, output energy cumulants and linear quadro-guarti

vectorization mentioned in Section 7. Gaussian control, Proc. 19th Int. Symp. Math. Theor. Net-
works Syst., Budapest, Hungary, July 5-9, 2010, pp. 2383
12. CONCLUSION 2390.

We have obtained equations for the optimal controller in the  Appendix A. INVERTIBILITY OF GRADE TWO
Coherent Quantum LQG problem by direct Frechet differen- SELF-ADJOINT OPERATORS

tiation of the LQG cost with respect to the pair of matrices
which govern the Hamiltonian parameterization of phygjcal

; Lemma 7.Letr = 2 in (28), and let both matricas; andj;
realizable quantum controllers.

be nonsingular. Then the operatbt := [, 81 : ag, Bo] is

We have investigated spectral properties of special sitfiet  invertible if and only if the eigenvalue,, ..., )\, of aj 'as
operators whose inverse plays an importantrole in the &nsat and the eigenvalugs, . . ., u1, of 423, * satisfy
and can only be carried out by using matrix vectorization. Nuw #—1 forallj=1,....p, k=1,...,q. (A1)

We have established a partial decoupling of these equations
with respect to the gain matrices of the optimal controllef”r0of. In the case of two terms, the operator (28) can be
which can be interpreted as a quantum analogue of the standsgPresented ast := [a1, 81 : a2, B2]] = M1 My, where
LQG controlffiltering separation principle. My = [ar, f1] and My = [I,1 : oy as, B2 ']. The

. , . ) ) operatorM; is invertible in view of the nonsingularity of the
Using this quasi-separation property, we have outlined Ratricesa; and By, with M;' = [ag!, 57 ]. Hence, the
Newton-like iterative scheme for numerical computatiothef invertibility of M is equivalent to that E)f/\/lg. In turn, the
guantum controller. The scheme involves a yet-to-be-erglo operatorMs is invertible if and only if its spectrun{1 +
freedom of choosing the order in which to perform iterationg_ﬂk . 1<j<p 1<k< ¢} does not contaifd, which
with respect to the Hamiltonian and gain matrices of the Cor?sjequivalent to (A.i)l
troller to optimize the convergence rate.

The existence and uniqueness of solutions to the equations BY Leémma 7, the nonsingularity of the m,at@zizl B @ oy
the state-space realization matrices of the optimal CQLQG ¢ ©Of orderpq reduces to a joint property of individual spectra of
troller also remains an open problem and so does their furthvo matrices of orders andg. This reduction does not hold for
reducibility. This circle of questions is a subject of onggi " ~ 2,
research and will be tackled in subsequent publications.
Appendix B. PERTURBATION OF INVERSE LYAPUNOV
REFERENCES OPERATORS

S.C.Edwards, and V.P.Belavkin, Optimal quantum filterind a . _ . .
quantum feedback control, arXiv:quant-ph/0506018v2, AulVe associate amverse Lyapunov operatat, with a Hurwitz

gust 1, 2005. matrix A € R"*", so thatL, maps a matrixd@/ € R™"*"
C.W.Gardiner, and P.ZolleQuantum NoiseSpringer, Berlin, 0 the unique solutionV of the algebraic Lyapunov equation

R.A.Horn, and C.R.JohnsoRlatrix Analysis Cambridge Uni-

+o0
., At ATt
versity Press, New York, 2007. La(M) := /o e Me” 'dt. (B.1)



The adjoint of£ 4 in the Hilbert spac®™*"™ with the Frobenius SORE /2= 6 QP QB

inner product of matrices isix = L 7. SinceL, commutes r O |CP 0

with the transpose, that i§,4 (M ™) = (La(M))T, then it also T 0 6B

commutes with @aymmetrizesS defined by = [O] 6Q [P B]+ [g] SP[I 0]+ [(6C)P QO ] :
S(M) := (M +M"T))2. (B.2) (C.2)

The operatos§ : R"*" — §,, is the orthogonal projection onto The representation (C.1) can now be obtained from (C.2) by

the subspace of real symmetric matrices of order using the Frechet derivatives of the Gramians from Lemma 8 of
Lemma 8.The Frechet derivatives of the controllability andAppendix B and the identity

observability Gramiang® and @Q of an asymptotically stable
y Q ymp ally [ 0 Q(SB]_[QO]M[OO}_'_{OO]&F[PO]_ -

system(A, B, C)) with respect to the matriX' := [C 0} are (oc)yp 0 | |01 01 01 01
expressed in terms of (B.1) and (B.2) as Lemma 10.The second Frechet derivative of the squakéd
norm E := ||(A, B,C)|% of an asymptotically stable system
P with respect taA is
orP =2L4S[[1 0], [BT}]]]’ (B.3) O%E = 4R, R := QLiSP +PLurSQ.  (C.3)
o 1 Here, L4 andS are the inverse Lyapunov operator and sym-
orQ=2L,4S[[Q C"], M]]] (B.4)  metrizer from (B.1) and (B.2), and
Q= [Q,I], P:=I,P] (C.49)

Proof. The Frechet differentiability of? and Q is ensured are grade one self-adjoint operators (see Section 7) ofetfhe |
by the assumption that is Hurwitz. By considering the first and right multiplication of a matrix by the observabilitydan

variation of the algebraic Lyapunov equatigiP + PAT +  controllability Gramiang) and P of the system.

BB™ =0, it follows that

Proof. SincedsE = 2QP, then by using Lemma 8, it follows

that the first variation of the Frechet derivatige, E with

0=ASP + (JA)P + (SP)A™ + PSAT + (OB)B" + BSB™  oqnectiadis

P AT
= ASP + (6P)AT + [§A §B] { BT} +[P B] [ ; BT] SOME — 20058+ (50)P)
— ASP + (0P)AT 4 28 ([5/1 5B [ ;T] > . = 4(QLAS((SA)P) + LrS(Q(54))P)

=4(QLASP +PLArSQ)(0A),

This is an algebraic Lyapunov equation with respectfd  which establishes (C.3). Alternatively, (C.3) can also ke o
with the same matrix4, which yields (B.3) in view of the tained from (C.1) of Lemma @

identity [A B] = [I 0]T. The relation (B.4) can be obtained

by a similar reasoning from the first variation of the Lyapuno The linear operator® and P defined by (C.4) are positive
equation for the observability Gramiap, or from (B.3) by semi-definite and commute with each other. At least some
using the duality betweeR and@. & eigenvalues of the self-adjoint operatRrin (C.3) are pos-
itive, sinceR(A) = —G and (A,R(A)) = —(4,G) =

- I(4, B,C)[3/2 > 0.
Appendix C. SECOND ORDER FRECHET DERIVATIVE

OF THE LQG COST

Lemma 9.The second Frechet derivative of the squated
norm E := ||(A, B,C)||% of an asymptotically stable system

with respect to the matrik := [é ﬁ] is computed as

8§E_4[|[[é

.7 BlCasTio e |1
+al|@] 1 oneasti o, | g1

0 00 00 PO
+2”1[%2 I] ) [0 I] : {o I} ) {o 1]]”' (C.1)
Here, L4 and S are the inverse Lyapunov operator and sym-
metrizer defined by (B.1), (B.2), and = L4(BB™) andQ =

L 4t (CTC) are the controllability and observability Gramians
of the system.

Proof. Lemma 2 implies that the first variation of the Frechet
derivativedr F is computed as



