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Assumptions of IV Methods for
Observational Epidemiology
Vanessa Didelez, Sha Meng and Nuala A. Sheehan

Abstract. Instrumental variable (IV) methods are becoming increas-
ingly popular as they seem to offer the only viable way to overcome the
problem of unobserved confounding in observational studies. However,
some attention has to be paid to the details, as not all such methods
target the same causal parameters and some rely on more restrictive
parametric assumptions than others. We therefore discuss and contrast
the most common IV approaches with relevance to typical applications
in observational epidemiology. Further, we illustrate and compare the
asymptotic bias of these IV estimators when underlying assumptions
are violated in a numerical study. One of our conclusions is that all IV
methods encounter problems in the presence of effect modification by
unobserved confounders. Since this can never be ruled out for sure, we
recommend that practical applications of IV estimators be accompa-
nied routinely by a sensitivity analysis.

Key words and phrases: Causal inference, instrumental variables, Mendel-
ian randomization, relative bias, structural mean models.

1. INTRODUCTION

Inferring causation in observational studies is prob-
lematic, as observed associations can often be due
to other than causal explanations, confounding be-
ing of special concern. Randomized controlled trials
(RCTs), rendering all other explanations unlikely
by design, are the accepted standard approach to
causal inference. However, we are here interested in
epidemiological applications where it is not always
possible nor desirable to carry out RCTs. For exam-
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ple, it would be unethical or impractical to randomly
allocate individuals to exposures such as smoking,
alcohol consumption, and complex nutritional or ex-
ercise regimes. Furthermore, the cohort of a trial
might not be representative of the target population
for which health interventions are required [16, 39].
The standard approach to causal inference from ob-
servational data is to assume that there is no un-
observed confounding, that is, that a sufficient set
of covariates has been measured. This is often im-
plausible and has produced misleading results in the
past, for example, regarding the effects of hormone
replacement therapy [38, 72].
Methods exploiting instrumental variables provide

an alternative solution. Suppose we are interested in
the causal effect of some exposure (e.g., cholesterol)
on disease (e.g., coronary heart disease), and be-
lieve that important confounding factors are likely
but unobservable, perhaps because they are not fully
understood. Loosely speaking, an instrumental vari-
able (IV) is a third (observable) variable that is pre-
dictive of exposure, but has no direct effect on the
disease and is independent of the unobserved con-
founders. In general, it is difficult to find a variable
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that can be justified as a suitable IV for any par-
ticular problem. For randomized trials with partial
compliance, where the effect of the actual treatment
taken is of interest, the natural IV is the randomiza-
tion to treatment [29]; but, of course, this is not an
option when considering exposures that cannot be
randomized as mentioned earlier. Examples in epi-
demiological contexts are the physician’s prescrip-
tion preference as an IV to assess drug effects [8, 55],
cigarette price to assess the effects of smoking [41]
or genetic variants that are associated with expo-
sures of interest [16, 34, 39]. The latter has become
known as Mendelian randomization and, due to the
fact that it is currently generating a lot of interest
in the epidemiological literature, will serve as illus-
tration throughout (see Section 2).
Relying only on their defining properties, IVs can

be used to test for or bound the causal effect [2,
4, 23, 29, 32, 58]. However, identification and hence
point estimates of the causal effect are only obtain-
able under additional parametric and distributional
assumptions. Linear structural equation models, pop-
ular in the econometrics literature [71, 74], are a
well-studied model class that allows identification.
Generalizations to nonlinear structural equations
based on log-linear or probit modeling, for example
[47, 70], are also available (see overview [13]). In-
spired by the simplicity of the linear case, where the
IV estimator is given as the ratio of the coefficients
from the regressions of outcome on IV and expo-
sure on IV, alternative methods have been put for-
ward replacing these two linear regressions by non-
linear ones. One such example which is popular in
Mendelian randomization studies with binary out-
comes is what we will call the “Wald-type” estima-
tor. This combines odds ratios or risk ratios for the
genotype-outcome relationship with the mean dif-
ference in exposure given the genotype [10, 11, 16,
35, 40, 66].
An important consideration when using IV meth-

ods is the target of inference, that is, the precise
definition of the causal parameter of interest. In our
experience, epidemiologists are mostly interested in
the population causal effect, that is, a comparative
measure of subjecting everyone in a given popula-
tion to exposure as opposed to no exposure, as would
ideally be obtained in an RCT. However, some promi-
nent IV methods target causal effects within spe-
cific subgroups. These are the effect of treatment
on the compliers [2, 33], or the effect of treatment
on the treated [32, 57, 59, 67]. The complier causal

effect is motivated by RCTs with partial compli-
ance and contrasts the effect of treatment versus
nontreatment for those individuals who follow their
assignment whatever it is. In our view, the interpre-
tation of this causal parameter is very much bound
to the randomization scenario and we will therefore
not consider it any further. The effect of “treatment
on the treated” can be translated as the “effect of
exposure on the exposed” in an epidemiological con-
text and describes the effect of preventing those who
would normally be exposed from becoming exposed.
This particular subgroup effect is explicitly modeled
by structural mean models (SMMs) [32].
In this paper we compare the above approaches

with regard to their use in observational epidemiol-
ogy and focus on issues that have recently arisen, for
example, in Mendelian randomization applications,
to make the discussion concrete. We formally con-
sider the targeted causal parameters and the under-
lying modeling assumptions of IV methods. We ar-
gue that their assumptions should be made explicit
so that those most plausible for a given problem
can be chosen. As models are never expected to be
exactly true in practice, we complement the theoret-
ical comparison by a numerical study of the possible
bias under violations of the assumptions. The out-
line of the paper is as follows. In Section 2 we begin
by presenting the basic idea of IVs with the exam-
ple of Mendelian randomization as recently applied
to investigate the effects of alcohol consumption. We
then introduce the main concepts of causal inference
in Section 3, a central issue being the different no-
tions of causal effect parameters. Section 3.2 gives
the core conditions characterizing an instrumental
variable. In Section 4 we present the IV models that
we will consider, and provide general indications
of how they interrelate. Section 5 investigates the
performance in terms of relative asymptotic bias of
these methods in a numerical study where we focus
on the particular case where all variables are binary
in order to facilitate exact evaluation of the relevant
quantities. We conclude with a discussion of the im-
plications, both for epidemiological applications and
more generally.

2. USING A GENETIC VARIANT AS AN IV

We will relate to Mendelian randomization through-
out the paper as a concrete application of an IV
approach in observational epidemiology and outline
the basic idea here using an example taken from
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Chen et al. [12]. Further details, including history
and nomenclature, are provided in a recent review
[15].
Alcohol consumption has been found in observa-

tional studies to have a positive effect on coronary
heart disease (CHD) and negative effects on liver
cirrhosis, some cancers and mental health problems.
These findings, however, are strongly suspected to
be confounded by factors like diet, lifestyle and so-
cioeconomic factors. Thus, in order to inform pub-
lic health recommendations on alcohol intake, for
example, it is important to verify which, if any, of
these observed associations is in fact causal for the
relevant health outcome.
The connection between the ALDH2 gene and al-

cohol consumption is well established and under-
stood [6, 26, 42, 73]. The ALDH2*2 variant is as-
sociated with an accumulation of acetaldehyde and
hence with unpleasant symptoms after drinking al-
cohol. Carriers of this variant tend to limit their al-
cohol consumption regardless of their other lifestyle
behaviors. Since genes are randomly assigned during
meiosis, ALDH2*2 carriers should not differ system-
atically from carriers of the ALDH2*1 allele in any
other respect. In particular, there should be no as-
sociation between the variant and the unobserved
confounders of the various relationships between al-
cohol consumption and above health outcomes. The
plausibility of this assumption is strengthened by
the fact that there is no evidence of ALDH2 associa-
tion with typical known epidemiological confounders
such as age, smoking, BMI, cholesterol, etc. [19]. The
possibility that ALDH2 affects the particular disease
of interest by any route other than through alcohol
consumption can also be excluded from the known
functionality of the gene. Thus, for any specific dis-
ease, we should observe that there are more *1*1 and
*1*2 than *2*2 genotypes among the affected indi-
viduals if alcohol consumption is really causal for
that disease. The meta-analysis by Chen et al. [12],
based mainly on studies in Japanese populations,
shows that blood pressure and risk of hypertension
is higher for *1*1 than for *2*2 homozygotes, and
is also higher for heterozygotes (*1*2) than for the
*2*2 homozygotes. As the heterozygotes tend to be
moderate drinkers due to less pronounced adverse
symptoms, the study concludes that even moderate
alcohol consumption is “harmful” for blood pres-
sure.
The example shows how ALDH2 can be used as

an IV to provide evidence for a causal effect of the

exposure by establishing that the disease and the
IV are associated: the risks of high blood pressure
and hypertension are significantly different between
the different genotypes. As ALDH2 is assumed to
have no direct effect on blood pressure or hyperten-
sion other than through alcohol consumption, the
observed associations must be due to an effect of
alcohol consumption on blood pressure and hyper-
tension. Since the above assumptions define an IV,
this reasoning only holds if we can be fairly con-
fident that ALDH2 is a valid IV. Hence, only well-
understood genotypes can be used as IVs. Note, this
does not yet provide a point estimate of the causal
effect of alcohol consumption on hypertension: it is
merely evidence that there is such an effect.
The number of applications of Mendelian random-

ization is growing rapidly [10, 17, 18, 36, 42, 43, 46,
66]; a brief overview of some recent studies is given
in Sheehan et al. [64]. Note that even when a ge-
netic variant can be found that is associated with
the exposure of interest, it does not automatically
qualify as an IV. Problems could occur when there
are different subpopulations with different allele fre-
quencies and different prevalences of disease, for in-
stance, [9]. Finding a suitable genetic instrument is
thus a challenge as discussed in detail in several pa-
pers [16, 23, 24, 39, 48, 65].

3. CAUSAL INFERENCE

Epidemiologists are concerned with identifying the
causal effect of an exposure X on a disease Y , typi-
cally with the view to informing public health inter-
ventions. We therefore regard causal inference to be
about the effect of intervening in, or manipulating,
a given system as is implicit in many approaches to
causal inference [21, 24, 31, 37, 49, 57, 62, 63].
It is useful to introduce notation to represent in-

tervention. Pearl [51] uses the do operator to dis-
tinguish between conditioning on an intervention in
X , P (Y |do(X = x)), and the usual conditioning on
observing X , P (Y |X = x). The former reflects how
the distribution of Y should be modified whenX has
been forced to the value x by some external interven-
tion, whereas the latter reflects how the distribution
of Y should be modified when X = x is simply ob-
served. The different conditions, observation versus
intervention, reflect the common wisdom correlation

is not causation. Note that we often write do(x) for
do(X = x).
Another formal approach is based on counterfac-

tual (potential outcome) variables [31, 62, 63]. Here
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Y (x1) denotes the value that the outcome Y would
have if the variable X were set to the value x1,
whereas Y (x2) is the outcome if the same variable
X were set to the value x2. The variables Y (x1)
and Y (x2) are counterfactual because they can never
both be observed together, so when one is fact, the
other one is, of necessity, contrary to fact. The no-
tion of intervention also underlies the counterfactual
approach [31, 60, 62, 63]. Both approaches define
a formal language for causality and provide spe-
cific mathematical notation for representing inter-
ventions that we might be interested in. Hence, they
force us to be clear and explicit about any assump-
tions underlying a given method of causal inference.

3.1 Causal Parameters

Causal effect parameters are typically functions of
the distribution of Y under different interventions
in X . The most popular is the average causal effect
(ACE) defined as the expected difference in Y under
two different settings of X :

ACE(x1, x2) :=E(Y |do(x2))−E(Y |do(x1)),

where x1 is typically some baseline value. The ACE
is a natural choice of causal parameter when the ef-
fect of X is suspected to be linear on Y . When Y is
nonnegative or binary, in contrast, it is more com-
mon to use a multiplicative measure like the causal
relative risk (CRR) defined as

CRR(x1, x2) :=
E(Y |do(x2))

E(Y |do(x1))
,(1)

or, for binary Y , the causal odds ratio (COR) given
by

COR(x1, x2) :=
P (Y = 1|do(x2))P (Y = 0|do(x1))

P (Y = 0|do(x2))P (Y = 1|do(x1))
.

Note that the odds ratio is mainly used in case-
control studies to approximate the relative risk in
the case of a rare disease.
All these causal parameters are population param-

eters, that is, they compare setting X = x1 with
setting X = x2 for the whole population of inter-
est. They are what is measured in a comparison of
the active and control groups in a controlled ran-
domized experiment when all subjects comply with
their treatment assignment. In some situations, we
may be more interested in the causal effect within
a subset of the population, that is, conditional on a
specific value of some observed covariates. For ex-
ample, we might want to know the average causal

effect of male alcohol consumption on oesophageal
cancer risk. The above causal parameters can easily
be adapted by conditioning on covariates provided
these are prior to exposure. We will not consider this
further in the present paper.
However, one particular causal subgroup effect, or

local causal effect, is very relevant in the epidemi-
ological literature. This is the effect of exposure on
the exposed group [29, 57, 58], or the effect of treat-
ment received as it is known in the context of clinical
trials (cf. [25], e.g.). For example, we might be inter-
ested in the effect of reducing alcohol consumption
for those individuals who would normally tend to
have high alcohol consumption, but not in the ques-
tion of increasing alcohol consumption for those who
normally do not drink much. This does not quite cor-
respond to conditioning on observed covariates, as
what the subjects “would normally” be exposed to
in the future is not usually observable. However, it
can be assumed that if no intervention takes place,
alcohol consumption will remain high for those in-
dividuals with existing high consumption. In coun-
terfactual notation the corresponding local causal
relative risk, LCRR, for instance, is given by

LCRR :=
E(Y (x)|X = x)

E(Y (0)|X = x)
,(2)

where Y (x) is the value of the outcome if an individ-
ual’s alcohol consumption is set to be x and Y (0) is
the counterfactual outcome if it is set to be at a base-
line level, while conditioning on X = x means that
the “natural” alcohol consumption is x. Note that
given X = x, we actually observe Y = Y (x), so that
the numerator of (2) is equal to E(Y |X = x). This
type of causal parameter can also be expressed with
the do-notation, but we need to distinguish between
the “natural” value of exposure X and the one that
it is set to by intervention X̃ . When no intervention
takes place, these two are identical, that is, X ≡ X̃ .
However, when an intervention takes place, it is as-
sumed that X̃ “overrules” X so that Y causally de-
pends on X̃ while being still associated with X due
to the fact that X is informative for the unobserved
confounding that also predicts Y . The above can
then be translated to

LCRR :=
E(Y |X = x,do(X̃ = x))

E(Y |X = x,do(X̃ = 0))
.(3)

See Robins, VanderWeele and Richardson [61] and
Geneletti and Dawid [28] for more details on how
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to interpret this local causal effect without coun-
terfactual notation. Local versions of the ACE and
COR can easily be defined analogously to the above
LCRR. Note that the term “local” causal effect in
the IV literature is most commonly used for the
effect of treatment on the “compliers” in an RCT
[2, 29, 33], which we are not dealing with here and
which is different from (3).
One further causal parameter that is sometimes

considered is the individual causal effect which is ex-
pressed with potential outcomes as Y i(x2)−Y i(x1).
It is the difference between the potential outcomes
for a specific individual i. Assumptions under which
the individual causal effect can be identified are in-
herently untestable [20], but may be justified given
specific subject matter background knowledge.
Finally, we want to emphasize that a population

parameter like CRR in (1) will be different from
a conditional or local parameter LCRR in (2) or
from an individual causal effect when the effect of
exposure is different in different subgroups or indi-
viduals, that is, under heterogeneity or effect mod-
ification. For instance, those who naturally have a
high alcohol consumption are likely to be different in
many other relevant but unobservable respects than
those who have a naturally low alcohol consump-
tion and, therefore, the effect of changing that level
should be different in these two groups. In partic-
ular, there may be no overall effect in the popula-
tion (i.e., CRR = 1) if negative and positive effects
in subgroups (or individuals) cancel each other out.
In such a situation, an estimator that targets the
CRR will be biased for the LCRR and vice versa.
We reiterate that the accepted gold standard RCT
randomizing individuals to either x1 or x2 always

targets a population causal effect.

3.2 Instrumental Variables

The standard approach to estimating a causal pa-
rameter from observational data is to assume that
a sufficient set of observed confounders is available
for which we then adjust [21, 30, 37, 51, 62]. When
there is reason to suspect additional unobserved con-
founding, the causal effect cannot typically be ob-
tained in this way. In this situation, IV methods
permit a different way of performing causal infer-
ence by exploiting the additional information pro-
vided by the instrumental variable.
Recall that we denote the exposure of interest (in-

termediate phenotype or modifiable risk factor) by
X and the outcome (disease) by Y . Furthermore,

we let G be the instrument (e.g., genotype in a
Mendelian randomization study) and U an unob-
served variable (or, more realistically, a set of unob-
served variables) that will represent the confounding
between X and Y . The properties that define an IV
are expressed in terms of conditional independence
statements where A⊥⊥B|C means A is independent
of B given C. The core conditions are the following:

1. G⊥⊥ U , that is, G must be (marginally) inde-
pendent of the confounding between X and Y ;
2. G 6⊥⊥ X , that is, G must not be (marginally)

independent of X ;
3. G⊥⊥ Y |(X,U), that is, conditionally on X and

the confounder U , the instrument and the response
are independent.

These properties can, to a limited extent, be tested
from the observable data (i.e., without measurements
on U ) when G,X,Y are all categorical. This is be-
cause they impose certain inequality constraints on
the joint distribution p(y,x, g) (see [50, 51] for de-
tails). Analogous constraints can also be obtained
for situations where joint observation of (G,X,Y )
is not possible, but separate observations on (G,X)
and (G,Y ) are available from different studies [52],
for instance, as is often the case for Mendelian ran-
domization applications. Furthermore, Ramsahai [53]
develops a statistical test for violation of these in-
equality constraints that properly accounts for the
sampling variability in the estimated probabilities.
When the data are categorical, these inequalities
should always be verified in order to detect “gross”
violations of the above core conditions. However, it
should be kept in mind that distributions p(y,x, g, u)
will exist which violate the core conditions but may
have marginals p(y,x, g) that still satisfy these in-
equalities. We are not aware of analogous inequality
constraints that could be checked when X is con-
tinuous (but see [5] for the case where instrument
or outcome are continuous). Categorizing continu-
ous variables is not advisable, as it is possible that
the continuous variables satisfy the above core con-
ditions, while their discrete versions do not. Hence,
since a test of the inequalities can only falsify the
core assumptions but never confirm them, and since
it cannot be carried out when the exposure is con-
tinuous, it is crucial to always justify the core condi-
tions on the basis of subject matter or other relevant
background knowledge.
A shorthand way of encoding conditional inde-

pendence restrictions is via graphical models [14].
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The directed acyclic graph (DAG) in Figure 1 is the
unique representation of the above core conditions.
Furthermore, this graph is equivalent to a factor-
ization of the joint density on (Y,X,U,G) in the
following way:

p(y,x,u, g) = p(y|u,x)p(x|u, g)p(u)p(g).(4)

While this describes how the variables behave “nat-
urally,” we have to specify our assumptions about
how an intervention in X operates on the system.
This takes the form of an additional structural as-
sumption which states that intervening in X does
not affect the distributions of any other factors in
(4) besides the conditional distribution of X . Under
intervention on X , the joint distribution of (4) thus
becomes

p(y,u, g, x|do(x0))
(5)

= p(y|u,x0)I(x= x0)p(u)p(g),

where I(·) is the indicator function. The correspond-
ing DAG in Figure 2 graphically shows the condi-
tional independence relationships among Y,G and
U for the core conditions and an intervention on X .
One immediate implication is that G ⊥⊥ Y |do(X),
which is also known as the exclusion restriction con-

dition in the IV literature, where it is typically ex-
pressed with potential outcomes as G ⊥⊥ Y (x) [2,
33].
Taking this a step further, we can also express the

IV assumptions when the effect of exposure on the
exposed individuals is of interest. Using the notation
introduced in Section 3.1, let X denote the “natu-
ral” exposure level, while X̃ denotes the exposure
that is set by an intervention. When there is no in-
tervention, they are identical and (4) is valid. Under

Fig. 1. The DAG representing the core conditions required
for G to be an instrument.

Fig. 2. The DAG representing the core conditions under in-
tervention in X.

intervention, X̃ overrules the “natural” X with re-
spect to the conditional distribution of Y and we
obtain the joint distribution under intervention

p(y,u, g,X = x|do(X̃ = x0))

= p(y|u,x0)p(X = x|u, g)p(u)p(g),

which can again be represented graphically with a
DAG as in Figure 3 [28, 61]. As before, we have the
exclusion restriction Y ⊥⊥G|do(X̃), but we can also
derive, for instance, that Y is not independent of G
given X and do(X̃).

4. SOME COMMON IV MODELS

With the above core conditions 1–3 and structural
assumption of (5), the IV can be used to test for the
presence of a causal effect, or to derive lower and
upper bounds on causal effects for the case when
all variables are categorical [4, 22, 44, 57]. How-
ever, for general distributions of (X,Y,G,U), the
core conditions alone do not necessarily allow point-
identification of causal effects, except for some ex-
tremely unusual situations [29].
Below we present some common model restric-

tions, that is, additional parametric assumptions,
that enable point-identification of causal parame-
ters. When the causal parameter is identified, it can
be estimated consistently; in practice, small sample
sizes can still induce problems, but we will ignore
this issue here.
Our terminology is as follows. Let θ∗ be the true

causal parameter of interest, for example, the CRR
θ∗ = EP ∗(Y |do(x2))/EP ∗(Y |do(x1)), where expec-
tations are taken with respect to the true distribu-
tion P ∗. Restrictions are imposed in the form of a
statistical model M, which is simply a set of distri-
butions with some common characteristics for the
random variables of interest, for example, the condi-
tional mean of Y being linear in X . The model M is
correctly specified if P ∗ ∈M. The model M further
allows point-identification of the true causal effect
parameter when θ∗ is equal to a function θM(P ∗

X,Y,G)

that only depends on the observational (i.e., not

Fig. 3. The DAG representing the core conditions under in-
tervention in X̃ and “natural” exposure X.
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interventional) distribution of the observable vari-
ables. The exact form of the function θM depends on
the model assumptions, that is, on M. If the model
M is misspecified, then it does not contain the true
distribution P ∗ and θM(P ∗

X,Y,G) will not necessar-
ily be equal to θ∗, as the former relies on wrong
model assumptions. We call the causal parameters
of interest, θ∗, the target of inference, and we call
θM(P ∗

X,Y,G) the estimand regardless of whether the
model is correctly specified or not. Hence, the esti-
mand is equal to the target under a correct model
and otherwise potentially different. Note that the in-
tervention distribution P ∗(Y = y|do(x)) itself might
be of interest as a target, and, if identified, any
causal parameter can be obtained from it.
As we will see below, θM can typically be ex-

pressed in terms of conditional probabilities or ex-
pectations with respect to the observational distri-
bution of X,Y and G. For practical data analysis,
these have to be replaced, for instance, by the cor-
responding empirical relative frequencies, averages
or regression coefficients, assuming that we have an
independent identically distributed (i.i.d.) sample of

(X,Y,G); this then yields an estimator θ̂M. We will
not go into the details of the actual construction
of estimators θ̂M as functions of the sample but
will focus on how different models M allow point-
identification and what the corresponding estimands
θM(P ∗

X,Y,G) are.
Note that when parametric assumptions are made,

the core conditions can sometimes be weakened, for
example, by requiring only that G and U are un-
correlated, but we do not discuss this further here.
Also, some, but not all, of the following approaches
are only defined when Y and/or G are binary. This
will be indicated when relevant.

4.1 Linear IV Models

The classical IV method was developed in the con-
text of linear models M which we define in more de-
tail below, and results in an estimator θ̂M, given as
the ratio of the least squares slope estimators from
linear regressions of Y on G and of X on G. We will
call this the linear IV average effect estimator, and
its estimand θM is

LIVAE :=
Cov(Y,G)

Cov(X,G)
.(6)

The LIVAE can equivalently be estimated by ob-

taining predicted values X̂ from the regression of X

on G and then by regressing Y on X̂ . It is there-
fore known as two-stage least squares [1, 71]. In the
special case of binary instrument G, we have

LIVAE=
E(Y |G= 1)−E(Y |G= 0)

E(X|G= 1)−E(X|G= 0)
.(7)

This is analogous to the Wald method, which was
originally proposed to deal with the case of measure-
ment errors in both variables X and Y [7, 69]. As
we shall now discuss, the LIVAE identifies either the
population, individual or local average causal effect
(ACE, ICE or LACE), depending on the particular
model assumptions.
In addition to the three IV conditions and struc-

tural assumption (5), assume that the conditional
expectation of Y is linear without interactions and
that all dependencies only affect the mean. Then

E(Y |X = x,U = u) = E(Y |do(X = x),U = u)
(8)

= βx+ h(u),

where h(u) is some function of u only. With α =
E(h(U)), we have

E(Y |do(X = x)) = α+ βx,(9)

so that the ACE for a unit difference in X is equal
to the model parameter β, while the causal relative
risk CRR(x1, x2) under this model is equal to (α+
βx2)/(α+βx1). It can easily be seen (cf. Appendix)
that, under the above assumptions, β =Cov(Y,G)/
Cov(X,G). Hence, the LIVAE identifies the ACE. In
the Appendix we show that the CRR is also identi-
fied in this linear model and we will call the corre-
sponding estimand LIVRR.
When Y is binary, for example, assumption (8)

cannot hold exactly, as it allows E(Y |X,U) to take
values outside [0,1]. It might still be used as a sen-
sible approximation in practice, especially when the
range of X is restricted and its effect is small. As
mentioned above, causal relative risks and odds ra-
tios that might be of more interest for binary Y can
also be identified based on the linear model as de-
tailed in the Appendix.
Under stronger model assumptions, such as those

common in the econometrics literature, for instance,
the LIVAE identifies the individual causal effect,
ICE. A structural equation model describes how the
individual responses Y i depend structurally (i.e.,
under manipulation) on other variables [51, 71]. This
can also be expressed using counterfactuals [8]. A
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structural equation counterpart for (9) that param-
eterizes the ICE is given by

Y i(x) = βIx+ ξi(10)

for individual i, where ξi can be regarded as a com-
bination of U i and other (nonconfounding) factors
that determine the outcome. The problem of con-
founding by U leads to ξ and X not being indepen-
dent, so that βI cannot be estimated consistently
from a regression of Y on X , and the LIVAE is
used instead. For the interpretation it is important
to note that model (10) explicitly assumes that the
causal effect is the same for each individual i, while
(8) assumes that manipulating X has the same av-

erage effect regardless of the value of U on the linear
scale. In fact, model (10) implies (8), but the con-
verse is not true (see the Appendix for details).
Each of models (8) and (10), together with the

IV assumptions, allows us to identify the effect of
exposure on the exposed, that is, the local aver-
age causal effect LACE, via the LIVAE from (6).
However, the LACE can be identified under weaker
model assumptions, namely, those of an additive
structural mean model (cf. the Appendix or Hernan
and Robins [32]). Using the notation introduced in
Section 3.1, let X denote the “natural” exposure
level, while X̃ denotes the exposure that is set by
an intervention (overruling the “natural” X). An
additive SMM assumes that

E(Y |X = x,G= g)
(11)

−E(Y |X = x,G= g,do(X̃ = 0)) = βLx,

where X = 0 again denotes a suitable baseline value.
Here, βLx is the effect of reducing the exposure to
this baseline value for those who under “natural”
circumstances are exposed to X = x and have G=
g. Note that this additive SMM makes no explicit
assumptions about individual causal effects or the
role of U ; in fact, U is allowed to modify the effect
of X on Y . Implicitly, however, the manner in which
Y depends on U is restricted by the assumption that
the above difference in conditional expectations (11)
does not depend on G. The different interpretation
of the LIVAE in the context of linear models and
presence of effect modification is also discussed by
Brookhart and Schneeweiss [8].
In summary, we can use the LIVAE to estimate (i)

the individual causal effect, if we believe that the in-
dividual effect is the same for everyone on the linear
scale, or (ii) the average causal effect, if we believe

that the average effect is the same for different val-
ues of U , or (iii) the local effect on the exposed, if
we believe that this is the same for different values
of G.

4.2 Nonlinear Wald Type Methods

As mentioned earlier, the LIVAE is the same as
Wald’s estimator which was originally devised to
deal with measurement errors [69]. In this section we
consider two further methods leading to ratio based
IV estimators and which we will therefore call Wald

type estimators (cf. also [39, 46, 66]).
Several applications of Mendelian randomization,

typically considering a binary outcome Y , a contin-
uous exposure X and a dichotomous genotype G,
have used the following reasoning to obtain an IV
estimator for a causal effect [10, 11, 16, 35, 40]. The
näıve odds ratio of Y given X , which we denote
NOR, is suspected to be confounded. The odds ra-
tio of Y given the instrument G, which we denote
by OR(Y |G), is not confounded due to core condi-
tion 3, and should be roughly equal to the causal
odds ratio, COR, between X and Y scaled by the
mean difference in exposure for the two genotypes,
δ =E(X|G= 1)−E(X|G= 0), that is, OR(Y |G)≈
CORδ. Therefore, in these applications, the quantity
NORδ is compared with OR(Y |G) and, if similar,
the conclusion is drawn that there is no confound-
ing and, hence, that NOR ≈ COR. We thus consider
the following as the Wald type odds ratio estimand:

WaldOR :=OR(Y |G)1/δ .

(On the log-scale this is the ratio of log-odds differ-
ence and the mean difference δ, hence “Wald type.”)
At first sight, this reasoning seems heuristic, and
there is no model assumption from which it can
be theoretically derived. However, by regarding the
odds ratio as an approximation to the relative risk
for rare diseases, we can motivate the above formula
theoretically. The following is a slight generaliza-
tion of the structural equation approach presented
by Mullahy [47] and suitable not only for binary
but also for general nonnegative response Y (X and
G can be continuous or discrete). Assuming a log-
linear model [and structural assumption (5)],

logE(Y |X = x,U = u)

= logE(Y |do(X = x),U = u)(12)

= γx+ h(u),

where h(u) is some function of u only. It can then
easily be seen that the causal relative risk for one
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unit difference in X is simply CRR= expγ. Further,
we suppose that X has conditional mean

E(X|G= g,U = u) = δg + k(u),(13)

where k(u) is some function of u only, and, in ad-
dition, we require that the distribution of X is such
that

[X − (δG+ k(U))]⊥⊥G|U.(14)

Note that this requirement cannot be satisfied when
X is binary, for instance, but is automatically true
when it has a conditional normal distribution. It can
now be shown (cf. the Appendix or Mullahy [47])
that the CRR is identified because γ is equal to the
ratio of the log-coefficient from a loglinear regression
of Y on G and the coefficient from a linear regression
of X on G. In the special case of a binary instrument
G, this simplifies to

γ =
logE(Y |G= 1)− logE(Y |G= 0)

E(X|G= 1)−E(X|G= 0)
.

The method of estimating this via two regressions
as mentioned above is also called two-stage quasi
maximum likelihood [47]. We will refer to the esti-
mand based on the right-hand side of the above as
the Wald relative risk (WaldRR), given by

WaldRR := RR(Y |G)1/δ ,

where RR(Y |G) is shorthand for the relative risk of
Y given G. When G is binary, δ is the mean differ-
ence in X , otherwise it is Cov(X,G)/Var(G).
The WaldRR identifies the CRR under the above

combination of log-linear model for Y given X and
U , and the stated assumptions on the conditional
distribution of X given G and U . Note that when
Y is nonnegative and continuous, it is, in principle,
possible (but not common) to elaborate the assump-
tions further so that the individual relative causal ef-
fect Y i(x2)/Y

i(x1) is identifiable; model (12) would
then need to be reformulated as a structural equa-
tion model analogously to the linear case earlier.
When Y is binary and P (Y = 1) is small (“rare

disease assumption”), WaldRR and WaldOR will be
approximately the same, so that in this case we can
argue that the WaldOR approximately identifies the
COR under the same model assumptions. A differ-
ent justification of WaldOR has been proposed by
[3] based on a logistic SMM and some very rough ap-
proximations, under which it identifies the LCOR.

4.3 Multiplicative Structural Mean Models

We already mentioned that the LIVAE can be
justified in an additive SMM identifying the causal
mean difference within the exposed individuals (LACE).
Alternatively, we now consider amultiplicative struc-
tural mean model (MSMM) [32]. Again using the
notation introduced in Section 3.1, let X denote the
“natural” exposure level, while X̃ denotes the ex-
posure that is set by an intervention (overruling the
“natural” X). An MSMM parameterizes the LCRR
(2) and is given by

log

{

E(Y |X = x,G,do(X̃ = x))

E(Y |X = x,G,do(X̃ = 0))

}

= γLx,(15)

where X̃ = 0 stands for a suitable baseline value as
before. Hence, γLx is the log-relative risk of chang-
ing the exposure to this baseline for those who would
normally be exposed to X = x, where it is assumed
that the effect is the same within different levels of
the instrument G. This does not follow from the
core IV conditions nor from the structural assump-
tion (5). It means, for example, that reducing the
alcohol intake for those individuals who are heavy
drinkers has the same effect on the relative risk for
hypertension regardless of their ALDH2 genotype.
This may be unrealistic if those who drink much
despite carrying the ALDH2*2 variant are different
in relevant aspects from those who drink much and
do not carry this allele. An analogous assumption
is made by the additive SMM (11) but for the risk
difference; note that except for trivial cases both,
the assumption that G does not modify the effect
on the multiplicative and on the additive scale, can-
not be true at the same time [32]. This assumption
of no heterogeneity with respect to levels of G is
required so that the model has only one unknown
parameter, since we can only identify one parame-
ter. When baseline covariates have been measured,
it is possible to identify more complex SMMs and
this assumption could be relaxed [3, 27, 32], but we
do not consider this any further here.
In general, a SMM estimator for a causal parame-

ter is obtained by solving estimating equations that
are based on the exclusion restriction mentioned in
Section 3.2. The solution typically does not have a
closed form expression. However, for the case where
X and G are binary, an explicit solution exists [32,
57] (cf. also the Appendix), yielding that exp(−γL)
equals

1−
E(Y |G= 1)−E(Y |G= 0)

E(Y X|G= 1)−E(Y X|G= 0)
.(16)
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The parameter γL can easily be estimated using the
corresponding empirical frequencies or averages. Un-
der the multiplicative SMM, we hence obtain that
the estimand is the inverse of (16), which we will
call MSMMRR. It identifies the LCRR under the IV
core conditions and the assumptions of an MSMM.
In order for it to also identify the population effect
CRR, it is sufficient to assume that X and U cannot
interact on Y on the multiplicative scale [32]. This
is analogous to the “no interaction” assumption in
linear model (8). In this special case we can also
obtain closed formulae for the odds ratio and risk
difference [32, 57] (cf. also the Appendix).
Logistic structural mean models have been pro-

posed [67], but these require more restrictive as-
sumptions, and conditions enabling consistent es-
timation are relatively complicated. We therefore
omit them here. Robins and Rotnitzky [59] provide
a detailed discussion of the fundamental difficulty
with identifiability in SMMs, other than for the ad-
ditive or multiplicative cases.

4.4 Comparison of Assumptions

The estimands, their target causal effects and the
conditions for identification are summarized in Ta-
ble 1. (WaldOR as an approximation to WaldRR is
omitted.) The following points are noteworthy:

• One could say that the strongest assumptions are
those underlying the WaldRR and WaldOR, as
they rely on a specific outcome model for the dis-
tribution of Y given (X,U), as well as a specific
exposure model for the distribution of X given
(G,U). Neither the linear models nor the SMMs
require the latter.

• All IV approaches underlying point-estimation rely
on some “no-interaction” (or homogeneity/no ef-
fect modification assumption). No interaction be-
tween X and U on the linear (or log-linear) scale
in the sense of model (8) [or model (12)] is suf-
ficient to ensure the assumption of no interac-
tion between X and G in the additive (or mul-
tiplicative) SMMs, models (11) and (15) (see the
Appendix). However, the “no-interaction” assump-
tion may either be true on the linear or on the log-
linear scale, but not both, except in trivial cases
like Y ⊥⊥X|U or Y ⊥⊥ U |X [32].

• In contrast to the MSMM, the linear and Wald-
type models do not require joint information on
(X,Y,G); they allow identification of the causal
parameter based on separate information on the

joint distribution of (X,G) and of (Y,G), only.
This means that an IV analysis can be performed
by exploiting results, for example, from different
existing genetic studies or meta-analyses as is par-
ticularly relevant for Mendelian randomization ap-
plications [46, 66]. In addition, theWaldOR is use-
ful for case-control studies where, under the rare
disease assumption, δ can be approximated by a
control group estimate [35].

5. NUMERICAL ILLUSTRATION OF

ASYMPTOTIC BIAS

In the previous section we have given some exam-
ples of standard models that allow point-identification
of a causal parameter exploiting an IV. In practice,
such model assumptions are unlikely ever to hold ex-
actly, and we should be concerned with the robust-
ness of IV methods under violations of such assump-
tions. Therefore, in this section we illustrate the pos-
sible bias of the above approaches for a set of con-
crete scenarios that would be realistic, for instance,
in a Mendelian randomization study. We place im-
portance on the following issues:

• A sensible IV model should allow consistent esti-
mation at the null-hypothesis of no causal effect.

• A sensible IV model should also allow consistent,
or at least not seriously biased, estimation when
there is in fact no confounding, and hence a “näıve”
analysis, based on a regression of response Y on
exposure X without using an IV, would be valid.

• A sensible IV model should also not induce more
bias than such a näıve approach.

We want to investigate which of the various IV meth-
ods satisfy these desiderata, or what situations lead
to the most serious violations.
Using the notation introduced at the beginning of

Section 4, we base our comparison on the difference
between the targeted causal parameter θ∗ and the
estimand θM under a given model M, evaluated at
the true distribution P ∗. More precisely, we use the
relative measure

θM − θ

θ
,

which is the asymptotic relative bias of any consis-
tent estimator θ̂M for θM. If the model is correctly
specified, that is, P ∗ ∈M, and identifies the causal
parameter, then the above is zero. The asymptotic
relative bias can be calculated exactly, using numer-
ical integration where required, under a given choice
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Table 1

Summary of IV model assumptions under which the various estimands identify the targeted causal effects
(in addition to general IV assumptions)

Estimand Target Model assumptions

LIVAE ICE Constant additive individual effect [Y i(x) linear in x].

LIVAE ACE E(Y |X = x,U = u) linear in x, no (X,U)-interaction on additive
scale.

LIVAE LACE E(Y |X = x,G = g) − E(Y |X = x,G = g,do(X̃ = 0)) linear in x, no
(X,G)-interaction on additive scale.

LIVRR CRR Same as LIVAE for ACE.

WaldRR CRR (i) E(X|G = g,U = u) linear in g, no (G,U)-interaction on addi-
tive scale, additive independent residual. (ii) E(Y |X = x,U = u) log-
linear in x, no (X,U)-interaction on multiplicative scale.

MSMMRR LCRR log{E(Y |X = x,G = g)/E(Y |X = x,G = g,do(X̃ = 0))} linear in x,
no (X,G)-interaction on multiplicative scale.

MSMMRR CRR As for LCRR, and no (X,U)-interaction on multiplicative scale.

of a “true” joint distribution P ∗ of (X,Y,G,U) (see
below). In special cases it is even possible to express
the bias explicitly as in [8] for the linear case. Note
that we are not considering any sampling properties
of specific estimators θ̂M and hence are not simu-
lating any data.
We restrict our numerical comparison to the causal

relative risk, θ∗ =CRR, as target. We compare the
linear model, with estimand LIVRR, the log-linear
Wald type approach, with estimand WaldRR (Wal-
dOR is always slightly more biased for CRR than
WaldRR and is therefore omitted), and the multi-
plicative SMM, with estimand MSMMRR, which all
identify the CRR under their respective assumptions
as detailed in Section 4.

5.1 Full Model

The true joint distributions P ∗ for (X,Y,G,U)
that we use for the comparison are specified as fol-
lows. To facilitate interpretation and to keep the
number of parametric and distributional choices lim-
ited, we consider dichotomous observable variables
Y , X and G with the following interpretations:

Y =

{

1, diseased,
0, healthy,

X =

{

1, exposed,
0, not exposed,

and we label G = 1 to denote the value of the in-
strument that predisposes to X = 1.
The dependence of Y on X and U is given by a

logistic regression. In addition, we assume that this

model is invariant with respect to intervention on
X , by which we mean

logitE(Y |X = x,U = u)

= logitE(Y |do(X = x),U = u)(17)

= α1 +α2x+ α3u+α4xu.

The conditional distribution of X given G and U is
also determined by a logistic dependence:

logitE(X|G= g,U = u)
(18)

= β1 + β2g+ β3u+ β4gu.

Finally, the marginal distribution of G is deter-
mined by pg = P (G= 1), which we set to 50% through-
out (all estimands are unaffected by pg), while p(u)
is continuous and set to have a uniform distribution
on [0,1].
The true CRR can easily be calculated from the

above using (5) and integrating out as
∫

{1 + exp(−α1 −α2 −α3u− α4u)}
−1p(u)du

∫

{1 + exp(−α1 −α3u)}−1p(u)du
.(19)

Note that the CRR does not depend on (18), but
θM does for the IV models considered here.
For the above true distributions P ∗, all models

from Section 4 are essentially misspecified, since none
of them model a logistic dependence of Y on (X,U).
Exceptions are α2 = α4 = 0, or for the linear and
MSMM when α3 = α4 = 0. Also, note that if α4 = 0,
then there is no effect modification by U on the lo-

gistic scale. This does not strictly imply no effect
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modification on the additive or multiplicative scales,
though departure from these assumptions will be
more extreme when α4 6= 0.
Our choice of P ∗ is motivated by the fact that

a logistic model like (17) would be the standard
model assumption for a binary outcome if the con-
founder(s) U could be observed. It is noteworthy that
this default model assumption for the case of ob-
served confounding is not necessarily compatible with
standard IV methods for unobserved confounding.

5.1.1 Settings of the parameters There are eight
parameters in (17) and (18). By varying these, we
consider the following set of scenarios which we re-
gard as realistic for epidemiological studies based on
Mendelian randomization, for example.
We choose three strengths for the causal effect:

none (CRR = 1.0), small (CRR = 1.33) and large
(CRR = 3.03); this is obtained by adjusting α2 ac-
cordingly. Confounding is varied by setting α3 ∈ {0,
0.1,1,2}, while keeping β3 = 2 fixed. Interactions are
investigated by varying β4, α4 ∈ {−1,0,1}, but note
that we only consider combinations where |α4| ≤
|α3|, as large interactions with small main effects
are commonly perceived as unrealistic. The remain-
ing parameters are chosen so as to satisfy the fol-
lowing criteria. The strength of the association be-
tween G and X is kept constant at a relative risk of
2.4 throughout by adjusting β2 accordingly. We fix
the marginals P (X = 1) = 0.13 and P (Y = 1) = 0.03
by setting β1 and α1 accordingly. These latter val-
ues, respectively, are again typical for the exposure
frequencies and rare disease situations, as are often
encountered in Mendelian randomization studies.

5.1.2 Bounds To further characterize the chosen
scenarios, we calculated the nonparametric bounds
for the CRR (and the ACE for comparison) [4, 22,
44, 57] for all our settings and found that they were
always extremely wide and always included the null
hypothesis of no effect. For those settings where
CRR = 3.03, for instance, the bounds were of the
order [0.2,30] (and about [−0.08,0.8] for the ACE
where the true ACE was around 0.06). These are
the “tightest assumption-free bounds” [4], meaning
that the observable frequencies p(y,x, g) alone, de-
rived from the above distributions by marginalizing
over U , do not allow us to narrow down the causal
effects any further. This re-emphasizes the fact that
point-identification via an IV model relies heavily
on the additional parametric assumptions that have
to be made. Narrower bounds can be obtained when

a stronger instrument is used, that is, by increasing
the G–X association. However, the relative risk of
2.4 used here is about as strong as we would expect
to see in a Mendelian randomization study.

5.2 Numerical Results

We now compare the asymptotic biases of the
LIVRR, WaldRR and MSMMRR. In addition, we
consider the näıve relative risk, NRR, obtained as
P ∗(Y = 1|X = 1)/P ∗(Y = 1|X = 0), which gives an
indication of the bias of a standard analysis when
not using an IV. In our settings, the NRR is unbi-
ased when there is no confounding, but not neces-
sarily otherwise.

5.2.1 No causal effect We begin with the case where
CRR= 1, which usually constitutes the null hypoth-
esis. When α4 = α2 = 0, no table is shown as none
of the IV models from Section 4 are misspecified,
only the NRR is biased by as much as 39%. How-
ever, CRR = 1 can also arise when α2 and α4 are
nonzero and of opposite signs. The relative biases
for the corresponding settings are shown in Table 2.
The problem we mentioned earlier, and that be-

comes evident here, is that there can be two types of
scenarios where CRR= 1: either there is no causal
effect of exposure in any subgroup (α2 = α4 = 0), or
there are different causal effects in subgroups which
cancel out overall. The latter occurs when α2 and α4

are nonzero in such a way that the ratio of integrals
in (19) happens to be one.

Table 2

Asymptotic relative biases when estimating CRR for all
settings with CRR= 1 and α4 6= 0

Relative bias

α3 α4 β4 NRR LIVRR WaldRR MSMM

1 1 0 0.277 0.105 0.110 0.095
2 0.414 0.092 0.095 0.075

1 −1 0.020 −0.113 −0.108 −0.101
2 0.174 −0.106 −0.102 −0.087

1 1 1 0.361 0.198 0.213 0.163
2 0.545 0.177 0.189 0.125

1 −1 0.025 −0.202 −0.187 −0.169
2 0.226 −0.195 −0.181 −0.140

1 1 −1 0.184 0.006 0.006 0.006
2 0.272 0.002 0.002 0.002

1 −1 0.013 −0.009 −0.009 −0.009
2 0.115 −0.006 −0.006 −0.005
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All IV methods exhibit some bias in these sce-
narios, with around 20% relative bias in the worst
case. We can see the following patterns in Table 2.
When β4 = −1, all IV estimators are only slightly
biased, while the NRR can be biased by up to 27%.
There are only two settings where all IV methods
are more biased than the näıve one, and these are
when α4 = −1 and α3 = 1, and β4 = 0 or 1. For
all considered settings, the MSMMRR is the least
biased, and the WaldRR is the most biased, but
the order of magnitude is generally comparable and
we would not suggest an overall ranking of the ap-
proaches based on these results alone.
Recall that the MSMMRR does not actually tar-

get the CRR, but targets a particular subgroup effect—
the local causal relative risk of exposure within the

exposed—instead. The latter is typically not one when
α2 6= 0.

5.2.2 Causal effect but no confounding Let us now
consider those scenarios where there is no confound-
ing (so either α3 = α4 = 0 or β3 = β4 = 0). No plots
or tables are shown here as only the WaldRR has
nonzero bias. This is because all assumptions of the
näıve, linear and multiplicative structural mean mod-
els are satisfied when there is no confounding and
when X and Y are binary. In contrast, as noted in
Section 4.2 and again in the Appendix, the assump-
tion (14) underlying the WaldRR cannot be satis-
fied when X is binary. We observed biases for the
WaldRR and WaldOR of up to 3.2% and 4.5%, re-
spectively, for a moderate effect size of CRR= 1.33,
and biases as large as 65% and 76%, respectively,
when CRR= 3.03.

5.2.3 Causal effect and confounding We now con-
sider those scenarios where there is a causal effect
as well as confounding. Tables 3 and 4 show the re-
sults for a small causal effect (CRR = 1.33) and a
large causal effect (CRR= 3.03), respectively.
First, let us compare the results for small versus

large CRR. The näıve relative risk (NRR) behaves
similarly in both cases. The LIVRR is more biased
when the true causal effect is large—this is plausible
as the nonlinearity of the model is more pronounced
for larger causal effects. The WaldRR is unaccept-
able when CRR= 3.03: with relative biases between
40% and 250%, it seriously overestimates the true
effect. As its bias is either comparable to, or much
larger than, the bias for the other two IV methods
when CRR= 1.33, we will not consider the WaldRR
any further. The relative bias of the MSMMRR, in

Table 3

Asymptotic relative biases when estimating CRR for all
settings with CRR= 1.33

Relative bias

α3 α4 β4 NRR LIVRR WaldRR MSMM

0.1 0 0 0.015 0.003 0.036 −0.000
1.0 0.150 0.027 0.066 −0.001
2.0 0.299 0.051 0.097 −0.002

1.0 1 0 0.275 0.130 0.206 0.093
2.0 0.411 0.141 0.222 0.072

1.0 −1 0 0.020 −0.085 −0.071 −0.101
2.0 0.172 −0.052 −0.033 −0.088

0.1 0 1 0.019 0.005 0.038 −0.000
1.0 0.195 0.048 0.095 −0.002
2.0 0.392 0.096 0.160 −0.004

1.0 1 1 0.358 0.247 0.380 0.159
2.0 0.541 0.273 0.422 0.120

1.0 −1 1 0.025 −0.153 −0.148 −0.169
2.0 0.225 −0.100 −0.089 −0.142

0.1 0 −1 0.010 0.000 0.032 0.000
1.0 0.100 0.001 0.034 0.000
2.0 0.197 0.002 0.034 0.000

1.0 1 −1 0.182 0.004 0.039 0.005
2.0 0.270 0.002 0.032 0.002

1.0 −1 −1 0.013 −0.004 0.027 −0.009
2.0 0.114 −0.000 0.034 −0.006

turn, is similar for small and large CRR with a max-
imum of 17%.
As one might expect, the LIVRR and MSMMRR

are only slightly biased, and much less so than the
NRR, whenever there is noX–U interaction, α4 = 0.
More surprising is that this is also the case when
β4 = −1 regardless of the other parameter values.
This is not due to less confounding, as we can see
that the näıve relative risk is still noticeably biased
in those settings.
All methods struggle the most when α4 6= 0 and

β4 = 1—the MSMMRR bias then reaches 17% and
the extent of the LIVRR bias can range from 24%
for small CRR to 45% for large CRR.
Even though there is no uniformly best method,

both tables show that the MSMMRR is much less
biased in most settings. The only cases where it is
outperformed by the LIVRR arise when α4 = −1.
The only cases where it is outperformed by the NRR
are when additionally α3 = 1.

5.2.4 Sign of bias Due to our choices of the coeffi-
cients of U , the NRR is always positively biased. The
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Table 4

Asymptotic relative biases when estimating CRR for all
settings with CRR= 3.03

Relative bias

α3 α4 β4 NRR LIVRR WaldRR MSMM

0.1 0 0 0.014 0.006 0.671 −0.001
1.0 0.145 0.066 0.870 −0.006
2.0 0.289 0.128 1.090 −0.010

1.0 1 0 0.265 0.161 1.220 0.084
2.0 0.397 0.210 1.410 0.061

1.0 −1 0 0.020 −0.036 0.539 −0.102
2.0 0.167 0.033 0.757 −0.093

0.1 0 1 0.018 0.013 0.695 −0.001
1.0 0.188 0.132 1.110 −0.010
2.0 0.379 0.263 1.630 −0.017

1.0 1 1 0.344 0.334 1.950 0.144
2.0 0.523 0.447 2.510 0.102

1.0 −1 1 0.025 −0.070 0.440 −0.170
2.0 0.217 0.062 0.858 −0.150

0.1 0 −1 0.009 −0.001 0.647 −0.000
1.0 0.096 −0.006 0.637 −0.000
2.0 0.191 −0.014 0.605 −0.000

1.0 1 −1 0.176 −0.019 0.590 0.005
2.0 0.261 −0.028 0.570 0.003

1.0 −1 −1 0.013 0.004 0.663 −0.009
2.0 0.110 −0.002 0.648 −0.006

IV estimators can, however, be negatively biased, es-
pecially when α4 or β4 are negative. Also, their bias
does not always have the same sign. Therefore, we
cannot say that IV methods generally over- or un-
derestimate the true causal effect.

5.2.5 Other comparisons We also considered the
other causal parameters, ACE and COR, as targets
in our chosen scenarios using the corresponding es-
timands under the three IV models. We got broadly
similar results with the SMM approach generally
producing less biased results, except in the pres-
ence of interactions, and the Wald approach behav-
ing very poorly throughout even when there is little
or no confounding.
All results presented so far were for scenarios with

3% disease frequency and 13% exposure frequency.
We also considered scenarios with 20% disease and/or
50% or 85% exposure frequencies, but do not report
them in detail as the results followed similar pat-
terns in terms of relative performances of the var-
ious approaches. All IV methods show much less

bias with 50% exposure frequency, with the Wal-
dRR performing much more sensibly, in particular.
The MSMM is still clearly the least biased and is
not sensitive to interaction effects when the expo-
sure frequency is 50%. This might be due to the
exposure distribution being more balanced, so that
conditioning on X is not so informative for U and,
hence, the local causal effect is not much different
from the population causal effect even when there
are strong interactions.

5.3 Practical Implications

In Section 4.4 we compared the assumptions un-
derlying the IV models of Section 4 on theoretical
grounds. The above numerical study adds the fol-
lowing insights:

• The linear IV approach is often not considered
appropriate when the outcome variable is binary
or nonnegative. However, we found that it per-
formed better than expected for binary Y with
relative asymptotic bias below 20% in all but six
of the considered scenarios and with less bias than
that of the näıve approach in all but five scenarios.
This may be deemed acceptable, especially given
the simplicity of the linear IV estimator. However,
for the linearity assumption to be at least approx-
imately appropriate with binary outcomes, the
range of exposure X should be restricted and the
true causal effect small. The latter is not uncom-
mon for epidemiological—especially Mendelian
randomization—applications.

• Although it is clear by theory alone that the Wald
type methods from Section 4.2 make very strong
assumptions, we have seen here that they are not
just slightly but can be extremely biased when
these assumptions are violated. It is especially
worrisome that this occurs for realistic scenarios,
that the bias can be worse than with the näıve ap-
proach and increases with the strength of the true
causal effect, and that they can be biased even
when there is no confounding since the model for
the exposure X is violated. We would therefore
not recommend this approach unless there is good
reason to be confident in the model assumptions.
A small true causal effect and a balanced or ap-
proximately normal distribution of the exposure
X , possibly after suitable transformation, would
support this confidence.

• As mentioned before, all IV approaches, excluding
the bounds, make an assumption of no-interaction
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or no effect modification by the unobserved con-
founder U either on the additive or multiplicative
scale. The results show that violation of this as-
sumption indeed seriously increases the bias of all
IV methods and can lead to bias even at the null
hypothesis of no causal effect. In practice, this
assumption is difficult to asses or justify, as it in-
volves the unobserved confounders which might
include factors that are poorly understood.

• As far as the relative bias is concerned, the MSMM
approach seems the most recommendable for sit-
uations similar to those of Section 5.1, especially
for binary outcomes. However, other properties
are relevant for practical application, most impor-
tant being the efficiency of the estimators. As our
numerical study only considers a specific set of
scenarios, it is also not possible to say whether
the MSMM performs equally well in very differ-
ent situations. We therefore recommend that fur-
ther comparison and sensitivity analyses are car-
ried out for any specific application.

6. CONCLUSION AND DISCUSSION

Our theoretical comparison of different IV meth-
ods was motivated by the need for such methods
in observational epidemiology, with Mendelian ran-
domization applications providing an example that
has generated a lot of recent interest. The core con-
ditions 1–3 plus the structural assumption (5) are
sufficient for testing for a causal effect of exposure
on disease, but, as emphasized here, the identifica-
tion of a causal effect has to rely on additional model
assumptions which, if inappropriate, can induce bias
as illustrated in our numerical study. The need for a
comparison of IV methods is also highlighted by the
results of a recent study which concluded that there
were very few differences between IV approaches be-
cause they yielded similar results on particular data
sets [54, 56]. Our results do not support this point
of view and show that any model assumptions have
to be justified carefully.
The main points to be made from our comparison

are that the different IV approaches target different
parameters, where we are not referring to the dif-
ference between a risk difference and risk ratio, for
instance, but the difference between an individual,
population or local causal effect. In the case of the
latter, the SMM approach (additive or multiplica-
tive) makes the weakest assumptions, as it does not

require a model for the exposure X given the instru-
ment G, and it only assumes (log-)linearity of the ef-
fect within the exposed individuals. Under stronger
assumptions, essentially if U and X do not interact
on Y on the relevant scale, the local causal effect
is equal to the population causal effect. However,
the multiplicative SMM requires joint data on the
observable variables which may not always be avail-
able from existing studies. For the linear model it
has also been noted by [8] that the traditional ratio
estimator LIVAE has to be given a different inter-
pretation in the presence of effect modification. The
Wald type estimator for the relative risk, together
with the odds ratio as an approximation to the lat-
ter, is simple and useful for meta-analyses but makes
very specific assumptions about all conditional dis-
tributions, especially that of the exposure, and also
requires the absence of interactions on the multi-
plicative scale.
Our bias calculations are of course only valid for

the particular model and scenarios we chose to con-
sider, but we believe they still raise serious issues.
Not surprisingly, all estimators encounter difficul-
ties in estimating the population effect in scenar-
ios where the exposure has different effects within
levels of the unobserved confounder. Maybe more
surprising are the particularly poor performances of
the Wald relative risk and odds ratio—especially in
the absence of confounding. This is supported by
a recent study on odds ratio estimators which also
found that the WaldOR was often outperformed by
other approaches [3]. However, we did not find that
it did “especially well” at the causal null hypothe-
sis, as reported there, when there were interactions
in the model for the outcome Y . An obvious im-
plication for practical applications of IV methods
is that the plausibility of such interactions, on the
chosen effect scale, should be explicitly addressed.
If such interactions are judged to be likely on the
multiplicative scale, then the MSMM estimator is
closer to the local effect and the Wald relative risk
is likely to be seriously biased. Also, one has to keep
in mind that such interactions can induce bias of all
IV methods even at the null hypothesis of no causal
effect, though one might hope that such exact can-
cellations of subgroup effects are rare. It might be
argued that, in practice, important effect modifiers
will be known and observed as additional covariates,
so that once these are taken into account, only neg-
ligible interactions with the unobserved confounders
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remain, but by definition this cannot be verified em-
pirically. Note that any justification for the absence
of effect modification has to take the chosen mea-
surement scale into account. Due to the increased
bias we have seen in our numerical study, we would
therefore recommend that practical applications of
IV methods be complemented by some sensitivity
analyses, especially with regard to such interactions
in the model for the outcome Y . Moreover, we would
advise that these considerations are also valid for
continuous outcomes which are often analyzed un-
questioned with linear no-interaction models.
The particularly restrictive assumptions underly-

ing the WaldRR (and WaldOR) raise serious con-
cern about how to handle situations where we do
not have joint information on all the relevant vari-
ables, such as in most meta-analyses, rendering the
multiplicative SMM estimator inapplicable. The lin-
ear IV estimator could, in principle, be applied, as
it too does not require joint data and is not as badly
biased, but for binary disease outcomes, risk differ-
ences are rarely reported. In most applications the
exposure is continuous and robustness of the non-
linear Wald estimators to violations in those cases
remains to be investigated. It certainly does not
seem advisable to dichotomize a continuous expo-
sure.
We have only considered the asymptotic bias of

the various estimators. In practice, their efficiency
will also be of major concern. It is well known that
IV estimators have larger variance than the näıve
estimators when there is no unobserved confound-
ing. The variance, unlike the bias, very much de-
pends on the strength of the instrument, but when
there is strong confounding, it is impossible to find a
strong instrument [7, 45]. The SMM estimators, de-
rived from estimating equations, can be made semi-
parametrically efficient by choosing appropriate
weights in these equations [58]. Some methods for
improving the efficiency of the Wald type relative
risk have been proposed [47]. Further comparisons
of properties and sampling behavior of IV estima-
tors for the special case of a binary outcome can be
found in [3, 13].
Another important issue that we have not ad-

dressed here is that of measurement error. Theo-
retically, it is not a problem if the IV is affected by
measurement error, as long as this is not differential.
If the exposure is affected by measurement error, we
can still use the IV approach to test for a causal ef-
fect. However, all the above IV estimators are then

expected to be biased, as core condition 3 is likely
to be violated when X is the measured, and not the
true, exposure. In that case, we have to make even
more modeling assumptions, namely, about the spe-
cific measurement error process, in order to obtain
valid point estimates [68].

APPENDIX

Justification of LIVAE

We have established that the ACE is equal to
the model parameter β in model (8). Define G̃ =

G−E(G), then E(Y G̃) = Cov(Y,G). With core con-
dition 1 and model (8),

E(Y G̃) = EGE(Y G̃|G)

= EG(βE(XG̃|G) + G̃E(h(U)))

= βE(XG̃).

Hence, β = Cov(Y,G)/Cov(X,G), which is the
LIVAE estimand.
Risk ratios or odds ratios require estimation of the

intercept of (9) obtained as follows:

α̂=E(Y )− β̂E(X),

where β̂ = LIVAE from above. Hence, the CRR and
COR are identified by

LIVRR :=
α̂+ β̂

α̂
,

LIVOR :=
(α̂+ β̂)(1− α̂)

α̂(1− α̂− β̂)
.

Further, under the additive SMM (11) we have
by simple rearranging that E(Y |X,G,do(X̃ = 0)) =
E(Y − βLX|X,G), where we use that E(Y |X =
x,G,do(X̃ = x)) = E(Y |X = x,G). The exclusion
restriction implies that Y ⊥⊥ G|do(X̃ = 0) (cf. Fig-
ure 2), which induces an estimating equation to ob-
tain βL based on the moment condition E((Y −
βLX)G̃) = 0, where G̃ = G− E(G), as before. The
solution is again βL =Cov(Y,G)/Cov(X,G).

Justification of WaldRR

In addition to the model assumptions expressed
in (12) and (13), we need (14), that is, the random
variable ξ :=X−E(X|G,U) has to satisfy ξ ⊥⊥G|U .
This is automatically satisfied when X has a normal
distribution with constant variance given (G,U), or
a variance that only depends on U . More generally,
this is satisfied when the model for X given (G,U)
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is a location-scale family, where only the location
parameter depends on G,U , for example, the class of
(noncentral) t-distributions; any class that restricts
the support of the distributions it contains, like the
Bernoulli, will not typically satisfy this condition,
though.
Hence, by definition, we can writeX = δG+k(U)+

ξ. Consider now a regression of Y on G alone and
substitute this expression for X :

E(Y |G= g)

=EUEX|G=g,UE(Y |X,U)

=EU [exp{h(U)}EX|G=g,U exp{γX}]

=EU [exp{h(U)}

·Eξ|G=g,U exp{γ(δg + k(U) + ξ)}]

= exp{γδg}EU [exp{h(U) + γk(U)}

·Eξ|G=g,U exp{γξ}]

(∗)
= const · exp{γδg},

where (∗) uses ξ ⊥⊥ G|U , so that Eξ|G=g,U exp{γξ}
is constant in G. Hence, the coefficient of G in a log-
linear regression of Y on G is γδ. Furthermore, δ can
be recovered from a linear regression of X on G, as
the latter is independent of U . Thus, as stated in
Section 4.2, the CRR is identified by the WaldRR.

Justification of MSMMRR

Analogously to the argument for the additive SMM,
we have by simple rearranging that

E(Y |X,G,do(X̃ = 0))
(20)

=E(Y exp(−γLX)|X,G).

The exclusion restriction Y ⊥⊥G|do(X̃ = 0) now in-
duces an estimating equation to obtain γL based
on the moment condition E(Y exp(−γLX)G̃) = 0,
where still G̃ =G− E(G). Due to the nonlinearity
of the exponential function, this does not have a sim-
ple closed form solution as in the linear case, except
for binary variables as shown next.
When G is binary, the exclusion restriction implies

that E(Y |G = 1,do(X̃ = 0)) = E(Y |G = 0,do(X̃ =
0)). By averaging over X ,

E(Y exp(−γLX)|G= 1) =E(Y exp(−γLX)|G= 0).

When X and Y are binary as well, we obtain that
E(Y exp(−γLX)|G) is equal to E(Y X exp(−γL)|G)−
E(Y X|G) + E(Y |G). Hence, we can rearrange the
above equality to give (16).

Under additional assumptions, the ACE and COR
are also identified in an MSMM. First, we note that
by integrating out first G and then X from (20), we
obtain an expression for E(Y |do(X̃ = 0)) as

e−γLE(Y |X = 1)P (X = 1) +E(Y |X = 0)P (X = 0).

If we assume that the Y -X relative risk is the same
within subgroups of U as in model (12), then exp(γL)
is also the (population) CRR (cf. also next section).
Thus, by substituting, we now obtain an expression
for E(Y |do(X̃ = 1)) as

E(Y |X = 1)P (X = 1) + eγLE(Y |X = 0)P (X = 0).

From these it is straightforward to obtain the esti-
mands that identify the ACE or COR by replacing
γL by the negative log of (16).

Relations Between Assumptions

Under the IV conditions the linear model (8) im-
plies the additive SMM (11). As E(Y |X = x,U =
u) =E(Y |do(X = x),U = u) = βx+ h(u), with def-
inition of X̃ from Section 3.1,

E(Y |X = x,G= g,do(X̃ = x̃))

= βx̃+E(h(U)|G= g,X = x)

and, hence,

E(Y |X = x,G= g,do(X̃ = x))

−E(Y |X = x,G= g,do(X̃ = 0)) = βx,

which is an additive SMM.
It can be shown analogously that the log-linear

model (12) implies the MSMM (15). In each case
the reverse is not true, as discussed by Hernan and
Robins [32] for the special case where all variables
are binary.
Further, the structural equation model (10) im-

plies model (8) and hence (11). The former states
that the potential responses of a generic individual
are given as Y i(x) = βIx+ ξi, where ξi is fixed for
the individual but not between individuals. Hence,
across the population E(Y (x)|U = u) = βIx+E(ξ|U =
u). Interpreting E(Y (x)|U = u) as E(Y |do(X = x),U =
u) and using (5), we obtain E(Y |X = x,U = u) =
βIx+ h(u), which is equivalent to (8). The reverse
is clearly not true as counterexamples are easy to
construct.
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