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CORRELATIONS OF THE DIVISOR FUNCTION

LILIAN MATTHIESEN

Abstract. Let τ(n) =
∑

d 1d|n denote the divisor function. Based on Erdős’s fun-
damental work on sums of multiplicative functions evaluated over polynomials, we
construct a pseudorandom majorant for a slightly smoothed version of τ . By means
of the nilpotent Hardy-Littlewood method we give an asymptotic for the following
correlation

En∈[−N,N ]d∩K

t
∏

i=1

τ(ψi(n)) ,

where Ψ = (ψ1, . . . , ψt) is a non-degenerated system of affine-linear forms no two of
which are affinely related, and where K is a convex body.
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1. Introduction

Questions concerning the distribution of the values of elementary arithmetic functions
play a central role in analytic number theory. We mention two classes of such questions
for multiplicative functions, both of which are related to the results of this paper.

The first class concerns asymptotics for sums
∑

M6n6N+M

f(|P (n)|)

of multiplicative functions evaluated over polynomials, a direction which has been sub-
stantially influenced by Erdős’s work on the sum

∑

τ(P (n)), see [3]. We shall employ
some ideas introduced in that paper. For newer work on this type of question, see for
instance [13] and the references therein.

A second class considers linear correlations of multiplicative functions. Let f : [N ] →
R be multiplicative and let ψ1, . . . , ψt : Zd → Z be affine-linear forms, then these
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2 LILIAN MATTHIESEN

problems ask for an asymptotic to the correlation
∑

n∈K∩Zd

f(ψ1(n)) . . . f(ψt(n)), (1.1)

where K is a convex body. Questions of this second type include the generalised Hardy-
Littlewood conjecture, which predicts, based on a probabilistic model for the prime
numbers, an asymptotic for (1.1) when f = Λ is given by the von Mangoldt function.
Note that the frequency of arithmetic progressions of a fixed length t in the set of primes
can be expressed as a special case

E
(

Λ(n1)Λ(n1 + n2) . . .Λ(n1 + (t− 1)n2) | n1 + (t− 1)n2 6 N
)

of the f = Λ instance of (1.1). The generalised Hardy-Littlewood conjecture has been
resolved in the series of papers [6, 7, 8, 9] for those cases where no two forms ψi and ψj
are affinely related. (Thus the prime k-tuples conjecture, which concerns the asymptotic
behaviour of

En6NΛ(n+ h1)Λ(n+ h2) . . .Λ(n+ hk)

for any k-tuple of integers h1, . . . , hk, remains unsettled.)
The general approach that was used in the aforementioned partial resolution of the

Hardy-Littlewood conjecture is described as the ‘nilpotent Hardy-Littlewood method’
in [7]. It extends the classical Hardy-Littlewood method in the sense that it provides
a tool to address a similar type of question as the classical method, but covers a wider
range: it can be employed to resolve questions of the above second kind, provided the
function f involved shows a certain amount of random-like behaviour. Furthermore, it
resembles the classical method in that this approach too requires a (suitably adapted)
major and a minor arc analysis (Section 9), cf. [7, §4] for a discussion of this analogy. A
very central role in this method is assigned to pseudorandom majorant functions. We
shall explain the reason for this and its role at the start of Section 4. In the case of the
divisor function, the construction of the majorant constitutes the principal task that
needs to be accomplished in order to apply the method and thus in order to obtain an
asymptotic for (1.1) with f = τ .

For an application of the nilpotent Hardy-Littlewood method the function f is re-
quired to have asymptotic density, that is, to satisfy

En6Nf(n) = δ + o(1)

for some absolute constant δ > 0. For this reason, we shall work not with the divisor
function itself, but with the normalised divisor function τ̃ : [N ] → R>0 which is defined
by

τ̃ (n) :=
1

logN

∑

d|n

1

and has asymptotic density δ = 1.
A pseudorandom majorant for f is a function ν : [N ] → R>0 such that |f(n)| 6 Cν(n)

pointwise (for some absolute constant C), and which resembles a random measure in the
following sense. The total mass of ν is approximately 1, that is En6Nν(n) = 1+o(1), and
two further conditions modelling independence are satisfied. These are the linear forms
and correlation conditions from [6]. The linear forms condition requires asymptotics of
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the form
∑

n∈K∩Zd

ν(ψ1(n)) . . . ν(ψt(n)) = 1 + o(1).

Note that this is (1.1) for the majorant ν instead of f . Thus, to enable us to check this
condition, the pseudorandom majorant ν has to be of a form that allows a good under-
standing of its value distribution. In particular, assuming that one failed to establish
(1.1) for f directly and hence resorted to other methods of approach, the majorant has
to be sufficiently easier to understand than the function f .

In the course of the above cited work on (1.1) for the von Mangoldt function, the
problem of finding an asymptotic for (1.1) was also addressed for f = µ, the Möbius
function. A key feature of both functions µ and Λ is that they show some regularity in
their growth. µ is bounded by 1 pointwise, whereas Λ grows not faster than log. This
regularity simplifies the task of constructing a function that is simple enough that one
can check the linear forms condition, and which simultaneously satisfies the majorant
and the density condition.

The divisor function τ(n) =
∑

d|n 1, on the other hand, is known for its irregularities

in distribution. The moments En6Nτ(n)
p ∼ (logN)2

p−1 grow rapidly in p. While τ has
an ‘approximate’ normal order, that is for every ε > 0 all but o(N) positive integers
n 6 N satisfy (logN)(1−ε) log 2 < τ(n) < (logN)(1+ε) log 2, a theorem of Birch [1] implies
that it does not have a normal order in the sense of Hardy and Ramanujan. Instead
there is a gap between the ‘approximate’ normal order (logN)log 2 and the average order
logN , which results from few exceptionally large values of τ . In particular, τ(n), and
similarly τ̃(n), can be as large as exp(c logn/ log log n), see [10, §18.1 and §22.13].

We shall show that, nonetheless, there is a pseudorandom majorant ν : [N ] → R>0 for
(a W -tricked version of) τ̃ , and that the same basic method that was employed to deal
with f = µ and f = Λ can also be employed in this case: The existence of this majorant
in combination with the recent complete resolution of the Inverse Conjectures for the
Gowers norms [9] allows us to deduce an asymptotic for

∑

n∈K∩Zd τ̃(ψ1(n)) . . . τ̃(ψt(n))
under the already mentioned condition that no two forms ψi and ψj are affinely related.

Notation and statement of the main result. We recall some notation from [6]
in order to state the result precisely.

Definition 1.1 (Affine-linear forms). Let d, t > 1 be integers. An affine-linear form

on Zd is a function ψ : Zd → Z which is the sum of ψ = ψ̇ + ψ(0) of a linear form

ψ̇ : Zd → Z and a constant ψ(0) ∈ Z. A system of affine-linear forms on Zd is a
collection Ψ = (ψ1, . . . , ψt) of affine-linear forms on Zd that is required to satisfy the
following non-degeneracy condition: no affine-linear form is constant and no two forms
are rational multiples of each other.

To formulate quantitative results, the following notion was introduced in [6] to classify
the necessary bounds on the coefficients of the forms.

Definition 1.2 (Size at scale N , [6]). If N > 0, define the size ‖Ψ‖N of Ψ relative to
the scale N by

‖Ψ‖N =

t
∑

i=1

d
∑

j=1

|ψ̇i(ej)|+
t
∑

i=1

|ψi(0)|

N
,

where e1, . . . , ed is the standard basis of Zd.
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As we will show, the asymptotic behaviour of
∑

n∈K∩Zd

τ̃ (ψ1(n)) . . . τ̃ (ψt(n)) =
1

(logN)t

∑

d1,...dt

∑

n∈K∩Zd

1d1|ψ1(n) . . . 1dt|ψt(n) (1.2)

is determined by the local behaviour of the affine-linear system modulo small primes.
To make this precise, we proceed to define local factors at primes.

For a given system (ψ1, . . . , ψt) of affine-linear forms, positive integers d1, . . . dt and
their least common multiple m := lcm(d1, . . . dt) define local divisor densities by

α(d1, . . . , dt) := En∈(Z/mZ)d

∏

i∈[t]

1di|ψi(n) .

The Chinese remainder theorem implies that α is multiplicative. Thus, we restrict
attention to what happens at prime powers di = pai for a fixed prime p. If the forms ψi
were independent, one would expect α(pa1 , . . . , pat) = p−a1 . . . p−at . The prime powers
of p would then contribute to (1.2) a factor of

∑

a1,...,at

p−a1 . . . p−at = (1− p−1)−t .

We therefore introduce for each prime p a local factor

βp := (1− p−1)t
∑

a1,...,at∈N

α(pa1 , . . . , pat)

which measures the irregularities of the divisor densities of the given system Ψ of affine-
linear forms. As will be checked in the next section, the local factors satisfy the estimate
βp = 1 +Ot,d,L(p

−2). Thus, in particular, their product
∏

p βp converges.
Our main result is the following local-global principle.

Main Theorem. Let N, d, t, L be positive integers and let Ψ = (ψ1, . . . , ψt) : Z
d → Zt

be a system of affine-linear forms with coefficients bounded by ‖Ψ‖N 6 L and for which

any ψ̇i, ψ̇j, i 6= j, are linearly independent. Then

∑

n∈[−N,N ]d

1K(n)

t
∏

i=1

τ̃ (ψi(n)) = vol(K)
∏

p

βp + ot,d,L(N
d)

for any convex body K ⊆ [−N,N ]d such that Ψ(K) ⊂ [−N,N ]t.

The corresponding asymptotic for the divisor function is an immediate consequence:

Corollary 1.3 (Correlations of the divisor function). With the assumptions of the Main
Theorem, the divisor function τ satisfies

∑

n∈[−N,N ]d

1K(n)

t
∏

i=1

τ(ψi(n)) = (logN)t vol(K)
∏

p

βp + ot,d,L(N
d logtN) .

The condition that no two forms ψ̇i and ψ̇j are linearly dependent, which the main
theorem places upon the affine-linear system Ψ, is equivalent to saying that the affine-
linear system Ψ has finite complexity, a notion introduced in [6]. The infinite complexity
case includes problems of just one free parameter, like the one of estimating

En6Nτ(n + a1) . . . τ(n + ak) . (1.3)
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These remain untouched, as they cannot be addressed by the nilpotent Hardy-Littlewood
method. To place the task of estimating (1.3) into context, we mention that Ingham
[11] proves the asymptotic

N
∑

n=1

τ(n)τ(n + a) =
6

π2
σ−1(a) N log2N +O(N logN) ,

where σ−1(a) =
∑

d|a d
−1. No asymptotics are known when k > 3; c.f. [2, Thm 2] for a

recent result into the direction of gaining asymptotics in the k = 3 case.
A subsequent paper [12] considers the problem of the type (1.1) for other arithmetic

functions such as r(n), the number of representations of n as a sum of two squares.
This has some natural arithmetic consequences concerning the number of simultaneous
integer zeros of pairs of certain diagonal quadratic forms, which are, in the 8-variables
case, out of reach of the classical Hardy-Littlewood method as it currently stands.

2. Local divisor densities

This section contains some lemmas involving local divisor densities that are repeat-
edly used in analysing singular products. We also provide an estimate for βp.

Let Ψ = (ψ1, . . . , ψt) : Zd → Zt be a system of affine-linear forms which satisfies
‖Ψ‖N 6 L, let K ⊂ Rd be a convex body, and let d1, . . . , dt be integers. Divisibility
events of the form

∑

n∈Zd∩K

∏

i∈[t]

1di|ψi(n)

will naturally occur quite frequently in this paper. As in [6], the main tool to deal with
these divisibility events is a simple volume packing lemma.

Lemma 2.1 (Volume packing argument). Let K ⊆ [−L, L]d be a convex body and Ψ a
system of affine-linear forms. Then

∑

n∈Zd∩K

∏

i∈[t]

1di|ψi(n) = vol(K)α(d1, . . . , dt) +O(Ld−1 lcm(d1, . . . , dt)) .

Proof. Let δ = lcm(d1, . . . , dt) and cover K by translates δZd+ [0, δ)d of the box [0, δ)d.
Each box contains δdα(d1, . . . , dt) points n such that

∏

i∈[t] 1di|ψi(n) = 1. Any box that

does not lie completely inside K is contained in the 2d̄-neighbourhood of the boundary
of K, which has according to the Steiner theory of parallel surfaces a volume of order
Od(δL

d−1). Putting things together yields the result. �

We proceed to analyse the multiplicative function α = αΨ more closely. If p is large
compared to t, d, L, then

α(pa1 , . . . , pat) = p−aj , (2.1)

when aj is the only non-zero exponent. A prime p is called exceptional (with respect
to Ψ) when there are forms ψi, ψj in the system that are affinely related modulo p. If
ai, aj > 0, then considering the number of solutions n ∈ (Z/pmax(ai,aj)Z)d to ψi(n) ≡
0 (mod pai), ψj(n) ≡ 0 (mod paj ) yields α(pa1 , . . . , pat) 6 p−ai−aj if ψi and ψj are not
affinely related. Thus, if p is not an exceptional prime, one has, with amax := maxi ai,

α(pa1 , . . . , pat) 6 p−amax−1 , (2.2)

if there are at least two non-zero exponents.
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Lemma 2.2 (Contribution from dependent divisibility events). Let Ψ be as above and
let p be an unexceptional prime. Then

∑

a1,...,at>0
at least two ai 6= 0

α(pa1 , . . . , pat) ≪t,d,L
1

p2
.

Proof. The number of t-tuples (a1, . . . , at) of non-negative integers with maxi ai = j is
at most tjt−1. This together with the bound (2.2) yields

∑

a1,...,at>0
at least two ai 6= 0

α(pa1 , . . . , pat) ≪L,t,d

∑

j>1

jt

pj+1
=
∑

k>2

1

pk

(

(2k − 1)t

pk−2
+

(2k)t

pk−1

)

.

There is p0 such that whenever p > p0 then all the brackets in the last sum are less than
1, except the bracket for k = 2. Thus, for p > p0

∑

a1,...,at>0
at least two ai 6= 0

α(pa1, . . . , pat) ≪L,t,d
1

p2
+
∑

k>3

1

p3
≪L,t,d

1

p2
.

�

The following lemma immediately implies the convergence of
∏

p βp whenever Ψ con-
tains no two forms ψi and ψj that are affinely dependent, and thus every exceptional
prime is bounded by Ot,d,L(1).

Lemma 2.3. Let Ψ be as above and let p be an unexceptional prime, then

βp = 1 +Ot,d,L(p
−2) . (2.3)

Proof. By Lemma 2.2 and the bound (2.1)

βp = (1− p−1)t
∑

a1,...,at∈N

α(pa1 , . . . , pat)

=

(

1−
t

p
+Ot,d,L(p

−2)

)(

1 +
t

p
+Ot,d,L(p

−2)

)

= 1 +Ot,d,L(p
−2)

which proves the result. �

3. Some arithmetical lemmas and a reduction

In this section we record for later reference some early lemmas from [3], adapted to
our purposes, and deduce a reduction of the Main Theorem.

Lemma 3.1 (Second moment bound for the divisor function τ). Let Ψ = (ψ1, . . . , ψt) :
Zm → Zt be a system of affine-linear form with coefficients bounded by ‖Ψ‖[N ] 6 L.
Then

En∈Zm∩K

∏

i∈[t]

τ 2(ψi(n)) ≪t,m,L (logN)3 .
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Proof. The standard approach to obtain a second moment estimate for the divisor func-
tion carries over: Note that En∈Zm∩K1d|ψi(n) ≪m,L

1
d
, and thus

En∈Zm∩K

∏

i∈[t]

τ 2(ψi(n)) =
∑

d1,...,dt∈N
d′1,...d

′

t∈N

En∈Zm∩K

∏

i∈[t]

1[di,d′i]|ψi(n)

=
∑

(di),(d′i),(d
′′

i )∈N
t

gcd(di,d
′

i,d
′′

i )=1,i∈[t]

En∈Zm∩K

∏

i∈[t]

1did′id′′i |ψi(n)

6
∑

(di),(d
′

i),(d
′′

i )∈N
t

gcd(di,d′i,d
′′

i )=1,i∈[t]

En∈Zm∩K

∑

i∈[t]

1did′id′′i |ψi(n)

≪m,L

∑

d,d′,d′′6N

t

dd′d′′
≪t,m,L (logN)3 .

�

Lemma 3.2 (“rough” numbers are rare, [3]). Suppose Ψ = (ψ1, . . . , ψt) : Z
d → Zt is

affine-linear and ‖Ψ‖N 6 L. Let C1 > 1 be a parameter and let S1 be the set of m ∈ Z
which are divisible by a large proper prime power pa > logC1 N , a > 2. Then the density
of n ∈ Zd ∩K such that ψi(n) ∈ S1 for at least one i ∈ [t] is bounded by

∑

i∈[t]

En∈Zd∩K1ψi(n)∈S1 ≪L,d,t log
−C1/2N .

Proof. Similarly as above, this is a straightforward adaption of the one-dimensional
estimate. Note that En∈Zd∩K1pa|ψi(n) ≪L,d p

−a for all primes p. Let a(p) be the smallest

exponent a > 2 for which pa > logC1 N . We then have
∑

i∈[t]

En∈Zd∩K1ψi(n)∈S1 6
∑

p

En∈Zd∩K

∑

i∈[t]

1pa(p)|ψi(n)

≪L,d

∑

p6logC1/2N

t log−C1 N +
∑

p>logC1/2N

tp−2

≪L,d,t log
−C1/2N .

�

Lemma 3.3 (“smooth” numbers are rare, [3]). Let Ψ be as in the previous lemma, let
γ < 1 be a parameter and let S2 be the set of smooth m ∈ Z, that is, m for which

∏

pa‖m

p6N1/(log logN)3

pa > Nγ/ log logN . (3.1)

Then the density of n ∈ Zd ∩K for which ψi(n) ∈ S2 for at least one i ∈ [t] is bounded
by

En∈Zd∩K1n∈S2 ≪L,d,t,γ,C1 log
−C1/2N .

Proof. Suppose that ψi(n) ∈ S2 but does not belong to the set S1 from the previous
lemma at the same time. Then each prime power in the product (3.1) for m = ψi(n) is
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in particular ≪C1 N
1/(log logN)3 . Since ψi(n) > Nγ/ log logn, we then have

τ(ψi(n)) > 2ω(ψi(n)) ≫C1 2
(log logN)3γ/ log logN ≫γ,C2 (logN)C2

for any positive constant C2. By Lemma 3.1 and Cauchy-Schwarz this can for each
value of i only happen on a set of density < (logN)3−2C2 . The result follows with
C2 > 3/2 + C1/4. �

The next lemma shows that S1 and S2 are exceptional sets for the divisor function.

Lemma 3.4 (Contribution from the exceptional sets S1 and S2). Let Ψ be as before
and let C3 > 1 be a parameter. For sufficiently large C1, we have

∑

i∈[t]

En∈Zd∩K

∏

i∈[t]

τ̃ (ψi(n))1ψi(n)∈S1∪S2 ≪t,d,L (logN)−C3 .

Proof. This follows by the Cauchy-Schwarz inequality from lemmata 3.1, 3.2 and 3.3
provided C1 is chosen large enough. �

The previous lemma reduces the task of proving the Main Theorem as follows.

Proposition 3.5. Let τ̄ : Z → R be any function that agrees with τ̃ on the complement
of S1 ∪ S2 and satisfies 0 6 τ̄ (n) 6 τ̃(n) for n ∈ S1 ∪ S2. Then the Main Theorem, that
is,
∑

n∈Zd∩K

∏

i∈[t] τ̃ (ψi(n)) = vol(K)
∏

p βp + oL,t,d(N
d), holds if and only if under the

same conditions
∑

n∈Zd∩K

∏

i∈[t]

τ̄ (ψi(n)) = vol(K)
∏

p

βp + oL,t,d(N
d) .

4. A majorant for the normalised divisor function

Suppose that A ⊆ [N ] has cardinality |A| = δN . Loosely speaking, if 0 < δ < 1 is
fixed, we refer to such sets A, for N arbitrarily large, as dense. In this case, a sufficient
condition for A to contain approximately the expected number of finite complexity
structures is that A is sufficiently Gowers-uniform. This is to say, the uniformity norm

‖1A − δ‖Us[N ] :=

(

Ex∈[N ]Eh∈[N ]s

∏

ω∈{0,1}s

(1A − δ)(x+ ω · h)

)1/2s

is small for some s that is determined by the structure one is counting. For instance,
the number of 4-term arithmetic progressions in a set A of size |A| = δN satisfies

En+3d6N1A(n)1A(n + d)1A(n+ 2d)1A(n+ 3d) ∼ δ4 ,

if ‖1A − δ‖U3 is small. These results remain to be true when one replaces 1A by a
function f : N → C that is bounded independent of N and that has asymptotic density
En6Nf(n) = δ + o(1).

If f fails to satisfy these properties, that is, if it is either sparse or unbounded, then
a transference principle is required. Such a principle was established by Green and Tao
in [5, 6] and is based on the observation that a sparse set that is relatively dense in a
random-like set behaves in the same way as a dense set.

The first step is to replace the function f by a model f̃ that has asymptotic den-
sity. Examples are the replacement of the characteristic function of primes by the von
Mangoldt function or the replacement of τ by τ̃ in our case.
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An application of the transference principle requires a majorant function ν : [N ] → C

with |f̃(n)| 6 Cν(n) for all n which satisfies the linear forms and correlation conditions
(c.f. Section 6) of [6, §6], two conditions which are designed to model a random measure.
This majorant replaces the “random-like set” from the observation. The relative density
condition from the observation is also present in the generalised case. Indeed, part of
the definition of ν is that En6Nν(n) = 1 + o(1), and we further replaced the original

function f by a dense model f̃ . Thus we have

δ En6Nν(n) = δ(1 + o(1)) 6 (1 + o(1))En6N f̃(n) 6 C(1 + o(1))En6Nν(n)

and hence f̃ can be regarded as being ‘dense’ in ν.
The Koopman–von Neumann theorem [6, Prop.10.3], or [5, Prop.8.1], then provides a

result corresponding to the above observation: Any function f with asymptotic density
Ef that is dominated by a pseudorandom measure |f(n)| 6 ν(n) may be decomposed as
a sum f = f1+ f2 where f1 is bounded and f2−Ef2 has small uniformity norms. Thus,
f−Ef has small uniformity norms if and only if the bounded function f1−Ef1 has, and
one can apply the results from the dense setting to f1. That is, we have ‘transferred’ the
problem to the dense setting, provided there is a way to deal with the error f2 − Ef2.
Such a way is provided by [6, Cor. 11.6].

In the case f = Λ, Green and Tao [5] construct, building upon work of Goldston and
Yildirim, the required pseudorandom majorant by modifying the majorant the proof
of Selberg’s sieve is based on. The key property of such a majorant resulting from a
Selberg sieve is that it has the form of a truncated divisor sum

ν(n) :=
∑

d|n,d6Nγ

ad

for certain coefficients ad and where γ > 0 is a fixed constant that may be chosen as
small as necessary. Its importance lies in the fact that summing only over small divisors
ensures that the divisibility events that occur when checking the linear forms condition
are almost independent, and thus allows us to deduce asymptotics as required for the
linear forms condition.

Our aim in this section is to show that a majorant of similar structure can be con-
structed in the case of the divisor function τ̃ . A first attempt, given the above discussion,
might be to take

ν(n) = τ̃γ(n) :=
1

γ logN

∑

d|n:d6Nγ

1 .

Unfortunately, however, a result of Tenenbaum [15, Cor.3] asserts that if γ < 1/2
then for every λ the majorant condition τ̃ (n) 6 λτ̃γ(n) fails to hold on a positive
proportion of n ∈ [N ]. A modification of this idea is therefore required. It turns out
that the proportion of such ‘bad’ n can be bounded by λ−c log logλ for some c = c(γ) > 0.
Denoting by X(λ) the set of bad n for λ, then the bound on |X(λ)| allows us to sum
∑

i>1 λi1X(λi)(n)τ̃γ(n) for suitable sequences (λi).
The idea behind this is due to Erdős [3]: Let Nγ < n 6 N . Considering the

distribution of prime factors of such a number, one expects that τ̃(n) is essentially
controlled by the number of small divisors τ̃γ(n). But when is this actually the case? A
sufficient condition may be obtained as follows. Write n = pa11 . . . patt , where the primes
are ordered by increasing size, and let pa11 . . . p

aj+1

j+1 be the first initial partial product
that exceeds Nγ . Then we are guaranteed control of τ̃ (n) by τ̃γ(n) provided pj+1 is
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large, since n has at most logN
log pj+1

prime factors > pj+1. The quality of control depends

on the size of pj+1. Suppose n is a ‘bad’ integer for which the control is of τ̃ (n) by
τ̃γ(n) is not good enough, thus, pj+1 is quite small. The smaller pj+1 is, the worse is the
control, but, also, the denser gets the distribution of prime factors of the large initial
product of n. Excluding the sparse set of numbers that have a large proper prime power
divisor, one expects to find some structure in the ‘dense’ set of prime factors < pj+1. A
pigeonhole argument shows that there is some short interval that contains quite a large
number of those prime factors < pj+1; a very sparse event.

The prime divisor structure of ‘bad’ integers n that this proof strategy provides will
be important later on, because it allows us to explicitly describe the exceptional set for
the inequality τ̃ (n) 6 λτ̃γ(n) at level λ.

The following lemma is a reformulation of Erdős’s observations from [3].

Lemma 4.1 (Erdős). Let n 6 N and suppose that τ̃(n) > 2sτ̃γ(n) for some s > 2/γ.
Then one of the following three alternatives holds:

(i) n is excessively “rough” in the sense that it is divisible by some prime power
pa, a > 2, with pa > logC1 N ;

(ii) n is excessively “smooth” in the sense that if n =
∏

p p
a then

∏

p6N1/(log logN)3

pa > Nγ ;

(iii) n has a “cluster” of prime factors in the sense that there is an i, log2 s − 2 6

i ≪ log log logN such that n has at least γs(i + 3 − log2 s)/100 prime factors

in the superdyadic range Ii := [N1/2i+1
, N1/2i ] and is not divisible by two primes

in this range.

Proof. The alternatives (i) and (ii) correspond to the sets S1 and S2 from Section 3 and
thus can be regarded as exceptional. Suppose that n is unexceptional, that is (i) and
(ii) are not satisfied, and that the prime factorisation of n is given by

n = pa11 . . . pakk ,

where p1 < · · · < pk. Let j be the index for which

pa11 . . . p
aj
j 6 Nγ < pa11 . . . p

aj+1

j+1 , (4.1)

and write

n′ := pa11 . . . p
aj
j .

We claim that n′ > Nγ/2. Indeed, if this is not the case, then p
aj+1

j+1 > Nγ/2. Since (i) does
not hold we have aj+1 = 1. Thus, since pj+1 . . . pk|n, we have k−j 6 2/γ. Furthermore,
using the fact that (i) does not hold once more, we have aj+1 = · · · = ak = 1 and so in
this case

τ̃ (n) = 2k−j τ̃(n′) 6 22/γ τ̃ (n′) 6 22/γ τ̃γ(n) < 2sτ̃γ(n) ,

contrary to assumption. Let r > 1 be the unique integer such that

Nγ/(r+1) < pj 6 Nγ/r .

Then

aj+1 + · · ·+ ak 6
logN

log pj
6
r + 1

γ
,
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which means that

τ̃ (n) = (aj+1 + 1) . . . (ak + 1)τ̃(n′) 6 2aj+1+···+ak τ̃(n′) 6 2(r+1)/γ τ̃γ(n) 6 22r/γ τ̃γ(n)

and thus, recalling the assumption 2sτ̃γ(n) 6 τ̃(n), we have

r > sγ/2.

All prime factors of n′ are therefore bounded by N2/s.
Since we are not in the exceptional case (ii), the small prime factors have a negligible

contribution
∏

p6N1/(log logN)3

pa 6 Nγ/ log logN . (4.2)

Consider the smallest collection of superdyadic intervals Ii = [N1/2i+1
, N1/2i ] which

cover (N1/(log logN)3 , N2/s]; hence, these i satisfy log2 s− 2 6 i < 6 log log logN . In view
of (4.2), the bound pj 6 N2/s and the fact that n′ > Nγ/2, we obtain

∏

i

∏

p∈Ii
pa‖n

pa > Nγ/2−γ/ log logN > Nγ/4 .

Since n is unexceptional (and, specifically, (i) does not hold), all of the a’s appearing
here are equal to one. Thus if the lemma were false, we would have

Nγ/4 6
∏

i>log2 s−2

Nγs(i+3−log2 s)/(100·2
i) = exp

(

logN
∑

j>1

γ
j

2j
s

2log2 s−2

1

100

)

< Nγ/4,

a contradiction1. �

It is possible to bound the number of n 6 N satisfying condition (iii) for some value
of i just using their specific structure. Setting m0 := ⌈γs(i + 3 − log2 s)/100⌉, write
X(i, s) for the set of n 6 N divisible by at least m0(i, s) primes in [N1/2i+1

, N1/2i ]. Thus

N−1|X(i, s)| 6
1

m0!

(

∑

p∈Ii

1

p

)m0

=
1

m0!
(log 2 + o(1))m0 .

The crude bound m! >
(

m
e

)m
yields the estimate

N−1|X(i, s)| 6

{

(c/γs)γs if s/4 6 2i 6 s2

(c/γs)γsi if 2i > s2 ,
(4.3)

and hence

N−1
∑

i>log2 s−2

|X(i, s)| 6 (c/γs)γs log2 s . (4.4)

In particular, given the paucity of integers n satisfying (i) and (ii) as guaranteed by
Lemma 3.4, this together with Lemma 4.1 shows that the density of n 6 N for which
τ̃(n) > 2sτ̃γ(n) is bounded by 2−cγs log s. The fast decay of these densities makes the
following definition reasonable.

1The somewhat arbitrary factor of 100 could have been replaced by any other positive number that
was large enough to induce this contradiction.
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Proposition 4.2 (Majorant for the divisor function). Fix γ > 0. Write U(i, s) for
the set of all n 6 N divisible by exactly m0(i, s) := ⌈γs(i + 3 − log2 s)/100⌉ distinct

primes in the interval [N1/2i+1
, N1/2i ], and not by the square of any such prime. Define

ν : [N ] → R+ by

Cν(n) := 22/γ τ̃γ(n) +

(log logN)3
∑

s>2/γ

6 log log logN
∑

i=log2 s−2

∑

u∈U(i,s)

2s1u|nτ̃γ(n) + 1n∈S1∪S2 τ̃ (n) ,

where S1 ∪ S2 is the set of all n 6 N satisfying either (i) or (ii) of Lemma 4.1, Then
there is a value of C (depending on γ) such that En6Nν(n) = 1 + o(1). For all n 6 N
we have τ̃ (n) 6 Cν(n).

Remarks. (1) Since γ will be as small as necessary in every later application, we may
as well choose it to be the reciprocal of an integer. This has the advantage that, setting
U(i, 2/γ) := {1} for i = log2 s− 2 and U(i, 2/γ) := ∅ otherwise, we can write

Cν(n) =

(log logN)3
∑

s=2/γ

6 log log logN
∑

i=log2 s−2

∑

u∈U(i,s)

2s1u|nτ̃γ(n) + 1n∈S1∪S2 τ̃(n) .

(2) While ν can be shown to be pseudorandom, a further reduction in the next section
will allow us to save some work by dropping the exceptional term 1n∈S1∪S2 τ̃(n).
(3) Finally, note that the divisors u ∈ U(i, s) are truncated divisors themselves, that
is, they satisfy u 6 Nγ. Indeed, suppose i+3− log2 s = j(> 1), and hence s/2i = 8/2j,
then

u 6 Nm0(i,s)/2i 6 N2γsj/(100·2i) 6 N2γ8j/(100·2j ) < Nγ .

Proof. The fact that τ̃(n) 6 Cν(n) is an immediate consequence of Lemma 4.1. To
show the existence of C, we have to check that the expectation of ν on the integers 6 N
is bounded independent of N . Note that

En6N
∑

u∈U(i,s)

1u|nτ̃γ(n) 6
1

m0!

(

∑

p∈Ii

1

p

)m0

1

γ logN

∑

m6Nγ

1

m
6

1

m0!
(log 2 + o(1))m0 .

This allows us to make use of a bound of type (4.4). In detail,

En6N
∑

s>2/γ

∑

i>log2 s−2

∑

u∈U(i,s)

1u|nτ̃γ(n)2
s

6
∑

s>2/γ

∑

i>log2 s−2

1

m0!
(log 2 + o(1))m0 2s

6
∑

s>2/γ

∑

j>1

(

100 · e · (log 2 + o(1))

γsj

)γsj/100

2s

6
∑

s>2/γ

2s

ssγ/100

(

∑

j>1

(

100 · e · (log 2 + o(1))

γj

)γj/100
)s

which converges. We note for later reference that the above expression still converges
when the factor 2s is replaced by as with any positive constant a. �
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5. W -trick

The nilpotent Hardy-Littlewood method employs the uniformity of a function to
deduce an asymptotic for finite complexity correlations. However, the divisor func-
tion τ̃ is not equidistributed in residue classes to small moduli and thus in particular
not Gowers-uniform. To remove this obstruction we shall use a so-called W -trick and
decompose τ̃ into a sum of functions which do not detect a difference between these
residue classes. This decomposition of τ̃ can be viewed as a factorisation as product of
a uniform function and an almost periodic function.

It is natural to consider the restricted divisor function that does not count divisors
with small prime factors at all:

Definition 5.1 (W -tricked divisor function). Set w(N) := 1
2
log logN and W :=

∏

p<w(N) p. We define W -tricked versions of τ̃ and τ̃γ by

τ̃ ′(n) :=
W

φ(W )
(logN)−1

∑

(d,W )=1

1d|n ,

and

τ̃ ′γ(n) :=
W

φ(W )
(γ logN)−1

∑

d6Nγ

(d,W )=1

1d|n ,

where φ denotes Euler’s totient function.

Thus τ̃ decomposes as a product

τ̃(n) = τ̃ ′(n)

(

φ(W )

W

∑

w∈N :
p|w ⇒ p<w(N)

1w|n

)

,

where the first factor is expected to be uniform and the second factor is almost periodic.
We may, in fact, replace the second factor by a periodic function: Setting

W :=
∏

p6w(N)

p⌊
γ

log logN
logpN⌋ 6 Nπ(w(N))γ/ log logN 6 No(1)γ ,

define the following explicit function τ̄ : Z → R by

τ̄(n) := τ̃ ′(n)
(φ(W )

W

∑

w|W

1w|n

)

.

Since any integer n that is divisible by some w ∤ W , completely composed of primes
< w(N), belongs to the exceptional set S2 (c.f. Lemma 3.3), τ̄ satisfies the conditions
of Proposition 3.5. This will allow us to deduce the Main Theorem from the following
Proposition, to be established in Section 8.

Proposition 5.2. Let M = N/W and suppose K ′ ⊂ [M ]d is a convex body. Then for
any choice of b1, . . . , bt ∈ [W ]

En∈Zd∩K ′

∏

i∈[t]

τ̃ ′(Wψ̃i(n) + bi) = 1 + od,t,L(M
d/ vol(K ′))

holds for all finite complexity systems Ψ̃ of affine-linear forms satisfying ‖Ψ‖[M ] 6 L.
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Proof of the Main Theorem from Proposition 5.2. Assume K and Ψ satisfy the condi-
tions of the Main Theorem. Fix some a ∈ [W ]d and let ψ̃i,a : Zd → Z be the linear
function for which

ψi(Wn+ a) = Wψ̃i,a(n) + bi(a)

where bi(a) ∈ [W ]. Note that ψi and ψ̃i,a only differ in the constant term. Since

W < No(1)γ , this implies that whenever ‖Ψ‖[N ] = O(1) then ‖Ψ̃‖[M ] = O(1) too.

Define K ′
a ⊂ [N/W ]d to be the convex body {x ∈ [0, N/W ]d : Wx+ a ∈ K}.

By Proposition 5.2,

∑

n∈Zd∩K

∏

i∈[t]

τ̄ (ψi(n)) =
∑

a∈[W ]d

∑

Wn+a∈
Zd∩K

∏

i∈[t]

(

φ(W )

W

∑

w|W

1w|ψi(a)

)

τ̃ ′(Wψ̃i,a(n) + bi(a))

=
∑

a∈[W ]d

∏

i∈[t]

(

φ(W )

W

∑

w|W

1w|ψi(a)

)

volK

W
d
(1 + ot,d,L(1))

=
φt(W )

W t

∏

p6w(N)

∑

e1,...,et∈N
pei |W,i∈[t]

α(pe1, . . . , pet) vol(K)(1 + ot,d,L(1)) .

Since smooth numbers are rare by Lemma 3.3, we have
∑

e1,...,et∈N
pei |W,i∈[t]

α(pe1, . . . , pet) =
∑

e1,...,et∈N

α(pe1, . . . , pet) + o(1) = βp(1− p−1)−t + o(1) ,

and since
∏

p6w(N)(1− p−1)−1 = W
φ(W )

, the above implies

En∈Zd∩K

∏

i∈[t]

τ̄ (ψi(n)) = (1 + o(1))
∏

p6w(N)

βp .

The local factors’ bound (2.3), that is βp = 1 + Ot,d,L(p
−2) , and Proposition 3.5 yield

the Main Theorem:

En∈Zd∩K

∏

i∈[t]

τ̃(ψi(n)) =
∏

p

βp + o(1) .

�

W -tricked majorant. In order to prove Proposition 5.2, we require for any given
choice of b = (b1, . . . , bt) ∈ [W ]t a majorant that simultaneously majorises all of the
functions n 7→ τ̃ ′(Wn+ bi) for i = 1, . . . , t. Define

C ′ν ′(n) :=

(log logN)3
∑

s=2/γ

6 log log logN
∑

i=log2 s−2

∑

u∈U(i,s)

2s1u|nτ̃
′
γ(n) , (5.1)

where C ′ is such that En6Nν
′(n) = 1 + o(1). This and the definition of τ̃ ′ imply

En6Mν
′(Wn+ a) = 1 + o(1) for all a ∈ [W ].

Thus, a majorant of the required form is given by a constant multiple of

ν ′
W,b

: Zt → Z, ν ′
W,b

:= Ei∈[t]ν
′(Wn+ bi) .

Note furthermore that ν ′
W,b

still satisfies the condition Em6Mν
′
W,b

(m) = 1 + o(1).
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6. The linear forms condition

The aim of the following two sections is to show that the following slight modification
of the majorant ν ′

W,(bi)
= Ei∈[t]ν

′(Wn+ bi) is indeed pseudorandom. Let M ′ be a prime

satisfying M < M ′ 6 Ot,d,L(M) and define ν∗
W,(bi)

: [M ′] → R+ by

ν∗
W,(bi)

(n) =

{ 1
2
(1 + ν ′

W,(bi)
(n)) if n 6 M

1 if M < n 6 M ′ .

As is seen in [6, App.D], ν∗w,(bi) is D-pseudorandom if it satisfies the following two propo-
sitions, which are technical reductions of the linear forms and correlation conditions from
[6].

Proposition 6.1 (D-Linear forms estimate). Let 1 6 d, t 6 D and let (i1, . . . , it) ∈ [t]t

be an arbitrary collection of indices. For any finite complexity system Ψ : Zd → Zt with
bounded coefficients ‖Ψ‖N 6 D and every convex body K ⊆ [N ]d such that Ψ(K) ⊆
[N/W ]d the asymptotic

En∈Zd∩K

∏

j∈[t]

ν(Wψj(n) + bij ) = 1 +OD(N
d−1+OD(γ)/ vol(K)) + oD(1)

holds, provided γ was small enough.

Proposition 6.2 (Correlation estimate). For every 1 < m0 6 D there exists a function
σm0 : ZM ′ → R+ with bounded moments En∈ZM′

σqm0
(n) ≪m,q 1 such that for every

interval I ⊂ ZM ′, every 1 6 m 6 m0 and every m-tuple (i1, . . . , im) ∈ [t]m, and every
choice of (not necessarily distinct) h1, . . . , hm ∈ ZM ′ we have

En∈I
∏

j∈[m]

ν ′(W (n + hj) + bij ) 6
∑

16i<j6m

σm0(hi − hj) ,

provided γ was small enough.

The correlation estimate will be deferred to the next section, the verification of the
linear forms condition is an immediate consequence of the following proposition.

Proposition 6.3. Let Ψ : Zd → Zt be a system of affine-linear forms, such that any
exceptional prime, that is, any prime p for which there are ψi and ψj that are affinely
related modulo p, satisfies p 6 w(N). Then

En∈Zd∩K

∏

j∈[t]

ν ′(ψj(n)) = 1 +OD(N
d−1+OD(γ)/ vol(K)) + oD(1)

for every convex K ⊆ [N ]d such that Ψ(K) ⊆ [N ]t.

Proof of Proposition 6.1. The system Ψ of affine-linear forms that appears in the linear
forms condition has the property that no two forms ψi, ψj are affinely related and it
further obeys the coefficient bound ‖Ψ‖N 6 L0. Thus every exceptional prime p of Ψ
satisfies p = Od,t,L0(1). We have to show that

En∈Zd∩K

∏

j∈[t]

ν ′(φj(n)) = 1 +OD(N
d−1+OD(γ)/ vol(K)) + oD(1)

with
φj(n) = Wψj(n) + bij .
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If p > w(N) is a prime, then φi and φj are affinely related modulo p if and only if ψi and
ψj are affinely related modulo p, which proves the result in view of Proposition 6.3. �

Proof of Proposition 6.3. The strategy of the proof is to show that all occurring
dependent divisibility events

∏

j∈[t] 1ai|ψi(n) where the ai are not pairwise coprime have
a negligible contribution. Removing those, the densities of the remaining events will
depend on the respective choice of a1, . . . , at but are, up to a small error, independent
of the ψi.

Recalling the definition (5.1) of ν ′, our task is to show that

En∈Zd∩K

∏

j∈[t]

(

(log logN)3
∑

s=2/γ

6 log log logN
∑

i=log2 s−2

∑

uj∈U(i,s)

1uj |ψj(n)τ̃
′
γ(ψj(n))

)

= C ′t +OD

(

Nd−1+OD(γ)

vol(K)

)

+ oD(1).

An arbitrary cross term that appears when multiplying out is of the form

En∈Zd∩K

∏

j∈[t]

∑

uj∈U(ij ,sj)

2sj τ̃ ′γ(ψj(n))1uj |(ψj(n)) . (6.1)

The sets U(i, s) were defined in the statement of Proposition 4.2. We will make use
of two of their properties, namely that any prime divisor p of u ∈ U(i, s) satisfies

p≫ N1/(log logN)3 and that u 6 Nγ for u ∈ U(i, s).
The removal of dependent divisibility events will be carried out in a sequence of steps.

The first is the following claim.

Claim 1. The cross term (6.1) equals

∑′

u1,...,ut

En∈Zd∩K

∏

j∈[t]

2sj τ̃ ′γ(ψj(n))1uj |ψj(n) +OD(N
−(log logN)−2

) , (6.2)

where the notation
∑′

u1,...,ut
indicates that the summation is extended only over pair-

wise coprime choices of u1, . . . , ut, where uj ∈ U(ij , sj) for each j.

Remark. Since the sums over sj and ij only have OD((log logN)4) terms, the total

contribution of the error term is bounded by OD(N
1/(log logN)2−ε

) = oD(1).

Proof. All we have to do is to bound the contribution of non-coprime choices of u1, . . . , ut
to (6.1). Whenever (ui, uj) > 1, there is some p > N1/(log logN)3 such that p2|

∏

i∈[t] ψi(n).

By the properties of the function α, in particular by (2.2), we have

∑

N(log logN)−3<p<Nγ

En∈Zd∩K1p2|
∏

i ψi(n) ≪t

∑

N(log logN)−3<p<Nγ

p−2 = Ot

(

N−(log logN)−3
)

.
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By Cauchy-Schwarz, we have
∑

u1,...,ut
(ui,uj)>1

En∈Zd∩K

∏

j∈[t]

2sj τ̃ ′γ(ψj(n))1uj |ψj(n) 6

(

En∈Zd∩K

∑

N(log logN)−3

<p<Nγ

1p2|
∏

i ψi(n)

)
1
2
(

En∈Zd∩K

∏

j∈[t]

22sj τ̃ ′2γ (ψj(n))

(

∑

uj∈
U(ij ,sj)

1uj |ψj(n)

)2
)

1
2

Note that the second factor may be bounded by
(

En∈Zd∩K 22D(log logN)3
∏

j∈[t]

τ 4(ψj(n))
)1/2

≪D 2D(log logN)3(logN)OD(1)

where the 4th moment estimate of τγ may be obtained in a similar manner as the

second moment in Section 3. This proves the claim since (2(log logN)3 logN)OD(1) ≪
N1/(log logN). �

We proceed to analyse (6.2). In particular, we show the following.

Claim 2. The main term of (6.2) satisfies
∑′

u1,...,ut

En∈Zd∩K

∏

j∈[t]

2sj τ̃ ′γ(ψj(n))1uj |ψj(n)

= (1 + oD(1))

(

W

φ(W )γ logN

)t
∑′

u1,...,ut

∑

v1|u1,...,vt|ut

∑′

d1,...,dt
dj6N

γ/vj
(dj ,ujW )=1
j=1,...,t

∏

j∈[t]

2sj

uj

1

dj
(6.3)

+O(Nd−1+Ot(γ)/ vol(K)) .

Remark. Similar as with the previous claim, the fact that the sums over sj and ij only
have OD((log logN)4) terms implies that the overall contribution of the error terms
from here is still O(Nd−1+Ot(γ)/ vol(K)).

Proof. Inserting the definition of τ̃ ′γ , multiplying by its normalisation, and applying the
volume packing lemma, Lemma 2.1, we have
(

W

φ(W )γ logN

)−t
∑′

u1,...,ut

En∈Zd∩K

∏

j∈[t]

2sj τ̃ ′γ(ψj(n))1uj |ψj(n)

=
∑′

u1,...,ut

En∈Zd∩K

∏

j∈[t]

2sj
∑

vj |uj

∑

dj6Nγ/vj
(dj ,ujW )=1

1djuj |ψj(n)

=
∑

u1,...,ut

∏

j∈[t]

2sj
∑

v1|u1,...,vt|ut

∑

d1,...,dt
di6Nγ/ui
(di,uiW )=1
i=1,...t

{

α(d1, . . . , dt)

u1 . . . ut
+O

( Nd−1

vol(K)
lcm(u1d1, . . . , utdt)

)

}

.

The error term is of orderO(Nd−1+Ot(γ)/ vol(K)). Since 2sj 6 2(log logN)3 , sinceW/(φ(W )γ logN) ≪
1 and since the sums over the uj and vj have altogether NOt(γ) terms, the total contri-
bution of the error term is also given by O(Nd−1+Ot(γ)/ vol(K)).
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Concerning the main term, Lemma 2.2 allows us to also pass to only summing over
pairwise coprime choices of d1, . . . dt: Fix a choice of u = (u1, . . . ut) and v = (v1, . . . , vt)
and let Du,v be the set of all tuples (d1, . . . , dt) satisfying (di, uiW ) = 1 and di 6 Nγ/vi
for i = 1, . . . t. With this notation, the sum over d1, . . . , dt in the main theorem, for
fixed u, v, satisfies

∑′

(d1,...,dt)∈Du,v

α(d1, . . . , dt) 6
∑

(d1,...,dt)∈Du,v

α(d1, . . . , dt)

6
∑′

(d1,...,dt)∈Du,v

α(d1, . . . , dt)
∏

p∤d1...dt
p>w(N)

(

1 +
∑

a1,...,at
at least two ai 6=0

α(pa1, . . . , pat)

)

6
∑′

(d1,...,dt)∈Du,v

α(d1, . . . , dt)
∏

p>w(N)

(1 +OD(p
−2))

6 (1 +OD(1/w(N)))
∑′

(d1,...,dt)∈Du,v

α(d1, . . . , dt)

= (1 +OD(1/w(N)))
∑′

(d1,...,dt)∈Du,v

1

d1 . . . dt
,

which implies the claim. �

The last remaining step will be to show that, picking up only another (1 + ot,d,L(1))
factor, we can move the product over j in front in the term (6.3).

Claim 3. Summing all terms (6.3), we have

∑

s1,...,st

∑

i1,...,it

(

W

φ(W )γ logN

)t
∑′

u1,...,ut

∑

v1|u1,...,vt|ut

∑′

(d1,...,dt)
∈Du,v

∏

j∈[t]

2sj

uj

1

dj

= (1 + oD(1))
∏

j∈[t]

(log logN)3
∑

sj=2/γ

6 log log logN
∑

ij=log2 sj−2

∑

uj∈U(ij ,sj)

2sj

uj

W

φ(W )γ logN

∑

dj6Nγ/vj
(dj ,ujW )=1

1

dj
(6.4)

+Ot(N
−1/(log logN)3) .

Proof. The new expression (6.4) includes additional terms containing non-coprime tu-
ples u1, . . . , ut or d1, . . . , dt. To see that these terms only contribute an additional
(1 + oD(1)) factor, first consider the dj’s: Note that

∏

j∈[t]

1

dj
6 α(d1, . . . , dt) .

Thus, an application of Lemma 2.2, similar to the one for the previous claim, yields
∑′

(d1,...,dt)∈Du,v

∏

j∈[t]

2sj

uj

1

dj
= (1 + ot,d,L(1))

∑

(d1,...,dt)∈Du,v

∏

j∈[t]

2sj

uj

1

dj
.

It remains to show that we can also drop the coprimality condition on the uj’s. The
contribution to (6.4) from non-coprime choices u1, . . . , ut can be bounded as follows.
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Suppose (uj′, uj′′) > 1. Then in particular (uj′, uj′′) > N1/(log logN)3 , since any prime

factor of a uj is greater than N
1/(log logN)3 by definition. Thus

∏

j∈[t]

2sj

uj
6

1

N1/(log logN)3

∏

j∈[t]:j 6=j′,j′′

2sj

uj

(

22sj′

uj′
+

22sj′′

uj′′

)

.

Since
W

φ(W )γ logN

∑

dj6Nγ/vj
(dj ,ujW )=1

1

dj
≪ 1

the contribution to (6.4) from bad (ui)i∈[t] is at most
(

t

2

)

1

N1/(log logN)3

∏

j∈[t−1]

∑

sj>2/γ

∑

ij>
log2 sj−2

∑

uj∈U(ij ,sj)

22sj

uj
≪t

1

N1/(log logN)3
,

where the convergence of the three nested sums follows from the proof of Proposition
4.2. This proves the claim. �

To summarise, we have shown that

En∈Zd∩K

∏

j∈[t]

ν ′(ψj(n)) = En∈Zd∩K

∏

j∈[t]

(

(log logN)3
∑

s=2/γ

6 log log logN
∑

i=log2 s−2

∑

uj∈U(i,s)

1uj |ψj(n)τ̃
′
γ(ψj(n))

)

= (1 + oD(1))
∏

j∈[t]

W

φ(W )γ logN

(

(log logN)3
∑

s=2/γ

6 log log logN
∑

i=log2 s−2

∑

u∈U(i,s)

2s

u

∑

v|u

∑

d6Nγ/v
(d,uW )=1

1

d

)

+O
(Nd−1+OD(γ)

vol(K)

)

+ oD(1) .

Regarding the last equation in the special and already known case En6Nν
′(n) = 1+o(1)

of the linear forms condition implies that each of the factors on the right hand side,
which is independent of Ψ, equals C ′(1+ o(1)). This completes the proof of Proposition
6.3.

7. The correlation condition

This section provides a proof of Proposition 6.2.
Due to the similar structure of our majorant to that of the majorant used in [5, 6],

the function σm can be chosen in the same manner as in [5, 6].

Proposition 7.1 (Green-Tao [5]). Let ∆ : Z → Z be the polynomial defined by ∆(n) =
∏

16j<j′6m(Wn+ bij − bi′j ), define σm : ZM ′ → R+ to be

σm(n) := exp

(

∑

p>w(N), p|∆(n)

Om(p
−1/2)

)

.

for n > 0 and suppose σm(0) = o(M ′). Then En∈ZM′
σqm(n) ≪m,q 1.
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Proof of Proposition 6.2. The proof proceeds in two cases. The first case considers
the situation where hi = hj for two distinct indices i, j. We aim to use the fact that on
the right hand side of the inequality

En∈ZM′

∏

i∈[m]

ν ′w,(bi)(n+ hi) 6
∑

16i<j6m

σm0(hi − hj)

σm0(0) occurs while Proposition 7.1 allows us to choose σm0(0) quite large. Indeed,
Hölder’s inequality yields

En∈ZM′

∏

i∈[m]

ν ′
W,(bi)

(n + hi) 6
∏

j∈[m]

(

En∈ZM′
ν ′(Wn+ bij )

m
)1/m

.

Any cross term of

En∈ZM′
ν ′(Wn+ bij )

m

is of the form

C ′−mEn6M ′

(

τ̃ ′γ(Wn+ bij )
)m ∏

j∈[m]

∑

uj∈U(ij ,sj)

2sj1uj |(Wn+bij )

6 C ′−mEn6M ′

(

τ̃ ′γ(Wn+ bij )
)m ∑

j∈[m]

∑

uj∈U(ij ,sj)

2msj1uj |(Wn+bij )
.

Since τ(n) ≪ε n
ε, we may continue this estimate by

≪ε C
′−m exp(εm logN)En6M ′

∑

j∈[m]

∑

uj∈U(ij ,sj)

2msj1uj |(Wn+bij )

6 C ′−m exp(εm logN)
∑

j∈[m]

∑

uj∈U(ij ,sj)

2msj

uj
.

Note that the proof of Proposition 4.2 implies that
∑

s>2/γ

∑

ij>log2 s−2

∑

uj∈U(ij ,s)

2msj

uj

converges. Thus, summing over all cross terms yields

En∈ZM′
ν ′(Wn + bij )

m ≪m,ε exp(εm logN) .

If ε > 0 is small enough, setting

σm0(0) := Om0,ε

(

exp(εm0 logN)
)

= o(N/ logN) = o(M ′)

we can ensure that

En∈ZM′

∏

i∈[m]

ν ′w,(bi)(n+ hi) 6
∑

16i<j6m

σm0(hi − hj)

when hi = hj for some i 6= j.

Next, we consider the case where hi 6= hj whenever i 6= j. Our approach to estimate

En6N
∏

j∈[m]

ν ′
(

W (n+ hj) + bij
)
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is the same as the one used to check the linear forms condition and we therefore proceed
to analyse the local divisor densities: Since the forms ψj(n) = W (n+hj)+bij are affinely
related, all we can say in general is

α(pa1 , . . . , pam) = O(p−maxi ai) .

If, however, more than one exponent ai is non-zero, then we have

α(pa1 , . . . , pam) > 0

only if p
∣

∣

(

W (hj − hj′) + bij − bij′

)

for some j, j′ ∈ [m].

Claim. We have the following estimate

En6N
∏

j∈[m]

ν ′
(

W (n+ hj) + bij
)

≪
∏

p|∆

∑

a1,...,am

α(pa1 , . . . , pam) (7.1)

where ∆ :=
∏

j 6=j′(W (hj − hj′) + bij − bij′ ).

Before we prove the claim, we complete the verification of the correlation estimate.
In order to apply the bound on α, note that there are at most jmj−1 tuples (a1, . . . at)
satisfying maxi ai = j. Since p > w(N) on the right hand side of (7.1), we have for p
large enough that

jmj−1 < pj/2/2 .

Thus, for such p

∑

a1,...,am

α(pa1 , . . . , pam) 6 1 +
1

2
p−1/2

∑

j>0

p−j/2 6 1 + p−1/2

and therefore
∏

p|∆

∑

a1,...,am

α(pa1 , . . . , pam) ≪
∏

p>w(N)
p|∆

(

1 + p−1/2
)

.

Let ∆(n) :=
∏

j 6=j′

(

Wn + bij − bij′
)

and set

σm0(n) := exp

(

∑

p>w(N), p|∆(n)

Om0(p
−1/2)

)

.

for n > 0. Since 1 + x 6 exp x, we have

En6N
∏

j∈[m]

ν ′
(

W (n+ hj) + bij
)

≪m

∑

16j<j′6m

σm0 (hj − hj′) .

In view of the above Proposition 7.1, this completes the verification of the correlation
condition.

Proof of Claim. Consider, similarly to the previous section, an arbitrary cross term

C ′−tEn6M ′

∏

j∈[m]

∑

uj∈U(ij ,sj)

2sj τ̃ ′γ(W (n+ hj) + bij )1uj |((W (n+hj)+bij ))
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of En6M ′

∏

j∈[m] ν
′
(

W (n+ hj) + bij
)

. Dropping the normalising factor
(

W
C′φ(W )γ logN

)t

for the moment, the cross term may be rewritten as

En6M ′

∑

u1,...,um

∑

v1|u1,...,vm|um

∑

d1,...,dm
di6Nγ/ui
(dj ,ujW )=1
i=1,...,m

∏

j∈[m]

2sj1ujdj |(W (n+hj)+bij )

6 En6M ′

∑

u1,...,um

(

m
∑

k=1

2mskτ(uk)1uk|(W (n+hk)+bik )

)

∏

j∈[m]

∑

dj6Nγ

(dj ,ujW )=1

1dj |(W (n+hj)+bij )
.

Since (dj, ujW ) = 1, this may, employing the volume packing lemma, be bounded by

≪
∑

u1,...,um

(

m
∑

k=1

2msk
τ(uk)

uk

)

∑

d1,...,dm6Nγ

(dj ,ujW )=1

α(d1, . . . , dm)

≪
∑

u1,...,um

(

m
∑

k=1

2msk
τ(uk)

uk

)

∏

p1>w(N)

(1 + p−1
1 )t

∏

p2|∆

∑

a1,...,am

α(pa12 , . . . , p
am
2 ) .

Summing over all cross terms and noting that
(

W

C ′φ(W )γ logN

)t
∏

p1>w(N)

(1 + p−1
1 )t ≪ 1

and that (c.f. the proof of Proposition 4.2)

∑

s>2/γ

∑

i>log2 s−2

∑

u∈U(i,s)

2ms
τ(u)

u
=
∑

s>2/γ

∑

i>log2 s−2

∑

u∈U(i,s)

2ms2m0(i,s)
1

u

6
∑

s>2/γ

∑

i>log2 s−2

2ms
1

m0(i, s)!
(2 log 2 + o(1))m0(i,s)

6
∑

s>2/γ

2ms

ssγ/100

∑

j>1

(

100 · e · (2 log 2 + o(1))

γj

)γsj/100

≪ 1

completes the proof of the claim.

8. Application of the transference principle

The aim of this section is to deduce the main theorem from a generalised von Neu-
mann theorem and to prove some reductions on the remaining task of checking that the
conditions of the generalised von Neumann theorem are satisfied.

The transference principle [6, Prop. 10.3] allows, as was discussed in Section 5, to
transfer results that hold for bounded Gowers-uniform functions to Gowers-uniform
functions that are dominated by a pseudorandom measure. It was developed in [5, §8]
in view of an application to the (unbounded) von Mangoldt function, and was proved
by an iteration argument. New and simplified approaches to the transference principle
were more recently found by Gowers [4] and Reingold-Tulsiani-Trevisan-Vadhan [14].
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The generalised von Neumann theorem asserts that, if f is suitably Gowers-uniform
and dominated by a pseudorandom measure, then composing f with linear forms ψi
that are sufficiently independent yields functions f ◦ ψi that behave like independent
variables in the sense that En

∏

i∈[t] f(ψi(n)) is close to (Enf(n))
t, which is the expected

value, had the f ◦ ψi genuinely been independent.

Proposition 8.1 (Green-Tao [6], generalised von Neumann theorem). Let t, d, L be
positive integer parameters. Then there are constants C1 and D, depending on t, d and
L, such that the following is true. Let C, C1 6 C 6 Ot,d,L(1) be arbitrary and suppose
that N ′ ∈ [CN, 2CN ] is a prime. Let ν : ZN ′ → R+ be a D-pseudorandom measure,
and suppose that f1, . . . , ft : [N ] → R are functions with |fi(x)| 6 ν(x) for all i ∈ [t]
and x ∈ [N ]. Suppose that Ψ = (ψ1, . . . , ψt) is a finite complexity system of affine-linear
forms with ‖Ψ‖N 6 L. Let K ⊂ [−N,N ]d be a convex body such that Ψ(K) ⊂ [N ]t.
Suppose also that

min
16j6t

‖fj‖U t−1[N ] 6 δ (8.1)

for some δ > 0. Then we have
∑

n∈K

∏

i∈[t]

fi(ψi(n)) = oδ(N
d) + κ(δ)Nd .

Establishing the Gowers-uniformity condition (8.1) itself is a task that is conceptually
equivalent to that of finding an asymptotic for

∑

n∈K

∏

i∈[t] f(ψi(n)) directly, and should
therefore not be any easier. The specific system of affine-linear forms that appears in
the definition of the uniformity norms, however, allows an alternative characterisation
of Gowers-uniform functions.

A characterisation of Gowers-uniform functions. Whether or not a function
f is Gowers-uniform is characterised by the non-existence or existence of a polynomial
nilsequence2 that correlates with f . On the one hand, correlation with a nilsequence
obstructs uniformity:

Proposition 8.2 (Green-Tao [6], Cor. 11.6). Let s > 1 be an integer and let δ ∈ (0, 1)
be real. Let G/Γ = (G/Γ, dG/Γ) be an s-step nilmanifold with some fixed smooth metric
dG/Γ , and let (F (g(n)Γ))n∈N be a bounded s-step nilsequence with Lipschitz constant at
most L. Let f : [N ] → R be a function that is bounded in the L1-norm, that is, assume
‖f‖L1 = En∈[N ]|f(n)| 6 1. If furthermore

En∈[N ]f(n)F (g(n)Γ) > δ

then we have

‖f‖Us+1[N ] ≫s,δ,L,G/Γ 1 .

An inverse result to this statement has been known as Inverse Conjecture for the
Gowers norms (GI(s) conjectures) for some time and has recently been resolved, see [9].
The inverse conjectures are stated for bounded functions. With our application to the
normalised divisor function in mind, we only recall the transferred statement, c.f. [6,
Prop. 10.1], here.

2For definitions of nilmanifolds and nilsequences, see, for instance, [8].
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Proposition 8.3 (Green-Tao [6], Relative inverse theorem for the Gowers norms).
For any 0 < δ 6 1 and any C > 20, there exists a finite collection Ms,δ,C of s-
step nilmanifolds G/Γ, each equipped with a metric dG/Γ, such that the following holds.
Given any N > 1, suppose that N ′ ∈ [CN, 2CN ] is prime, that ν : [N ′] → R+ is an
(s+2)2s+1-pseudorandom measure, suppose that f : [N ] → R is any arithmetic function
with |f(n)| 6 ν(n) for all n ∈ [n] and such that

‖f‖Us+1[N ] > δ .

Then there is a nilmanifold G/Γ ∈ Ms,δ,C in the collection and a 1-bounded s-step
nilsequence (F (g(n)Γ))n∈N on it that has Lipschitz constant Os,δ,C(1), such that we have
the correlation estimate

|En∈[N ]f(n)F (g(n)Γ)| ≫s,δ,C 1 .

This inverse theorem now reduces the required uniformity-norm estimate (8.1) to the
potentially easier task of proving that the centralised version of f does not correlate
with polynomial nilsequences.

Reduction of the main theorem to a non-correlation estimate. The task
of proving the main theorem had been reduced to the proof of the following proposition
in Section 5.

Proposition 5.2. Let M = N/W and suppose K ′ ⊂ [M ]d is a convex body. Then for
any choice b1, . . . , bt ∈ [W ]

En∈Zd∩K ′

∏

i∈[t]

τ̃ ′(Wψi(n) + bi) = 1 + od,t,L(M
d/ vol(K ′))

holds for all finite complexity systems Ψ of affine-linear forms satisfying ‖Ψ‖M 6 L.

Define for b ∈ [W ] the function τ̃ ′
W,b

: Z → R, τ̃ ′
W,b

(n) := τ̃ ′(Wn + b). Rewriting

En∈Zd∩K ′

∏

i∈[t]

τ̃ ′
W,bi

(ψi(n))− 1 = En∈Zd∩K ′

∏

i∈[t]

((

τ̃ ′
W,bi

(ψi(n))− 1
)

+ 1
)

− 1

and multiplying out the product, the constant term cancels out, while all other terms
are of a form the generalised von Neumann theorem can be applied to, provided we can
show that

‖τ̃ ′
W,bi

− 1‖U t−1 = o(1)

for all i ∈ [t]. By the inverse theorem, it thus suffices to establish the non-correlation
estimates

|En∈[N ](τ̃
′
W,b

(n)− Eτ ′w,b)F (g(n)Γ)| = o(1)

for all (t− 2)-step nilsequences F (g(n)Γ) as in Proposition 8.3 and all b ∈ [W ].

9. Non-correlation of the W -tricked divisor function with

nilsequences

The aim of this section is to provide the remaining non-correlation estimate which
will complete the proof of the main theorem. For all concepts and notation in connection
with nilmanifolds and nilsequences that remain undefined in this section we refer to [7]
and its companion paper [8].
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Let k > 1 be an arbitrary integer, let F : G/Γ → C be a Lipschitz function on the
(k − 1)-step nilmanifold G/Γ, and let g : Z → G be a polynomial nilsequence adapted
to some given filtration G• of G.

Since the W -tricked divisor function does not count divisors with prime factors p <
w(N), let ̟(n) :=

∏

pa‖n,p6w(N) p
a denote for any integer n the largest divisor composed

of primes < w(N).
Let b ∈ [W ] and note that ̟(Wn+ b) = ̟(b). Setting

µW,b :=
W

φ(W ) logN

∑

d6(N/̟(b))1/2

(W,d)=1

2(d−1 − d/N)

=
W

φ(W ) logN

∑

d6N/̟(b)
(W,d)=1

d−1 + o(1) = (1 + o(1))En6M τ̃
′
W,b

(n) ,

the application of the inverse theorem for the Gowers norm requires the estimation

En6M(τ̃ ′
W,b

(n)− µW,b)F (g(n)Γ)

= 2En6M
∑

d6(N/̟(b))1/2

(1d|Wn+b1Wn+b>d2 − d−1(1− d2/N))F (g(n)Γ)

= oF,G/Γ(1) .

To achieve this, we shall employ the strategy and various lemmata from [7]. Some
parts of the argument will be generalised to meet our requirements.

The basic strategy is as follows. When trying to establish a non-correlation estimate,
it is desirable to have good control on the nilsequence involved. This is for instance
the case when the nilsequence is totally equidistributed, that is equidistributed in every
sufficiently dense subprogression of the range it is defined on. While a nilsequence in
general does not have this property, the factorisation theorem from [8] states that any
nilsequence g : [N ] → G may be written as a product g(n) = ε(n)g′(n)γ(n) where
ε : Z → G is smooth, g′ : Z → G′ is totally equidistributed in a rational subgroup
G′ 6 G, and γ : Z → G is periodic.

The aim then is to show that, by passing to a collection of subsequences defined on
subprogressions of [N ], the correlation estimate involving g can be reduced to correlation
estimates involving totally equidistributed sequences arising from g′.

One further reduction is possible: Any periodic function of short period can be
regarded as a nilsequence. Establishing non-correlation in the special case of peri-
odic sequences is likely to be much easier than the general case. If we pass from
En6Nf(n)F (g(n)Γ) to considering the collection En6(N−i)/df(dn + i)F (g(dn + i)Γ) for
0 6 i < d, where each sequence g(dn + i)Γ takes values in some subnilmanifold Gi/Γi
of G/Γ, then a non-correlation estimate with periodic sequences allows us to assume
that the mean values

∫

Gi/Γi
F (x) dx vanish. Indeed, we may subtract off the periodic

correlation

En6Nf(n)

(

d−1
∑

i=0

1n≡i(d)

∫

Gi/Γi

F (x)

)

= o(1) ,

that is, we may subtract off the relevant mean values.
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This sketch shows the rough strategy from §2 of [7] for reducing a non-correlation es-
timate to the case where the nilsequence is equidistributed and furthermore the involved
Lipschitz function F has zero mean.

The following is [7, Thm. 1.1] adapted to our case.

Theorem 9.1. Let G/Γ be a nilmanifold of some dimensionm > 1, let G• be a filtration
of G of some degree d > 1, and let g ∈ poly(Z, G•) be a polynomial sequence. Suppose
that G/Γ has a Q-rational Mal’cev basis X for some Q > 2, defining a metric dX on
G/Γ. Suppose that F : G/Γ → [−1, 1] is a Lipschitz function. Recall that M = N/W
and that the normalising factor of τ̃ ′

W,b
depends on N . We have

|En∈[M ]τ̃
′
W,b

(n)F (g(n))Γ| ≪m,d,γ,A Q
Om,d,γ,A(1)(1 + ‖F‖)(log log logN)−A

for any A > 0 and N > 2.

Sketch proof: Since En∈[M ]|τ̃
′
W,b

(n)| = O(1), the theorem trivially holds unless Q ≪

(log log logN)OA,m,d(1) ≪ w(N), allowing us to assume QB ≪B w(N), for some B > 1
to be chosen later.

Proceeding as in §2 of [7], one may reduce to analysing the case where (g(n)Γ) is
totally Q′−B-equidistributed for some Q′, Q 6 Q′ ≪ QOB,m,d(1) and

∫

F = 0. The major
arc estimate that is required to carry through this reduction is the following. For any
progression P ⊆ [M ] of common difference 1 6 q < w(N) we have

En∈N1P (n)(τ̃
′
W,b

(n)− µW,b)

=
2W

φ(W ) logN
En∈N 1P (n)

∑

d6(N/̟(b))1/2

(d,W )=1

(

1d|Wn+b1Wn+b>d2 − d−1(1−
d2

N
)
)

≪ N−1/2 .

Note that this bound critically depends on the assumption 1 6 q < w(N).
The case where (g(n)Γ) is totally Q′−B-equidistributed and

∫

F = 0 is a consequence
of the next proposition (cf. also [7, Proposition 2.1]), applied with δ = Q′−B, provided
is provided B was chosen large enough. �

Proposition 9.2 (τ̃ ′
W,b

is orthogonal to equidistributed nilsequences). Suppose that

G/Γ has a Q-rational Mal’cev basis X adapted to G•. Suppose (g(n)Γ)n∈Z is a totally
δ-equidistributed sequence. Then for any Lipschitz function F : G/Γ → [−1, 1] with
∫

G/Γ
F = 0 and for any progression P ⊂ [M ] of length at least M/Q, we have

|En∈[M ](τ̃
′
W,b

(n)1P (n)F (g(n)Γ)| ≪ δcQO(1)‖F‖ log log logN .

For the proof of this proposition we employ tools from the analysis of Type I sums in
the proof of [7, Proposition 2.1]. In particular, we will use the following generalisation
of that analysis, which is significant for our purposes. The proof, however, follows the
aforementioned Type I sums analysis in large parts, so that we keep, where we do not
cite, close to the presentation in [7].

Lemma 9.3. Suppose that (g(n)Γ)n∈Z is a totally δ-equidistributed sequence, suppose
that δ > N−σ for some positive constant σ depending only on m, d, and γ, and suppose
also that ‖F‖ = 1 and that Q 6 δ−c1 for some parameter c1 ∈ (0, 1). Let P ⊆ [M ] be
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a progression of length at least M/Q. For any 1 6 K 6 N1/2 there are only o(δO(1))K
values of k satisfying k ∈ (K, 2K] and

∣

∣

∣
k−1EN/W<n<2N/W 1k|Wn+b1P (Wn+ b)F (g(n)Γ)

∣

∣

∣
≫ δO(1) .

Proof. Suppose for contradiction that there is some K, 1 6 K 6 N1/2, such that the
following inequality holds for ≫ δO(c1)K values of k ∈ (K, 2K]

∣

∣

∣

∣

1

k
EN/W<n<2N/W 1k|Wn+b1P (Wn + b)F (g(n)Γ)

∣

∣

∣

∣

=
∣

∣

∣
EN/Wk<m<2N/Wk 1P (W (km+ uk) + b)F (g(km+ uk)Γ)

∣

∣

∣

≫ δO(c1) ,

where uk is the smallest integer for which k|Wuk + b. uk exists for all k for which
the inequality holds. To remove the indicator function of P , let ℓ 6 Q denote the
common difference of P and split the range of m into progressions of common difference
ℓ. Pigeonholing shows that there is some residue b′ (mod ℓ) such that we still find
≫ δO(c1)K values of k ∈ (K, 2K] that satisfy

∣

∣

∣

∣

∣

∑

m′∈Ik

F (g(k(ℓm′ + b′) + uk))

∣

∣

∣

∣

∣

≫ δO(c1)
N

Wkℓ
, (9.1)

where Ik ⊆ [N/W2kℓ−1, N/Wkℓ] is an interval. This lower bound means that for those
k that satisfy (9.1), the sequence g̃k : Z → G defined by g̃k(n) := g(k(ℓn + b′) + uk),
fails to be δO(c1)-equidistributed in G/Γ on the range Nk = [N/W2kℓ− 1, N/Wkℓ].

By [8, Thm 2.9] there is a non-trivial horizontal character ψk : G→ R/Z of modulus
|ψk| ≪ δO(c1) such that

‖ψk ◦ g̃k‖C∞[Nk] ≪ δ−O(c1).

For notational simplicity we remove the dependence on b and ℓ. This step is not strictly
necessary for the proof. Let gk : Z → G be defined by gk(n) := g(kn + uk). Then [7,
Lemma 8.4] asserts that there is some integer qk, 1 < qk ≪ δ−O(ci) such that

‖qkψk ◦ gk‖C∞[Nk] ≪ δ−O(c1) .

Pigeonholing over the possible choices of horizontal character qkψk, there is some non-
trivial ψ of magnitude |ψ| ≪ δO(c1) among them such that

‖ψ ◦ gk‖C∞[Nk] ≪ δ−O(c1)

for ≫ δO(c1)K values of k ∈ (K, 2K]. Let

ψ ◦ g(n) = βdn
d + · · ·+ β0

be the projection of the polynomial sequence to R/Z by the character ψ. Then

ψ ◦ gk(n) = βdk
dnd + (lower order terms in n) .

We now consider just the highest coefficients βdk
d. As in [7, p.9], one shows that

βd is close to a rational with small denominator, more precisely, that there is some
q̃, 1 6 q̃ ≪ δ−O(c1)

‖q̃βd‖R/Z ≪ δ−O(O(c1))(N/W )−d . (9.2)
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Behind this is the following: since ψ ◦ gk has small smoothness norm, the coefficients, in
particular βdk

d, are close to rationals with small denominator. Waring’s theorem tells
that one can express many integers as a sum of few dth powers. This allows us to show
that βdn is strongly recurrent in R/Z, and hence βd is close to a rational with small
denominator.

The bound (9.2) means that βdn
d is varying very slowly on progressions of common

difference q̃. By pigeonholing, one of these progressions, say {n ≡ q′ mod q̃}, contains
the numbers uk for at least ≫ δO(c1)K of our selection of values k ∈ (K, 2K] that are
also satisfying (9.1).

For each such k, consider the full expansion of ψ ◦ gk:

ψ ◦ gk(n) =
d
∑

j=1

βj(kn + uk)
j

= βdk
dnd +

(

βd−1 +

(

d

1

)

ukβd

)

kd−1nd−1

+

(

βd−2 +

(

d− 1

1

)

ukβd−1 +

(

d

2

)

u2kβd

)

kd−2nd−2 + . . . .

Since uk ≡ q′ (mod q̃), there are integers ad−1, . . . , a0 such that
∥

∥

∥

∥

(

d

j

)

ujkβd −
aj
q̃

∥

∥

∥

∥

R/Z

≪ δ−O(c1)(N/W )−d

We aim to use this information to remove the appearance of the uk, which are varying
with k in a way we have no control on, from the coefficient of nd−1, hoping to then run
a similar argument as before to show that βd−1 is close to being rational.

Writing

ψ ◦ gk(n) =
d
∑

j=1

β̃j,kk
jnj ,

the assertion

‖qβ̃j,kk
j‖R/Z ≪ (N/WK)−j‖ψ ◦ gk‖C∞[Nk] ≪ (N/WK)−jδ−O(c1)

holds if and only if
∥

∥

∥

∥

q
(

β̃j,k −

(

d

j

)

ujkβd +
aj
q̃

)

kj
∥

∥

∥

∥

R/Z

≪ (N/WK)−j‖ψ ◦ gk‖C∞[Nk] ≪ (N/WK)−jδ−O(c1) .

Thus, we can remove all occurrence of βd in the β̃j for j < d. For j = d − 1 this also
removes all occurrences of uk since

β̃d−1,k = βd−1 +

(

d

1

)

ukβd ,

We proceed inductively: We know that there is q = O(1) such that for ≫ δO(c1)K values
of k from our selection of k ∈ (K, 2K] the following holds

‖qkd−1(βd−1 +
ad−1

q̃
)‖R/Z ≪ (N/WK)−d+1δ−O(c1) .

As before, one deduces via Waring’s theorem that βd−1+
ad−1

q̃
, and hence βd−1, is close to

a rational with small denominator, say ˜̃q. Pass to a subprogression of common difference
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˜̃q such that for many of our k the number uk belongs to that subprogression, note that
we can remove the appearance of βd−1 in all β̃j for j < d− 1, and the appearance of uk
in β̃d−2. Show that βd−2 is close to a rational with small denominator and repeat.

Finally, we see that there is q̄, 1 6 q̄ ≪ δ−O(c1) such that

‖q̄βj‖R/Z ≪ δ−O(c1)N−j .

This means that ‖q̄ψ ◦ g(n)‖R/Z is small on a reasonably long interval: exactly as in
[7], we have for fixed small ε > 0 (ε = 1/10)

‖q̄ψ ◦ g(n)‖R/Z ≪ nδ−O(c1)N−1 6 ε

for all n 6 N ′ = δCc1N provided C is large enough.
By taking F̃ to be a composition of q̄ψ with a smooth cut-off of the interval [−ε, ε]

one constructs a Lipschitz function F̃ : G/Γ → [−1, 1] for which

|En∈[N ′]F̃ (g(n)Γ)| > 1 > δ‖F̃‖Lip .

If c1 is chosen small enough, this contradicts the assumption that g was δ-equidistributed
and, hence, proves the Lemma. �

Proof of Proposition 9.2. Exactly as in the proof of [7, Proposition 2.1], one shows that
the result is trivially true in all cases that are not covered by the assumptions of Lemma
9.3.

Since (g(n)Γ)n∈Z is totally δ-equidistributed and since
∫

G/Γ
F = 0, it suffices to show

that

|En∈[M ]τ̃
′
W,b

(n)1P (n)F (g(n)Γ)| ≪ δO(1) log log logN .

This, however, follows from Lemma 9.3 via dyadic summation:

En∈[M ]τ̃
′
W,b

(n)1P (n)F (g(n)Γ)

=
W

φ(W ) logN

∑

d<(N/̟(b))1/2

(d,W )=1

d−1 En∈[N/d]1d|Wn+b1P (n)F (g(n)Γ)

=
W

φ(W ) logN

∑

j6
1
2
log2(N/̟(b))

∑

d∼2j
(d,W )=1

∑

ℓ:d262ℓ6N

2ℓ−1−log2N

d
En∈[2ℓ−1,2ℓ]1d|Wn+b1P (n)F (g(n)Γ)

≪
W

φ(W ) logN

(

∑

d<N1/2

(d,W )=1

d−1δO(1) + log2No(δ
O(1))

)

≪ δO(1) logw(N)

≪ δO(1) log log logN .
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