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Chemical reaction rates often depend strongly on stereodynamics, namely the

orientation and movement of molecules in three-dimensional space [1–3]. An ul-

tracold molecular gas, with a temperature below 1 µK, provides a highly unusual

regime for chemistry, where polar molecules can easily be oriented using an ex-

ternal electric field and where, moreover, the motion of two colliding molecules

is strictly quantized. Recently, atom-exchange reactions were observed in a

trapped ultracold gas of KRb molecules [4]. In an external electric field, these

exothermic and barrierless bimolecular reactions, KRb+KRb→ K2+Rb2, occur

at a rate that rises steeply with increasing dipole moment [5]. Here we show

that the quantum stereodynamics of the ultracold collisions can be exploited to

suppress the bimolecular chemical reaction rate by nearly two orders of magni-

tude. We use an optical lattice trap to confine the fermionic polar molecules in

a quasi-two-dimensional, pancake-like geometry, with the dipoles oriented along

the tight confinement direction [6, 7]. With the combination of sufficiently tight

confinement and Fermi statistics of the molecules, two polar molecules can ap-

proach each other only in a “side-by-side” collision, where the chemical reaction

rate is suppressed by the repulsive dipole-dipole interaction. We show that the

suppression of the bimolecular reaction rate requires quantum-state control of

both the internal and external degrees of freedom of the molecules. The sup-

pression of chemical reactions for polar molecules in a quasi-two-dimensional

trap opens the way for investigation of a dipolar molecular quantum gas. Be-

cause of the strong, long-range character of the dipole-dipole interactions, such a

gas brings fundamentally new abilities to quantum-gas-based studies of strongly

correlated many-body physics, where quantum phase transitions and new states
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of matter can emerge [8–13].

Two colliding polar molecules interact via long-range dipole-dipole forces well before

they reach the shorter distance scales where chemical forces become relevant. Therefore, the

spatial anisotropy of the dipolar interaction can play an essential role in the stereochemistry

of bimolecular reactions of polar molecules. In general, one expects the attraction between

oriented dipoles in a “head-to-tail” collision to be favorable for chemical reactions, while

the repulsion between two oriented polar molecules in a “side-by-side” collision presents

an obstacle for reactions. Up to now, however, large center-of-mass collision energies have

precluded the direct control of chemical reactions via dipolar interactions. In a cold collision

regime, where tens of scattering partial waves contribute, one can begin to exert control of

intermolecular dynamics through the dipolar effect [14]. An ultracold gas, however, provides

an optimum environment in which to fully investigate the dipolar effects [5, 15, 16]. Here,

the molecules can be prepared in identical internal quantum states, with the dipoles oriented

using an external electric field, and the molecular gas confined in external potentials created

using light. In the limit of vanishing collision energies, the stereodynamics is described by

only a few quantized collision channels, and, moreover, for indistinguishable molecules, the

states of translational motion are coupled to internal molecular states due to the fact that

the quantum statistics of the molecules (fermions or bosons) dictates a particular symmetry

of the total wavefunction with respect to exchange of two molecules. In this quantum regime,

we have an opportunity to suppress or enhance reaction rates by understanding and precisely

controlling the stereodynamics of colliding polar molecules.

The spatial geometry of the confining potential can influence collisions in a trapped

gas of polar molecules. In particular, a two-dimensional (2D) trap geometry, with the

dipoles oriented parallel to the tight confinement direction ẑ, is well-matched to the spatial
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anisotropy of the dipole-dipole interaction [17–19]. We can realize such a geometry using

a one-dimensional optical lattice (see Fig. 1 A), where the trapped molecules are divided

among several isolated layers. In each of these layers, the lattice potential provides tight

harmonic confinement in ẑ such that only the lowest few quantized motional states in ẑ

are occupied. Consequently, within each isolated layer, colliding molecules approach each

other in 2D. However, the range of the van der Waals interaction (and, for that matter, the

range of dipolar interactions at our largest external electric field) is still smaller than the

spatial extent of the cloud in the direction of tight confinement, aho, and, therefore, at short

intermolecular distances a collision still must be treated in three dimensions (3D).

We now consider the quantized collision channels that define the stereodynamics in this

quasi-2D geometry. For intermolecular separations that are much larger than aho, the relative

motion of the two molecules is described by a quantized angular momentum, ~M , around

the ẑ axis, where ~ = h
2π

and h is Planck’s constant, as well as by a quantized relative motion

along ẑ. As discussed above, the stereodynamics of ultracold collisions of indistinguishable

molecules is strongly influenced by the fact that the two-molecule wavefunction must obey

an overall symmetry with respect to the exchange of the identical molecules. Therefore,

an essential aspect of relative motion in ẑ is the exchange symmetry of this part of the

two-molecule wavefunction, which we identify with a quantum number γ; for the symmetric

case, γ = 1 and for the antisymmetric case, γ = −1. For two molecules in the same

ẑ harmonic oscillator state, γ = 1; while both γ = 1 and γ = −1 are possible for two

molecules in different harmonic oscillator states. Similarly, we use a quantum number η

to keep track of the exchange symmetry of the part of the wavefunction that describes the

internal states of the two molecules. For two molecules in the same internal quantum state,

η = 1, while η = ±1 for molecules in different internal states. In 2D, these three quantum
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numbers (M,γ, η) are sufficient to describe the quantum stereodynamics. However, because

the interactions at short range must be described in 3D, the quantum number corresponding

to the 3D angular momentum, L, as well as M , becomes relevant. With collisional channels

described by quantum numbers η, L, γ, and M , the fermionic symmetry can be concisely

stated in the following relations:

η(−1)L = −1, Short range, 3D (1)

ηγ(−1)M = −1. Long range, 2D (2)

For ultracold collisions, the chemical reaction rate will be dominated by the allowed

collision channel with the lowest centrifugal barrier. Combining this fact with the relations

above, we identify three collision channels relevant to the stereodynamics, and we label

these |1〉, |2〉, and |3〉, in order of increasing centrifugal barrier heights. The dipole-dipole

interaction mixes states with different L. However, for convenience, we will refer to the lowest

energy adiabatic channel, which does not have a centrifugal barrier, as L = 0. Similarly, we

will use L = 1 to denote the odd-L adiabatic channel with the lowest centrifugal barrier.

Collision channel |1〉 has η = −1, L = 0, γ = 1, and M = 0, and corresponds to spatially

isotropic collisions. Collision channel |2〉 has η = 1, L = 1, γ = −1, and M = 0, and is

the quantum analog of “head-to-tail” collisions. Collision channel |3〉 has η = 1, L = 1,

γ = 1, and M = ±1, and is the quantum analog of “side-by-side” collisions. Fig. 1 B

shows schematically the adiabatic potentials for these three lowest energy collision channels.

Channels |1〉 and |2〉 become increasingly favorable for chemical reactions as the dipole-

dipole interaction strength is increased, for example by increasing the external electric field

−→
E . In contrast, channel |3〉 has a centrifugal barrier whose height increases for higher dipole

moment, within the |
−→
E | range considered in this work. This barrier hence continues to
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prevent molecules from reaching short range.

Fig. 1 C shows how these different collision channels can be accessed through control of

the internal molecular states and the ẑ motional states. In Fig. 1 C, molecules in different

internal states are shown in different colors and the harmonic oscillator states in ẑ are

labeled by v. In case (1), for two molecules in different internal molecular states and in

any combination of v levels, channel |1〉 is allowed when η = −1, resulting in no centrifugal

barrier. In case (2), when the molecules are prepared in identical internal molecular states

but in different v levels, the lowest energy collision channel is |2〉 (“head-to-tail”), which is

allowed when γ = −1. In case (3), where the molecules are prepared in the same internal

state and the same v level, the two lower energy collision channels are no longer allowed,

and reactions can only proceed through channel |3〉 (“side-by-side”). This case is the least

favorable for atom-exchange bimolecular chemical reactions.

We create a trapped, ultracold gas of 40K87Rb molecules, in their lowest energy ro-

vibrational level and in a single hyperfine state [20], following the techniques described in

Ref. [21]. To confine the molecules, we start with a crossed-beam optical dipole trap, with

a harmonic trapping frequency of 180 Hz along the vertical direction (ẑ) and 25 Hz in the

transverse directions. For the current work, we add an optical lattice along ẑ, which is

formed by a retro-reflected beam with a 1/e2 waist of 250 µm and a wavelength of 1064

nm. Both optical dipole trap beams and the optical lattice beam are linearly polarized and

their polarizations are mutually orthogonal. Each layer of the optical lattice trap is tightly

confining in ẑ with a harmonic trapping frequency of νz = 23 kHz for the molecules, while

in the transverse directions, the combined trap has a harmonic trapping frequency of 36

Hz. The tunneling rate between lattice layers is negligible and, therefore, each layer realizes

an isolated trap for the molecules. Initially, 34,000 ground-state molecules are confined in
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roughly 23 layers, with the center layer having 2200 molecules and a peak density of 3.4×107

cm−2.

We start by loading ultracold 40K and 87Rb atoms from the crossed-beam dipole trap

into the combined trap by turning up the intensity of the optical lattice beam in 150 ms.

We then create molecules in the lattice by first forming extremely weakly bound molecules

through magneto-association of atom pairs and then coherently transferring these molecules

into their ro-vibrational ground state using optical transitions [21]. The temperature of the

molecular gas, T , in the combined optical dipole plus lattice trap can be varied between 500

nK and 800 nK by varying the initial atom gas conditions. To completely freeze out motion

of the molecules along ẑ requires that kBT � hνz, where kB is Boltzmann’s constant. For

a gas at T = 800 nK in our lattice, kBT
hνz

= 0.72 , and we expect 25% of the molecules will

occupy higher v levels.

As discussed above, in order to control the stereochemistry of bimolecular reactions in

the ultracold gas, we need to control both the internal state and the harmonic oscillator

level v of the molecules. We create the molecules in a single internal quantum state. If

desired, we can subsequently create a 50/50 mixture of molecules in the ground and first

excited rotational states by applying a resonant microwave π/2-pulse [20]. The occupation

of lattice levels v can be controlled by varying T ; alternatively, we can prepare a non-thermal

distribution of molecules using parametric heating. Here, the lattice intensity is modulated

at twice νz, and, as a result, molecules initially in the v = 0 level are excited to the v = 2

level.

We determine the population in each lattice level using an adiabatic band-mapping tech-

nique [22, 23]. As the lattice potential is ramped down slowly, molecules in different vi-

brational levels of the lattice are mapped onto Brillouin zones. The measured molecule
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momentum distribution following this ramp is shown in Fig. 2 A for a T = 800 nK molecu-

lar gas. The measured fraction in v = 0 matches well with the expected thermal distribution.

In contrast, Fig. 2 B shows the measured non-equilibrium occupation of lattice vibrational

levels following parametric heating.

We measure the bimolecular reaction rate by monitoring the loss of trapped molecules

as a function of time. To image the molecules, we reverse our coherent transfer process to

bring the molecules back to a weakly bound state where we can detect the molecules with

time-of-flight absorption imaging [21]. The molecules are imaged after free expansion from

the combined optical dipole plus lattice trap. From the images, we obtain the total number

of molecules and the radial cloud size. Since we do not resolve the individual layers of the

optical lattice, we obtain an average 2D density per layer by dividing the total number by

the cross-sectional area of the cloud, and by an effective number of layers α, as defined in

the Methods section.

In Fig. 3 A, we show the average 2D density as a function of time. For these data, the

molecules are all prepared in the same internal state and |
−→
E | is 4 kV/cm, which gives an

induced molecular dipole moment of 0.158 Debye (D), where 1D = 3.336 ×10−30 C·m. The

two data sets in Fig. 3 A correspond to an unperturbed T = 800 nK gas (black squares)

and a parametrically heated gas (red circles). For the case where parametric heating was

used to increase population in v > 0 levels, the data show a faster initial loss of molecules.

This suggests that the initial loss is predominately due to interlevel collisions as described

in case (2) of Fig. 1 C, while intralevel collisions (case (3) of Fig. 1 C) give a slower loss of

molecules at longer times.

We fit the data using a simple model, which assumes two loss rate constants: one for

interlevel collisions, β|2〉, and a second one for intralevel collisions, β|3〉 (with the subscripts

8



referring to the adiabatic channels labeled in Fig. 1 B). Here,

dn0

dt
= −β|3〉n2

0 − β|2〉n0n1 − β|2〉n0n2,

dn1

dt
= −β|2〉n0n1 − β|3〉n2

1 − β|2〉n1n2,

dn2

dt
= −β|2〉n0n2 − β|2〉n1n2 − β|3〉n2

2, (3)

where nv is the 2D density of molecules in a particular lattice vibrational level v. To fit the

measured time dependence of the total 2D density, ntot(t), we use ntot(t) = n0(t) + n1(t) +

n2(t). We input the measured initial populations nv/ntot (see Fig. 2 and Methods) at t = 0,

and we fit the data to the numerical solution of Eqn. 3. We obtain β|3〉 and β|2〉 from a

simultaneous fit to the two measured ntot(t) curves shown in Fig. 3 A.

By repeating this procedure for different values of |
−→
E |, we measure the chemical reaction

rate constants, β|3〉 and β|2〉, as a function of the induced dipole moment. In Fig. 3 B, we

show the intralevel (black squares) and interlevel (red circles) chemical rate constants as a

function of the dipole moment. Also shown as green triangles in Fig. 3 B are the results of

two measurements for a 50/50 mixture of molecules in different rotational states (case (1)

of Fig. 1 C). Here, we fit the loss of molecules in the ground rotational state to the solution

of dntot

dt
= −β|1〉n2

tot to extract a single loss rate constant.

For comparison with these measurements, we perform quantum scattering calculations

using a time-independent quantum formalism based on spherical coordinates with cylindri-

cal asymptotic matching to describe the molecular collisions in quasi-2D [24]. We use an

absorbing potential at short distance to represent chemical reactions [18, 25]. This technique

showed excellent agreement with previous experimental data for KRb bimolecular reactions

in 3D [4, 5]. We computed the loss rate coefficients βv1,v2 for molecules in different initial

lattice vibrational states v1, v2, at a collision energy of 800 nK. When the induced dipole
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moment is still small (0 - 0.2 D), the measured temperature is a good approximation for the

mean collision energy. The loss rates of the different processes can be separated into fast

loss rates (β0,1, β0,2, β1,2)≈ β|2〉 and slow loss rates (β0,0, β1,1, β2,2)≈ β|3〉. The black theoret-

ical curve in Fig. 3 B corresponds to an average of the slow rates weighted by the initial

populations n0, n1, n2. The red curve corresponds to the same average but for the fast rates.

The green curve corresponds to the loss rate of molecules in different internal states.

The three measured reaction rate constants shown in Fig. 3 B are consistent with the

quantum scattering calculations for the collision channels shown in matching colors in

Fig. 1 B and Fig. 1 C. Molecules in different rotational states (green triangles in Fig. 3 B)

have the highest rate for chemical reactions, consistent with the fact that they can collide

in channel |1〉, which corresponds to spatially isotropic collisions with no centrifugal barrier.

On the other hand, molecules prepared in the same internal molecular state (red circles and

black squares in Fig. 3 B) have suppressed reaction rates because the lowest energy colli-

sion channel is no longer allowed. Instead, identical molecules in different lattice levels (red

circles in Fig. 3 B) react predominantly through collisions in channel |2〉, or “head-to-tail”,

while identical molecules in the same lattice level (black squares in Fig. 3 B) react through

collisions in channel |3〉, or “side-by-side”. The importance of stereodynamics on the re-

action rate for polar molecules is manifest in the very different dipole-moment dependence

of the reactions rates in these two collision channels. In particular, for the case where the

molecules are prepared both in the same internal quantum state and in the same v level,

the reaction rate is suppressed even as the dipole moment is increased.

Figure 4 shows how the initial loss rate in a gas of identical molecules depends on the

fractional occupation of the lowest lattice level, n0/ntot. As n0/ntot increases, the calculated

initial loss rate constant for a molecular gas in thermal equilibrium (solid black line) changes
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from close to β|2〉 (the red line indicating the measured value at 0.174 D from Fig. 3 B) to

β|3〉 (open point at n0/ntot = 1). In thermal equilibrium, the fractional occupation of the

lowest vibrational level is given by the Boltzmann distribution (see Methods). On the top

axis of Fig. 4, we give the corresponding values of the scaled temperature kBT
hνz

. The solid

triangles in Fig. 4 correspond to the measured initial loss rate at different temperatures (500

nK and 800 nK), while the open symbol at n0/ntot ≈ 0.5 corresponds to the initial loss rate

for the parametrically heated, non-thermal molecular gas.

We also directly compare the suppressed chemical reaction rate in quasi-2D to that of

the 3D case in the inset to Fig. 4. Here, we compare data for a 3D geometry from Ref. [5]

against the suppressed loss rate constant measured in quasi-2D. For the comparison, the

2D loss rate is scaled to 3D using β3D =
√
πahoβ2D [19, 27, 28], where aho is the harmonic

oscillator length in ẑ. For a dipole moment d greater than 0.1 D, the 3D loss rate constant

increases dramatically as d6 [5, 26], whereas the scaled loss rate constant for the quasi-2D

case remains close to the value at zero electric field. At a dipole moment of 0.174 D, the

measured suppression in quasi-2D is a factor of 60.

The results shown here demonstrate how quantum stereochemistry in the ultracold regime

can be used to control reaction rates. The capability of precisely controlling the molecular

quantum states for both the internal and external degrees of freedom is a key ingredient for

this advance. The strong suppression of reaction rates for a gas of fermionic molecules in a

quasi-2D geometry opens the door for creating a stable ultracold gas of polar molecules and

studying the many-body physics of such a system. This approach is particularly appealing

considering that a number of bialkali polar molecular species currently under study are

expected to experience chemical reactions at rates similar to the KRb case [19, 29–31].
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Methods Summary

The traces in Fig. 2 were obtained by averaging the images in the transverse direction

within one rms width of the Gaussian distribution. We fit the traces to the convolution of a

series of step functions and a Gaussian: the former describes the first three Brillouin zones

whereas the latter characterizes the effect of a finite imaging resolution. The uncertainty

in the relative population is 3%, and is dominated by systematic errors arising from the

variation of the imaging resolution within the range of 1 to 2 pixels.

The average 2D density shown in Fig. 3 A is obtained by dividing the total number of

molecules, N , by an effective area, 4πασ2
r , where σr is the rms cloud size in the transverse

direction and N/α is a number-weighted average over the occupied lattice layers. We calcu-

late α(t = 0) = 23 assuming an initial discrete Gaussian distribution in ẑ with an rms width

that we measure after transferring the molecules back to the optical dipole trap. However, α

increases at longer times because of the density dependence of the loss. For our analysis, we

use a time-averaged value α = 30 that was determined by comparing an analysis based on a

uniform layer density to a numerical simulation of the loss in each layer. The uncertainties

for β|3〉 and β|2〉 are dominated by statistical uncertainties in the fits to ntot(t). For the data

shown in green triangles in Fig. 3 B, the two internal molecular states are |0, 0,−4, 1/2〉 and

|1, 1,−4, 1/2〉, following the notation of Ref. [20].

For the solid black line in Fig. 4, the fractional molecular population f(v, T ) in a vibra-

tional level v at temperature T is obtained from a Boltzmann distribution, and the effective

βinitial is then calculated as

βinitial = β|3〉
∑
v

f(v, T )2 + β|2〉
∑
v1 6=v2

f(v1, T )f(v2, T ). (4)
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FIG. 1: Quantized stereodynamics of ultracold chemical reactions in quasi-2D. (A) A

quasi-2D geometry for collisions is realized for polar molecules confined in a one-dimensional optical

lattice. An external electric field is applied along the tight confinement axis. (B) The lowest

three adiabatic potentials for collisions are shown schematically as a function of the intermolecular

separation, R. These three channels are ordered with increasing magnitude of the centrifugal

barrier. The arrows indicate the change in the potential for an increasing external electric field,

and hence a growing induced dipole moment. (C) Three different cases are shown schematically

for each of the three lowest collision channels. The lowest energy collision channel occurs when two

molecules are prepared in different internal states (indicated here by the colors of the molecules).

The second channel is realized when two identical molecules are prepared in different vibrational

levels v for their ẑ motions. The third case has a much reduced loss rate as a consequence of an

increased centrifugal barrier when the two identical molecules are prepared in the same vibrational

level along ẑ. 16
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FIG. 2: Relative population of molecules in the lattice vibrational levels. We measure the

relative population in each lattice vibrational level using a band-mapping technique. The results

are shown for (A) a thermal distribution of molecules and (B) a non-thermal distribution created

by parametric heating in ẑ. The two images use the same color scale for the optical depth (OD).

The images are an average of 5 shots and 7 shots for (A) and (B), respectively, taken after 10 ms of

free expansion. Below each image we show a trace along ẑ that corresponds the OD averaged over

the transverse direction. A fit (red line) to the trace, which takes into account both the size of the

Brillouin zones and our imaging resolution, is used to extract the relative populations, nv/ntot, in

each lattice level v. The horizontal axis corresponds to momentum in ẑ and is marked in units of

the lattice momentum ~k, where k is the lattice wavevector.
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FIG. 3: Measurements of 2D loss rates and comparison with theory. (A) A fit (solid lines)

to the measured loss curves, with (red circles) and without (black squares) 0.3 ms of parametric

heating in ẑ, is used to extract the loss rate constants β|3〉 and β|2〉. (B) The extracted loss rate

constants for collisions of molecules in the same lattice vibrational level (black squares) and from

different lattice vibrational levels (red circles) are plotted for several dipole moments. Measured loss

rate constants for molecules prepared in different internal states are shown as green triangles. For

comparison with each of these three measurements, we include a quantum scattering calculation

for νz = 23 kHz, T = 800 nK (solid lines). The potentials corresponding to the dominant loss

channel for the three cases are shown in matching colors in Fig. 1 B.
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FIG. 4: Loss rates from 3D to 2D. The effective initial loss rate, βinitial, for polar molecules

confined in a 2D geometry depends on the fractional population (n0/ntot) in the lowest harmonic

oscillator level in ẑ, which for a gas in thermal equilibrium depends on the ratio kBT
hνz

. The measured

initial loss rates for a dipole moment of 0.174 D are displayed for two different thermal distributions

(solid triangles), a non-thermal sample created by parametric heating (the top open triangle), and

an extracted pure β|3〉 when the entire population is residing in the lattice ground vibrational

level (the bottom open triangle). The experimental results agree well with a simple model (black

curve) described in the text and Methods. The top line indicates the value of β|2〉 as measured

in Fig. 3 B. (Inset) The intralevel loss rate for identical fermionic KRb molecules in 2D (black

circles) is compared with the loss rate in 3D (blue triangles). The 3D data for T = 300 nK are

borrowed from Ref. [5]. The 2D data were taken at T = 800 nK and are converted to 3D rates by

multiplication with
√
πaho, where aho is the harmonic oscillator length in ẑ.19
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