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Effect of quasi-bound states on coherent electron transport in twisted nanowires
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Quantum transmission spectra of a twisted electron waveguide expose the coupling between trav-
eling and quasi-bound states. Through a direct numerical solution of the open-boundary Schrödinger
equation we single out the effects of the twist and show how the presence of a localized state leads to
a Breit-Wigner or a Fano resonance in the transmission. We also find that the energy of quasi-bound
states is increased by the twist, in spite of the constant section area along the waveguide. While
the mixing of different transmission channels is expected to reduce the conductance, the shift of lo-
calized levels into the traveling-states energy range can reduce their detrimental effects on coherent
transport.

I. INTRODUCTION

Conductance spectra of quasi-1D semiconductor struc-
tures display many features that expose directly the
quantum nature of carrier transport, and are of
great interest both for applications and fundamental
understandings1,2. Even in the simplest non-interacting
carriers approach, the departure from a constant section
of the wire gives rise to complex resonance patterns in the
quantum transmission. This originates from the coher-
ent coupling of the energy spectra of different subbands
and from the interplay of traveling and localized states3.
Indeed, the case of a discrete energy spectrum merged
with a continuum one, was considered by Fano4 in his
seminal work on inelastic scattering amplitudes of elec-
trons. In that case, the two Hamiltonians with discrete
and continuous spectra were that of the electronic degree
of freedom of an atom and that of a free electron, respec-
tively. It was shown that the coupling induced by the
Coulomb interaction led to a peculiar asymmetric shape
of the scattering probability and a discontinuity of the
scattering phase. This behavior of the scattering am-
plitude is now identified in many atomic5, optical6 and
transport7 experiments (for a review see Ref. 8).
Here, we analyze the coherent transmission of a quan-

tum waveguide (QW) locally twisted, as depicted in
Fig. 1, with the twist inducing a coupling between the
subbands related to different transverse modes. A local
attractive potential is also included, in order to give rise
to a discrete set of bound states and to Fano resonances
in the transmission spectra: they will expose the energy
of quasi-bound states of the twisted QW. We stress that
our results are representative of a more general case, as
for example a carrier scattered through a quantum dot
embedded in a QW or a QW whose Hamiltonian is not
separable in the transverse and longitudinal directions,
leading to localized states.

The effect of twisting on the conductance is twofold.
On one side, it is expected to reduce the conductance9,10.
On the other side, this reduction can be compensated
by a partial destruction of localization effects (e.g. due
to external fields or impurities), induced by the twist-
ing itself. In fact, by means of the complex scaling
method it has been shown11 that stable states associ-
ated to a trapping potential may become resonant states
when the QW is twisted. In this paper we numerically
compute the real and imaginary part of such resonances
as a function of the twisting parameter in an explicit
model and we prove that, for such a model, the imagi-
nary part of these resonances actually takes a negative
value, this indicating that the corresponding states be-
come unstable. Specifically, our results show that the
energy of bound states of the quantum well in the lon-
gitudinal direction is increased by the twist and, as they
enter the continuous-spectrum range of traveling states,
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FIG. 1. Quantum waveguide with rectangular cross-section
(Ly = 20 nm, Lz = 10 nm) twisted for a length of 4λ ≃ 70 nm.
Here the rotation angle is Φ = 3

2
π. Inset: local confining

potential, as given in Eq. (3), with Lp = 10 nm and ν = 2.95
(solid line) or ν = 3.95 (dashed line). The potential well is
fully contained in the twisted region.
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they appear in the the transmission characteristic as sym-
metric (Breit-Wigner12) or asymmetric (Fano13) reso-
nant peaks, according to the character of the original
bound wave function. The width of the resonances is
related to the imaginary component of the eigenvalues
of the complex-scaled Hamiltonian14, as we detail in the
following, and shows a non-monotonic behavior. A res-
onant peak may or may not disappear when its energy
reaches the transmission channel with the same trans-
verse energy as the original bound state, according to the
corresponding bound state in the straight QW. Indeed,
the knowledge of the bound states of the straight QW al-
lows one to predict the position and type of transmission
resonances in the twisted system.
Our work is organized as follows. In Sect. II we de-

scribe the model of the twisted QW and, in the following
Sect. III, we outline the real-space numerical approach
adopted for the calculation of the scattering states and
transmission amplitudes on a non-Cartesian grid. In
Sect. IV the main results of our study are presented, with
particular attention to the evolution of resonant peaks
with the QW twist. Finally, in Sect. V we draw our con-
clusions. In the final Appendix, analytical details of the
complex-scaling approach mentioned in the main text,
are given.

II. THE PHYSICAL SYSTEM

We consider a QW with rectangular cross-section,
with an hard-wall confinement. For a straight wire,
an elementary solution of the single-band effective-mass
Schrödinger equation gives the energy spectrum

En,k = En +
~
2

2m
k2, (1)

with

En =
~
2

2m

[

(

nyπ

Ly

)2

+

(

nzπ

Lz

)2
]

, (2)

where m is the effective mass of the carrier, Ly and Lz

(with Ly 6= Lz) are the thicknesses of the QW in the two
directions orthogonal to the current propagation, k is the
wave number of the x-propagating plane wave component
of the wave function. For the sake of brevity, the sub-
band index n = 1, 2, . . . (with En,k ≤ E(n+1),k) has been
introduced, summarizing the two positive integers ny and
nz. Since k can be any real number, it is clear that the
energy spectrum is continuum, with En,k ∈ [E1 ,+∞).
A confining potential well (depicted in Fig. 1 inset) is

introduced along the x direction

V (x) =
~
2

2m

ν (ν + 1)

L2
p

[

tanh2
(

x

Lp

)

− 1

]

, (3)

where the positive parameters ν and Lp set the depth
and the length of the well. Specifically, the minimum of

V is −~
2ν (ν + 1) /(2mL2

p), and the region in which V is
significantly different from zero is about 6Lp. We stress
that the form given in Eq. (3) has been chosen both to
mimic a “smooth” local confinement and to deal with a
potential that has an exact expression for its bound-state
eigenvalues15:

µj = − ~
2

2mL2
p

(ν + 1− j)2 , j = 1, 2, . . . , ⌈ν⌉ , (4)

where the ceiling function ⌈ν⌉ indicates the smallest in-
teger not less than ν. The above expression is essential
to approach analytically the problem through the com-
plex scaling method, that we use to follow the energy vs.
twist behavior of the bound states.
The energetic spectrum of the Schrödinger operator for

the QW with V consists of a discrete and a continuum
part

{En + µj ; n = 1, 2, . . . ; j = 1, . . . , ⌈ν⌉}∪[E1 ,+∞). (5)

For energies above E1 the two parts overlap and eigen-
values of the discrete spectrum are embedded in the con-
tinuum spectrum. However, the two sub-spectra remain
well distinct since the system Hamiltonian is separable in
a transverse (y-z plane) and a longitudinal (x direction)
component. In fact, if a given energy corresponds to a
discrete level and, at the same time, it lies inside the con-
tinuum, the corresponding state will be degenerate, with
the different eigenfunctions having a different transverse
state. In terms of quantum transport along the QW, the
above system does not mix different transmission chan-
nels or propagating states with bound ones.
Let us now introduce a local twist in the QW. As we

will show, this couples different transverse modes, mixing
their spectra, and shifts the energy of the discrete states.
The deformation adopted, also illustrated in Fig. 1, is a
rotation of the rectangular cross-section around its center
when moving along the QW axis. A point of coordinates
(x, y, z) of the straight QW is transformed according

x′ = x,

y′ = y cos [ϕ (x)] + z sin [ϕ (x)] , (6)

z′ = z cos [ϕ (x)]− y sin [ϕ (x)] ,

where

ϕ (x) =
Φ

2

[

erf
(x

λ

)

+ 1
]

(7)

is the rotation angle as a function of the longitudinal
position x. Here, erf is the error function, Φ is the total
rotation angle, and λ is a parameter that sets the length
of the twisted region. In particular, the QW twist can
be considered effective in a length 4λ around the origin.
Outside the latter region, the QW is essentially straight.
For our simulations, we use GaAs effective electron

mass m = 0.067me and adopt the following set of
geometric parameters: Ly = 20 nm, Lz = 10 nm,
λ = 17.5 nm (i.e. the twisted region is about 70 nm),
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FIG. 2. Schematic representation of the relevant energies
of the system without twist for two different magnitudes
of the quantum well described by Eq. (3). The thresholds
of the transport channels, i.e. the transverse modes, are
E1 = 70.155 meV, E2 = 112.248 meV, E3 = 182.403 meV
(not shown). The energy of a bound state of the straight
QW is indicated with εn,j , with n indicating the transverse
mode, and j the bound state of V in the longitudinal direc-
tion. While the En’s are fixed, the εn,j ’s are increased by the
twist.

0 ≤ Φ ≤ 3π. Two attractive potentials, as given in
Eq. (3), have been used, both with Lp = 10 nm (i.e.
effective on a length of about 60 nm around the origin).
They differ by their depth: in the first case ν = 2.95
(corresponding to a minimum of −66.262 meV), in the
second case ν = 3.95 (corresponding to a minimum of
−111.186 meV). The relative positions of relevant en-
ergy levels are reported in Fig. 2, for the two cases. For
brevity, the energies of the discrete states are indicated
by εn,j = En,0 + µj in the following. We stress that the
transverse energies En are fixed, since the cross-section
is constant, although rotated. Contrary, the position of
εn,j depends upon the twist, as we will analyze in detail
in Section IV. In fact, they are the resonant energies that
correspond to a local maximum (Breit-Wigner) or a zero
(Fano) in the transmission spectra.

III. NUMERICAL APPROACH

To obtain the transmission amplitudes of the twisted
QW we solve the 3D Schrödinger equation with open
boundaries through the quantum transmitting boundary
method16 (QTBM). Electrons are injected from the left
lead (see Fig. 1) in a given transverse mode, and can be
either reflected or transmitted to the right lead. With
this boundary condition, the differential equation of mo-
tion is solved in the internal points of the domain, leading
to complex transmission/reflection amplitudes for every

channel of the right/left leads. We adopt a curved co-
ordinate system naturally defined by the twist function
of Eq. (6) r = (x, y, z) → r

′ = (x′, y′, z′). This new
coordinate system follows the QW twist and “sees” a
straight QW. However, also the equation of motion must
be transformed according to the r → r

′ relation. In order
to do so, we need the metric tensor of the system G(r)
with components Gij(r) = (∂ir

′) · (∂jr′), together with
its inverse G−1 with components Gij . Here, we used the
definitions ∂i = ∂/∂xi and (x, y, z) = (x1, x2, x3). In the
curved coordinate system the Hamiltonian reads17,18:

H(r) = − ~
2

2m

3
∑

i,j=1

∂i√
G

(√
GGij∂j

)

= − ~
2

2m

3
∑

i,j=1



Gij∂2ij −





3
∑

k,l=1

Gkl∂2klr
′ ·Gij∂ir

′



 ∂j



 ,

where G > 0 is the determinant of G and ∂2ij = ∂i∂j .
Now it is easy to define a rectangular mesh following
the QW in the new coordinate system, and discretize
H through a finite-difference scheme. The correspond-
ing Schrödinger equation Hψ = Eψ is then solved, with
open boundary conditions at the two edges of the QW,
as described above. The QTBM takes as an input the
kinetic energy E − En > 0 of the incoming electron and
the wave function of the transverse mode n, and gives as
an output the transmission/reflection amplitudes in the
different channels19. For this reason, a new calculation
must be performed for every E in a chosen set over the
range of interest, with E > En.
Actually, in order to find the resonances we also used

a complementary technique: the complex scaling ap-
proach described in Appendix11. This method leads to
a complex-eigenvalue problem that allows one to iden-
tify in a straightforward way the resonances originated
by the bound states of V . Moreover, it gives the energy
levels of bound states below E1, not achievable with the
QTBM. In fact, the QTBM gives the transmission am-
plitude of the different transverse modes as a function
of the carrier energy, and the position of transport reso-
nances must be detected subsequently, as a relevant peak
or dip in the transmission probability and as a continuum
(abrupt) phase shift for a Breit-Wigner (Fano) resonance.
However, the complex scaling method results to be very
demanding from the computational point of view and we
used its results only as a reference for specific cases. We
leave the comparison of the two methods to a subsequent
work.

IV. TRANSMISSION SPECTRA

As anticipated in Section II the transmission spectra of
the straight QW can be obtained from a one-dimensional
equation of motion with the potential V . In order to mix
transmission channels, the transverse/longitudinal sepa-
rability must be lifted. However, a generic deformation of
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FIG. 3. Top panel: position of transmission resonances in
the ground-mode spectrum as a function of the twist angle
Φ, for ν = 2.95. The resonant energies correspond to the
real part of the complex-scaled eigenvalues. The threshold
energies of the ground and first-excited transverse modes are
indicated by the two horizontal lines labeled as E1 and E2,
respectively. The three curves correspond to the quasi-bound
states ǫ2,3 (dotted line), ǫ2,2 (dashed line), ǫ2,1 (solid line).
Bottom panel: Imaginary part of the complex-scaled eigen-
values, corresponding to the half width of the resonance peaks
or dips. While the two Fano resonances ǫ2,3 and ǫ2,2 (see also
Fig. 4) disappear as they reach E2, ǫ2,1 is still present in the
spectrum at energies exceeding E2 in the form of a broad and
shallow dip (see also Fig. 5).

the QW section along the wire, not only couples different
transverse modes, but also introduces additional resonant
energies, as in the case of a closed cavity attached at a
side20,21. This can make difficult to expose the sole effect
of the coupling between the continuum and discrete spec-
tra. For this reason, as well as for technological relevance,
we choose a kind of deformation that does not alter the
shape of the QW cross section, but only its orientation,
and does not introduce further resonances. In fact, the
QW twist has only two effects: first, it couples the trans-
mission channels so that the transmission probability for
a carrier injected in a given transverse mode also has
traces of quasi-bound states of different modes; second,
it increases the energies of quasi-bound states. These ef-
fects can be seen from the two panels of Fig. 3, where
we report the position (top panel) and width (bottom
panel) of the resonances in the transmission spectrum of
the ground transverse channel, as a function of the twist
angle. In particular, for each angle Φ we inject a car-
rier in the ground transverse mode (with energy E1) and
with several longitudinal kinetic energies, from zero to
E2 − E1. From the curves of transmission amplitude vs.
total energy E (see e.g. Figs. 4 and 5) we determine the
position of the resonances and obtain the imaginary part
of the eigenvalue as −Γ/2, where Γ is the peak or dip
width. Note that the above complex eigenvalues corre-
spond to quasi-bound states with a mean lifetime ~/Γ of
the order of 100 ps.
By comparing Fig. 3 with the levels of the straight QW
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FIG. 4. Ground-mode transmission probability (upper pan-
els) and phase (lower panels) around the resonances ǫ2,2 (left
panels) and ǫ2,3 (right panels) for a twist angle Φ = π/2. In
both cases, the phase θ shows the typical π discontinuity of
Fano resonances.

given in Fig. 2, the origin of the two resonances at higher
energy (dotted and dashed lines in Fig. 3) is clear. In fact,
for Φ ∼ 0 only two quasi-bound levels lie between E1 and
E2, namely ǫ2,2 and ǫ2,3. They both belong to channel 2
so that at zero twist, they do not appear in the transmis-
sion spectrum, as it can be gathered from the vanishing
imaginary part of their eigenvalue in the bottom panel of
Fig. 3. As the twist is introduced, the two levels above
appear as slightly asymmetric Fano dips in the transmis-
sion probability, as reported in the top panels of Fig. 4
for the case of Φ = π/2. However, the Fano character of
the resonances is better revealed by the abrupt jump of
π in the transmission phase θ, as shown in the bottom
panels of Fig. 4. The third resonance of Fig. 3 (solid line)
appears around Φ ≃ 0.85π from the low-energy threshold
E1. It is again a Fano resonance, as can be gathered from
the left panels of Fig. 5, showing the transmission prob-
ability and phase at Φ = π. This is confirmed by results
of the complex-scaling approach, ascribing the resonance
to the quasi-bound level ǫ2,1. In fact, as the twist in-
creases from 0 to π, both levels ǫ2,1 and ǫ1,3 reach the
threshold E1. However, while the former shows up as a
resonance in the transmission spectrum, the latter dis-
appears as it enters the traveling-states region, with its
imaginary part going to zero. Again, this behavior can
be traced by the complex scaling method alone, since the
lower energy accessible with the QTBM is E1. When ǫ2,1
enters the energy range of first-mode traveling states, it
appears as a Fano resonance since it is a second-mode
quasi-bound state. Moreover, contrary to the other two
resonances, it appears with a significant width (bottom
panel of Fig. 3) from the beginning, since at Φ ≃ 0.85π
the coupling between the modes is already strong.

When the twist increases from π to 2π the three quasi-
bound levels described above also increase their energy.
However, as ǫ2,2 and ǫ2,3 approach the threshold of the
second channel, their width decreases and they finally
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FIG. 5. Ground-mode transmission probability (upper pan-
els) and phase (lower panels) around the resonance ǫ2,1 for
two different twist angles, namely Φ = π (left panels) and
Φ = 2.25π (right panels, solid line). In the first case ǫ2,1 < E2,
and a sharp Fano dip is found. In the second case ǫ2,1 > E2,
and its position is only indicated by a very shallow dip. In the
latter case, also the transmission spectrum of the first-excited
mode is reported (dashed line), revealing a pronounced Breit-
Wigner resonance.

disappear, with the width going to zero, when their en-
ergy reaches E2. The behavior of ǫ2,1 is different. In
fact, its resonance width is always of the order of 4µeV
until the energy reaches E2, where the width increases
by order of magnitudes. This is shown in the right pan-
els of Fig. 5, where the transmission probability (top)
and phase (bottom) are shown, for a twist Φ = 2.25π.
Here, ǫ2,1 > E2, and the second transmission channel be-
comes available. The solid line is the first-channel to first-
channel transmission, and shows a tiny dip at the quasi-
bound state position, reminiscent of the prominent Fano
dip of the single-channel case. The dashed line is the
second-channel to second-channel transmission, showing
a clear Breit-Wigner resonance with the corresponding
continuous phase lapse of π.22 This is not surprising,
since in this case the quasi-bound state has the same
transverse mode of the transmission channel.

The case with ν = 3.95, with a deeper potential well
V in the twisted region, presents additional effects. In
fact, at zero twist the energy range between E1 and E2,
where only the ground channel is open, contains bound
states of two different transverse modes, namely the first
excited (ǫ2,3 and ǫ2,4) and the second excited (ǫ3,1), as
shown in Fig. 2. As the wire is twisted, the energy of the
above three quasi-bound states increases, as illustrated
in the top panel of Fig. 6. However, the level ǫ3,1 (solid
line with empty squares) increases faster than the other
two, it crosses ǫ2,4 around Φ = π and goes beyond E2.
First of all we note again that, in the [E1, E2] range, the
transport resonances corresponding to the above quasi-
bound states are Fano resonances, in agreement with the
fact that they originate from a transverse mode different
from that of the transport channel. This is shown in the
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FIG. 6. Same as Fig. 3, but for a deeper potential well,
with ν = 3.95. Here, four quasi-bound states with a first-
excited transverse mode are present: ǫ2,1 (solid line, with
filled circles), ǫ2,2 (dashed line), ǫ2,3 (dotted line), ǫ2,4 (dot-
dashed line), together with a quasi-bound state with a second-
excited transverse mode: ǫ3,1 (solid line with empty squares).
The two resonances ǫ3,1 and ǫ2,4, with different transverse
modes, cross around Φ = π with a repulsion of their imaginary
components. All the resonances in the [E1, E2] range are of
Fano type.
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FIG. 7. Ground-mode transmission probability (upper pan-
els) and phase (lower panels) showing the resonance ǫ3,1 just
after the crossing with ǫ2,4 (at Φ = π, left panels) and above
the second mode threshold E2 (at Φ = 1.25π, right panels).
In the first case the π discontinuities of the transmission phase
evidence the Fano character of the resonances. In the second
case a third channel is available, and the resonance does not
present either Fano or Breit-Wigner character.

left panels of Fig. 7, reporting the transmission probabil-
ity and phase of the ground channel at Φ = π, just after
the crossing. At the crossing, we also find a repulsion

of the imaginary component of the eigenvalues, visible in
the bottom panel of Fig. 6.
When ǫ3,1 > E2, i.e. it enters the energy region with

two transport channels, it does not disappear, as ǫ2,3 and
ǫ2,4 do at larger twist, but simply changes its characters.
Now the minimum of the dip does not reach zero, and
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FIG. 8. Transmission probability (upper panels) and phase
(lower panels) around the resonance ǫ2,2 for the system with
ν = 3.95. Two different twist angles are considered, with the
resonance close to the second-channel threshold: Φ = 2.875π
(left panels), where ǫ2,2 < E2 and Φ = 3.125π (right panels),
where ǫ2,2 > E2. In the second case, both the ground mode
(solid line) and first-excited mode (dashed line) transmission
probabilities are reported. As for the case of Fig. 7, after the
crossing of E2 the π discontinuity of the phase is lost, due to
the availability of a third transmission channel. The broad
peak in the first-excited channel is a Breit-Wigner resonance.

the phase does not present the π discontinuity (Fig. 7,
right panels). Here in fact, a third transmission channel
is available, this lifting the rigid zero-transmission prop-
erties of a two-channel case Fano resonance.
As already mentioned, the two resonances ǫ2,3 and ǫ2,4,

present in the spectrum since small twist angles, disap-
pear as they reach E2, with their width going to zero.
Two additional resonances enter the ground-mode region
at larger twists: ǫ2,2 and ǫ2,1, represented in Fig. 6 by a
dashed line and a solid line, respectively. They are also
Fano resonances, but after reaching E2 they do not van-
ish. In fact, their width increases and their minimum
does not reach zero, as shown in Fig. 8 for ǫ2,2. Obvi-
ously, in this region they are also present in the trans-
mission spectrum of the first-excited channel as Breit-
Wigner resonances (dashed line in Fig. 8), since their
transverse mode is the first-excited one as well. Corre-
spondingly, their transmission phase presents a smooth
evolution of π.

V. CONCLUSIONS

By solving the open-boundary Schrödinger equation
through the QTBM we obtained the transmission spectra
of the twisted QW. The effect of the twist can be sum-
marized in the following points. First, the twist is able
to mix different transmission channels in spite of the fact
that the transverse QW section is not altered (but only
rotated). Furthermore, bound states of V are coupled to
traveling states and appear as resonance peaks/dips in

the transmission spectra. No additional resonances are
introduced. Second, the character of the resonance de-
pends upon the transverse mode of the original bound
state. In fact, when the latter is equal to the trans-
verse mode of the transmission channel, we find a Breit-
Wigner resonance, otherwise we find a Fano resonance.
In case more than two channels are available, we do not
find the π discontinuity of the transmission phase typ-
ical of Fano resonances. Third, the twist increases the
energy of quasi-bound levels. The higher the transverse
mode of the quasi-bound state, the faster its energy is
increased. However, the change of resonance width is
non-monotonic with the twist. In general, it increases
from zero when the energy of the bound state is already
in the transport region in the straight QW, and decreases
as the above energy reaches the threshold of the transmis-
sion channel with the same transverse mode as the quasi-
bound state. Forth, resonances that are present from the
beginning in the first-channel region disappear as they
reach E2, while resonances that enter the E1-E2 region
at a finite twist, persist in the multi-channel region. The
strict behavior described above could help in anticipat-
ing the characters of transmission spectra of QW locally
twisted once the spectra of the straight wire is known.
Furthermore, it supports the idea that the twist can re-
duce the effects of localized states on quantum conduc-
tance, since it shifts their levels towards higher energies,
possibly beyond Fermi level of the quasi-1D nanostruc-
ture.
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APPENDIX: COMPLEX SCALING METHOD

So far we have identified resonant energies with sin-
gular points of the reflection/transmission coefficient. In
the framework of the complex scaling method, introduced
in the ’70 by Aguilar, Baslev and Combes23,24 (for a re-
view see also Ref. 25), resonances are identified with the
complex eigenvalues of a non-symmetric linear operator
obtained from the original one by analytic complex defor-
mation. The real part of such complex-valued eigenvalues
coincides with the usual resonance energy level, while the
imaginary part is associated with the resonant state life-
time. The complex scaling method has been employed in
Ref. 11 to twisted QW in order to prove the existence of
resonances and here we briefly resume it.
Let ω =

[

− 1
2Ly,+

1
2Ly

]

×
[

− 1
2Lz,+

1
2Lz

]

⊂ R2 be the
rectangular cross section of our QW. For a given x ∈ R
and (y, z) ∈ ω we define the mapping given in Eq. (6)
where ϕ(x) = ǫα(x) and where α : R → R is a differen-
tiable function which represent the twisting and ǫ ≥ 0 is
a real-valued parameter which represents the strength of
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the twisting. Let Ωǫ be the twisted QW and let

Hǫ = − ~
2

2m
∆+ V (x)

be the time independent Schrödinger operator on Ωǫ,
that is the wave function ψ belongs to L2(Ωǫ) with
Dirichlet boundary conditions at ∂Ωǫ. V represents the
external potential Eq. (3), depending only on the longi-
tudinal variable x. In the following, for the sake of defi-

niteness, let us assume the units choice such that ~
2

2m = 1.
In order to analyze the operator Hǫ we go back to the

untwisted tube Ω. The operator Hǫ then takes the form
Kǫ

Kǫ = −∂2yy − ∂2zz − [∂x + ǫα′(x) ∂τ ]
2 + V (x) = K0 + Uǫ ,

where

∂τ = y∂z − z∂y

and

K0 = −∂2xx − ∂2yy − ∂2zz + V (x)

and

Uǫ = −[∂x + ǫα′(x) ∂τ ]
2 + ∂2xx

= −2ǫ α′(x)∂2xτ − ǫ α′′(x) ∂τ − ǫ2 [α′(x)]
2
∂2ττ .

The operator Kǫ is a symmetric operator on L2(Ω)
with Dirichlet boundary conditions at ∂Ω. The spec-
trum of K0 is given by Eq. (5), that is, the spectrum of
K0 admits embedded eigenvalues in the continuous spec-
trum. In Ref. 11 it has been proved that such embedded
eigenvalues become resonances when we add the pertur-
bation Uǫ to K0. Resonances are defined by employing
the method of exterior complex scaling to the operator
Kǫ, provided that the potential V is a bounded potential
which extends to an analytic function with respect to x
in some sector, and the twisting function α(x) extends
to analytic function with respect to x in a suitable com-
plex set. The exterior complex scaling method consists

in introducing the mapping Sθ, which acts as a complex
dilation in the longitudinal variable x:

(Sθψ)(x, y, z) = eθ/2ψ(eθx, y, z) , θ ∈ C, ℑθ > 0.

The transformed operator is not a symmetric operator
and it takes the form

Kǫ(θ) = SθKǫS
−1
θ = K0(θ) + Uǫ(θ) ,

where

K0(θ) = SθK0S
−1
θ = −e−2θ ∂2xx − ∂2yy − ∂2zz + V (eθx)

and

Uǫ(θ) = SθUǫS
−1
θ

= −2ǫ e−θ α′(eθx)∂2xτ − ǫ α′′(eθx) ∂τ

−ǫ2
[

α′(eθx)
]2
∂2ττ .

Then, the essential spectrum of Kǫ(θ) consists of the
sequence of the half-lines (Fig. 9) En + e−2iℑθR+, n =
1, 2, . . ., and, by a standard argument, it turns out that
the eigenvalues of Kǫ(θ) are analytic functions of θ, they
are in fact independent of θ. These non-real eigenvalues
of Kǫ(θ), for θ such that ℑθ > 0, are identified with
the resonances of Kǫ (and hence with the resonances of
Hǫ)

25.

E1 E2 E3

FIG. 9. The essential spectrum of Kǫ(θ) is given by the half-
lines En + e−2iℑθR+ (full lines). The eigenvalues of Kǫ(θ)
(denoted by open circle) with strictly negative imaginary part
are the resonances of Hǫ; for energies below the threshold E1

the eigenvalues of Kǫ(θ) (denoted by full circle) are purely
real valued and they are eigenvalues of Hǫ.
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