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Abstract. Entanglement plays a crucial role in quantum information protocols, thus

the dynamical behavior of entangled states is of a great importance. In this paper we

suggest a useful scheme that permits a direct measure of entanglement in a two-qubit

cavity system. It is realized in the cavity-QED technology utilizing atoms as flying

qubits. To quantify entanglement we use the concurrence. We derive the conditions,

which assure that the state remains entangled in spite of the interaction with the

reservoir. The phenomenon of sudden death entanglement (ESD) in a bipartite system

subjected to squeezed vacuum reservoir is examined. We show that the sudden death

time of the entangled states depends on the initial preparation of the entangled state

and the parameters of the squeezed vacuum reservoir.
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1. Introduction

In contrast to classical theories, quantum mechanics assures the existence of

nonlocal correlations between two systems spatially separated and without any direct

interactions, which Schrodinger named as entanglement [1]. Entanglement is a key

feature of various quantum information processes such as quantum teleportation [2],

quantum dense coding [3], quantum cryptography [4] and quantum computing [5]. Due

to the crucial role of entanglement in quantum information processes, the study of

entanglement has attracted a lot of interest in recent years. With various studies on

entanglement, the mean question which may be posed is how to know that a quantum

state is entangled. For a pure bipartite state, the Schmidt decomposition [6] can be

used to decide whether the state is entangled and the degree of entanglement can be

quantified by the partial von Neumann entropy [7]. Hence, in principle, the problem of

entanglement for pure states of a bipartite system has been completely solved. On the

other hand, quantum systems predictably undergo decoherence processes and quantum

systems are mostly in mixed states. For density matrix of a quantum system consisting

of two subsystems, some criteria on entanglement have been established [8, 9, 10, 11, 12,

13, 14, 15, 16, 17]. Moreover, the generation of entangled states has been investigated

in various systems from atoms or ions, photons and quadrature-phase amplitudes of the

electromagnetic field [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36].

It is clear that the experimental and theoretical studies of bipartite systems have made

a great growth in recent years.

Real quantum systems are necessarily subjected to their environments, and these

reciprocal interactions often result in the dissipative evolution of quantum coherence and

loss of useful entanglement. Decoherence may be investigated in both local and global

dynamics, which may lead to the eventual deterioration of entanglement [37]. Yu and

Eberly have investigated the time evolution of entanglement of a bipartite qubit system

undergoing various modes of decoherence. Particularly, they found that, even when there

is no interaction, there are certain states whose entanglement decays exponentially with

time, while for other closely related states, the entanglement vanishes abruptly in a finite

time which depends upon the initial preparation of the qubits, a phenomenon termed

entanglement sudden death (ESD)[38] and was recently observed in two sophistically

designed experiments with photonic qubits [39]and atomic band [40]. Furthermore, it

has also been observed in cavity QED and trapped ion systems [41]. On the other hand,

the phenomenon ESD has motivated many theoretical investigations in other bipartite

systems involving pairs of atomic, photonic, and spin qubits [42, 43, 44, 45], multipartite

systems [46, 47] and spin chains [48, 49, 50]. In addition, ESD has also been investigated

for different environments [37, 38, 55, 52, 53]. However, numerous investigations on ESD

in a variety of systems have been done so far, the question of ESD in interacting qubits

remains open [54]. On the other hand, from the quantum technological point of view,

states that show exponential decay of entanglement, and therefore maintain some trace

of this all considerable correlation for an infinite time, are of importance. Although
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the vanishingly small entanglement present in the exponential tail will be of limited

practical importance, however it is of interest to identify exactly in what situations

ESD will occur [55, 56].

In the past few years, numerous methods by which the entanglement of quantum systems

can be detected and described have been suggested. Possibly the mainly influence to

date has been the simple procedure derived by Wooters [57] for measuring entanglement

for an arbitrary mixed state of pair two-level systems. Furthermore, for two qubits,

concurrence [57] offers a convenient measure of the entanglement of formation. This

has provided a very useful tool for measurement of experimental quantum states and

is to day commonly used in evaluating the abilities of emerging quantum information

technologies.

The purpose of this paper is to propose an efficient scheme for quantum teleportation

to generate entangled number states of bipartite system under the influence of squeezed

vacuum reservoir. Thus we investigate the time evolution of these entangled states. We

examine the problem of ESD for this proposed scheme for different initial entangled

state and the parameters of the squeezed vacuum reservoir.

2. Bipartite model system

Recently, Zubairy et all [58] have suggested a new scheme in their examination of the

quantum disentanglement eraser. In this simple scheme, the concurrence can be directly

measured from the visibility for an explicit class of entangled states. We propose here

the same scheme but with some adjustment. A two-level atom with the upper level

|e〉 and the lower level |g〉 passes consecutively through cavity A, a squeezed vacuum

reservoir and a cavity B as shown in figure 1. The incident atom is initially prepared in

the excited state |e〉 and the decay of the radiation field inside a cavity may be described

by a model in which the mode of the field of interest is coupled to a whole set of reservoir

modes. We assume that initially the two cavities are in vacuum state |0〉 and the atom

always leaves the setup in the ground state |g〉.
In the interaction picture and the rotating-wave approximation, the Hamiltonian is

simply

H(t) = ~

∑

j=A,B

∑

k

[
g
(j)
k
b
(j)†
k

aje
−i(ν−νk)t + g

(j)∗
k

a
†
jb

(j)
k
ei(ν−νk)t

]
(1)

where aj(j = A,B) and a
†
j are the destruction and creation operators of the mode of the

electromagnetic field of frequency ν. b
j
k
and b

†j
k

are the modes of cavity j of frequency

νk which damp the field and g
(j)
k

is the coupling constant of the interaction between the

electromagnetic field and the cavity.

3. Entanglement dynamics in squeezed reservoirs

Here we are concerned with the case in which cavity fields are exposed in broadband

squeezed vacuum reservoirs. From the general analysis of system-reservoir interactions,
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when the modes b
j
k
are initially in a squeezed vacuum, with the Hamiltonian (1) and

the squeezing bandwidths of the squeezed reservoirs are much larger than the atomic

line-widths, we can get directly the master equation for the reduced density matrix for

the field in the cavities as [59]

ρ̇(t) =
∑

j=A,B

[
− κ(j)

2
(Nj + 1)

(
a
†
jajρ(t)− 2ajρ(t)a

†
j + ρ(t)a†jaj

)

− κ(j)

2
Nj

(
aja

†
jρ(t)− 2a†jρ(t)aj + ρ(t)aja

†
j

)

+
κ(j)

2
Mj

(
ajajρ(t)− 2ajρ(t)aj + ρ(t)ajaj

)

+
κ(j)

2
M∗

j

(
a
†
ja

†
jρ(t)− 2a†jρ(t)a

†
j + ρ(t)a†ja

†
j

)]
(2)

where κ(j)(j = A,B) is the decay rate in the cavity, Nj = sinh2(rj) and Mj =

cosh(rj)sinh(rj)exp(−iθj), with rj being the squeeze parameter and θj being the

reference phase for the squeezed fields which surrounds the cavities A and B. If

Nj = Mj = 0, the remaining terms are due to vacuum fluctuations.

To investigate the effect of interaction among the bipartite on decoherence we have

to investigate the dynamics of bipartite entanglement. Furthermore, the concept of

concurrence initiates from the original work of Hill and Wootters [57] where the closed

expression of the entanglement of formation of a system of two qubits was derived. They

established that the entanglement of formation is a convex monotonic increasing function

of the concurrence. Here we use concurrence, to illustrate the degree of entanglement for

any bipartite system. This measure satisfies necessary and sufficient condition for being

good measure of entanglement for 2X2 system. The concurrence varies from C = 0 for

a separable state to C = 1 for a maximally entangled state. The explicit expression for

concurrence can be written as

C(t) = max(0,
√

λ1 −
√

λ2 −
√
λ3 −

√
λ4) (3)

where λ′s are the eigenvalues of the non-hermitian matrix ρ(t)ρ̃(t) arranged in decreasing

order of the magnitude. The matrix ρ(t) is the density matrix for the bipartite and the

matrix ρ̃(t) is given by

ρ̃(t) = (σA
y ⊗ σB

y )ρ
∗(t)(σA

y ⊗ σB
y ) (4)

where ρ(t)∗ is the complex conjugation of ρ(t) and σy is the Pauli matrix given in

quantum mechanics. In the general case, we consider the field states in Fock basis in

two identical high-Q cavities A and B that represent a bipartite system surrounding the

entangled field as

|Ψ〉AB(0) = α1|0A0B〉+ α2|0A1B〉+ α3|1A0B〉+ α4|1A1B〉 (5)

where αi(i = 1, 2, 3, 4) are the probability amplitudes with
∑4

i=1 |αi|2 = 1. We use the

basis ( |1〉 = |0A0B〉, |2〉 = |0A1B〉, |3〉 = |1A0B〉, |4〉 = |1A1B〉) to define the density

matrix of the two qubit system. The equations of motion in terms density matrix

elements can be obtained using the master equation 2.
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4. Results and conclusion

Here we will consider some interesting initial entangled states for the bipartite which

can be prepared and have potential applications in the quantum information processing

tasks [56]. We will begin by the examination of the EPR-states which are perceptions

in quantum information science, a vital part of quantum teleportation and characterize

the simplest possible examples of entanglement.

(i) Assume that the initially entangled state of the field in two cavities to be in a

NOON state given by

|Ψ〉AB(0) = α|0A1B〉+
√
1− α2|1A0B〉 (6)

This kind of state can be generated as it is mentioned in [56] and having its po-

tential application in Heisenberg-limited metrology and quantum lithography [60].

The solutions of the master equation for this initial NOON state case are given in

the Appendix A.

(ii) Consider now the initially entangled bipartite to be in a another EPR-state given

by

|Ψ〉AB(0) = α|0A0B〉+
√
1− α2|1A1B〉 (7)

This kind of state can be prepared as we have mentioned in [56]. States like these

have been realized in experiments with trapped ions [61].

The solution of the (Eq. 2) depends on the initial state of the two bipartite system. We

can show that, for these two classes of the initial states that were be considered above,

the solution of (Eq.2) has the matrix shape in the representation spanned by the two-

bipartite states

ρ(t) =




ρ11(t) 0 0 ρ14(t)

0 ρ22(t) ρ23(t) 0

0 ρ32(t) ρ33(t) 0

ρ41(t) 0 0 ρ44(t)


 (8)

With this form of the density matrix, we can show that the concurrence can be expressed

as

C(t) = max
(
0, C̃1(t), C̃2(t)

)
(9)

where

C̃1(t) = 2
[√

ρ23(t)ρ32 −
√

ρ11(t)ρ44(t)
]

(10)

C̃2(t) = 2
[√

ρ14(t)ρ41 −
√

ρ22(t)ρ33(t)
]

(11)

Using this formalism we can investigate the dynamics of entanglement for the two initial

states that considered above. However, in the case of squeezed reservoirs, we find that

the entanglement sudden death always happens for the two initial entangled states with



CEWQO 17 6

0 < α < 1. This is shown clearly in numerical results plotted in Fig. 2. In Fig. 3, the

time evolution of the concurrence is plotted for different values of the degree of squeez-

ing. We note that, the sudden-death time of entanglement becomes smaller as the degree

of squeezed increases. In conclusion, we investigate that, for bipartite entangled states,

the entanglement measured by concurrence abruptly disappears during the dynamic

evolution in the squeezed vacuum reservoir while for the same class of entangled states,

the entanglement decays exponentially for vacuum reservoirs [56]. The results can be

extended to the high dimensional bipartite filed states inside the cavities in squeezed

vacuum environments(more than one photon in each cavity)where the concurrence can

not be used and we have recourse to another measure of entanglement [62], namely, the

logarithmic negativity. The results are in Progress and can be reported elsewhere.
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Figure 1. Two independent systems of identical cavities containing initial entangled

fields. The entangled fields do not have directional interaction with each other but

independently interact with their local environment in each cavity

Appendix A. Solutions of equations of motion of the density matrix

elements for squeezed vacuum reservoirs

The equation of motion of density matrix elements for the state (Eq. 6) can be obtained

and for the sake of simplicity, we assume that the cavities are identical κ(A) = κ(B) = κ,

NA = NB = N and MA = MB = M . On solving these equations of motion we get the

time evolution of the density elements matrix

ρ11(t) = − a+ 3

8b2

[
1 + a+ 2 sinh(bκt)− 1 + a

b
cosh(bκt)

]
e−aκt

ρ22(t) = − 1

16

[
(16α2 +

4

b2
− 4) + (1− 1

b2
) cosh(bκt)

]
e−aκt

ρ33(t) =
1

16

[
(−16α2 +

4

b2
+ 12) + (1− 1

b2
) cosh(bκt)

]
e−aκt

ρ44(t) =
1

8b2

[
a2 − 1 +

1

4
(a− 1)

(
2b sinh(bκt)− (a + 1) cosh(bκt)

)]
e−aκt

ρ14(t) = − M

|M |α
√
1− α2 sinh(|M |κt)e−aκt

ρ32(t) = α
√
1− α2 cosh(|M |κt)e−aκt

and ρ21(t) = ρ∗12(t) = 0, ρ31(t) = ρ∗13(t) = 0, ρ32(t) = ρ∗23(t), ρ41(t) = ρ∗14(t), ρ42(t) =

ρ∗24(t) = 0, ρ43(t) = ρ∗34(t) = 0, where a = 4N + 1 and b2 = 8N2 + 8N + 1.
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Figure 2. (Color online)Entanglement dynamics of the two initial states of the

bipartite system in squeezed vacuum reservoirs for r = 0.2. (a) For the First initial

NOON state. (b) For the second EPR initial state.
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Figure 3. Entanglement dynamics of the two initial states of the bipartite system in

squeezed vacuum reservoirs for different values of the degree of squeezing and α = 1
√

2
.

(a) For the First initial NOON state. (b) For the second EPR initial state.
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